TY - CONF A1 - Ratkovac, Mirjana T1 - Perspectives on Wind and Wave Load Reconstruction from SHM Data for Offshore Wind Turbines N2 - As many wind turbines approach the end of their design lifetime, from a technical point of view, comprehensive fatigue analysis of all critical parts is necessary to decide what comes after – continued operation, repowering, or decommissioning. Typically, it is a two-stage evaluation process consisting of a physical inspection of the structure and an analytical part to compare the design and actually experienced loading conditions. Structural health monitoring helps to reduce the uncertainties in the estimations by providing insight into deviations between the designed and the built structure. Furthermore, it allows the evaluation of the consumed fatigue lifetime by analyzing the strain measurements that mirror the actual structural response to experienced environmental and operational conditions. However, the measurement values are limited to a sparse number of instrumented spots on the structure, and further extrapolation to the non-instrumented (critical) sections is required to perform a complete fatigue assessment. One known approach is the external force reconstruction, which has only scarcely been considered for application in offshore wind turbines. In order to extend the previously developed thrust force reconstruction framework, this work discusses the possibilities and challenges of wind and wave loading reconstruction in offshore wind turbine support structures. T2 - 4th International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2023) CY - Online meeting DA - 12.06.2023 KW - Wind turbines KW - Force reconstruction KW - Structural Health Monitoring PY - 2023 AN - OPUS4-57687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kemmler, Samuel T1 - Particle resolved simulations of piping erosion in suction bucket foundations N2 - This poster provides an overview of the recent advances in simulating piping erosion during the installation process of a suction bucket foundation. The lattice Boltzmann method is coupled with the discrete element method. Numerical results are presented for three different suction conditions. T2 - 5th International Symposium on Geomechanics from Micro to Macro CY - Grenoble, France DA - 23.09.2024 KW - Suction bucket foundation KW - Coupled fluid-particle simulation KW - Offshore wind support structure KW - High-performance computing PY - 2024 AN - OPUS4-62375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Morgenthal, Guido T1 - Parallelized adaptive Bayesian updating with structural reliability methods for inference of large engineering models N2 - The reassessment of engineering structures, such as bridges, now increasingly involve the integration of models with realworld data. This integration aims to achieve accurate ‘as-is’ analysis within a digital twin framework. Bayesian model updating combines prior knowledge and data with models to enhance the modelling accuracy while consistently handling uncertainties. When updating large engineering models, numerical methods for Bayesian analysis present significant computational challenges due to the need for a substantial number of likelihood evaluations. The novelty of this contribution is to parallelize adaptive Bayesian Updating with Structural reliability methods combined with subset simulation (aBUS) to improve its computational efficiency. To demonstrate the efficiency and practical applicability of the proposed approach, we present a case study on the Maintalbrücke Gemünden, a large railway bridge. We leverage modal property data to update a linear-elastic dynamic structural model of the bridge. The parallelized aBUS approach significantly reduces computational time, making Bayesian updating of large engineering models feasible within reasonable timeframes. The improved efficiency allows for a wider implementation of Bayesian model updating in structural health monitoring and maintenance decision support systems. KW - Bayesian model updating KW - Bayesian updating with structural reliability methods KW - Structural health monitoring KW - Parallelization KW - Modal analysis KW - Railway bridge PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-633686 DO - https://doi.org/10.1177/13694332251346848 SN - 1369-4332 SN - 2048-4011 SP - 1 EP - 26 PB - Sage AN - OPUS4-63368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias T1 - OWEC repowering from a structural engineering and research perspective N2 - A significant number of new wind farms has to be installed and, at the same time, existing wind farms reaching the end of their planned life need to be reused efficiently to ensure that the ambitous goals for deploying offshore wind are met. Some relevant reuse alternatives for offshore wind farms are lifetime extension, repowering utilizing existing substructures and full replacement. In this presentation - starting from experience gained from extending the lifetime of the of the U1 metro viaduct in Berlin - we discuss end-of-life decision making in offshore wind. We focus particularly on issues concerning substructures and highlight existing challenges and opprtunities in research and development. T2 - RWE RePowering Event CY - Wilhelmshaven, Germany DA - 10.10.2023 KW - Offshore wind KW - End-of-life decision making KW - Repowering KW - Substructures PY - 2023 AN - OPUS4-58632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Baeßler, Matthias T1 - Optimal vibration sensor placement for jacket support structures of offshore wind turbines based on value of information analysis N2 - Information on the condition and reliability of an offshore jacket structure provided by a vibration-based structural health monitoring system can guide decisions on inspection and maintenance. When selecting the sensor setup, the designer of the monitoring system must assess its overall benefit compared to its costs before installation. The potential benefit of continuously monitoring the dynamic response of a jacket structure can be formally quantified through a value of information analysis from Bayesian decision theory. In this contribution, we present a framework for optimizing the placement of vibration sensors on offshore jacket structures by maximizing the value of information of the monitoring system. To solve the resulting discrete optimization problem, we adapt a genetic algorithm. The framework is demonstrated in a numerical example considering a redundant jacket-type steel frame. The numerical study shows that monitoring the vibration response of the frame is beneficial. Good sensor setups consist of relatively few sensors located towards the upper part of the frame. The adapted genetic algorithm performs similarly well as established sequential sensor placement algorithms and holds substantial promise for application to real jacket structures. KW - Optimal sensor placement KW - Value of information KW - Jacket support structure KW - Offshore wind turbine KW - Monitoring-informed inspection and maintenance planning PY - 2023 DO - https://doi.org/10.1016/j.oceaneng.2023.115407 SN - 0029-8018 VL - 288 IS - 2 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-58725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Baeßler, Matthias T1 - Optimal sensor placement for vibration-based structural health monitoring obtained via value of information analysis as part of a digital structural integrity management of offshore structures N2 - A digital structural integrity management of offshore structures enables an optimized planning of inspections and repairs with risk-based methods. In a risk-based approach, the inspection and repair strategy that minimizes the expected lifetime costs consisting of the expected inspection, repair and failure costs is determined. In addition to inspections, information on the structural condition can be continuously obtained by monitoring the vibration response of the structural system. Changes in the vibration characteristics quantified in terms of modal properties can be an indication of structural damage. In risk-based inspection and repair planning, the effect of monitoring results is determined via Bayesian updating of the structural condition and reliability. This information should be applied to inform decisions on inspections and may result in a reduced inspection effort. The benefit of continuously monitoring the structural health can be quantified in terms of the value of information, which corresponds to the difference between the expected lifetime costs with and without monitoring. In this work, we demonstrate in a numerical example how an optimized sensor placement for a vibration-based structural health monitoring system can be determined by maximizing the value of information. T2 - 3rd International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2022) CY - Online meeting DA - 08.06.2022 KW - Structural Health Monitoring KW - Value of Information KW - Offshore Wind Energy KW - Optimal Sensor Placement KW - Bayesian System Identification PY - 2022 UR - https://www.researchgate.net/publication/362569906_Optimal_sensor_placement_for_vibration-based_structural_health_monitoring_obtained_via_value_of_information_analysis_as_part_of_a_digital_structural_integrity_management_of_offshore_structures SN - 978-1-8383226-7-0 SP - 23 EP - 32 AN - OPUS4-55465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas T1 - Optimal sensor placement for vibration-based structural health monitoring obtained via value of information analysis as part of a digital structural integrity management of offshore structures N2 - A digital structural integrity management of offshore structures enables an optimized planning of inspections and repairs with risk-based methods. In a risk-based approach, the inspection and repair strategy that minimizes the expected lifetime costs consisting of the expected inspection, repair and failure costs is determined. In addition to inspections, information on the structural condition can be continuously obtained by monitoring the vibration response of the structural system. Changes in the vibration characteristics quantified in terms of modal properties can be an indication of structural damage. In risk-based inspection and repair planning, the effect of monitoring results is determined via Bayesian updating of the structural condition and reliability. This information should be applied to inform decisions on inspections and may result in a reduced inspection effort. The benefit of continuously monitoring the structural health can be quantified in terms of the value of information, which corresponds to the difference between the expected lifetime costs with and without monitoring. In this work, we demonstrate in a numerical example how an optimized sensor placement for a vibration-based structural health monitoring system can be determined by maximizing the value of information. T2 - 3rd International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2022) CY - Online meeting DA - 08.06.2022 KW - Bayesian System Identification KW - Offshore Wind Energy KW - Optimal Sensor Placement KW - Structural Health Monitoring KW - Value of Information PY - 2022 AN - OPUS4-55473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias T1 - On the Reassessment of Bridge Superstructure Vibrations for High-Speed Traffic N2 - The acceleration thresholds of bridge superstructures remain criti-cal for designing and reassessing railway bridges on high-speed lines, with ballasted track systems historically limited to 3.5 m/s² vertical accelerations due to destabilization risks. As part of the European InBridge4EU project, this study addresses methodological uncertainties in linking vertical bridge vibrations to lateral track creep—a key focus area for modernizing assess-ment protocols. A comparative analysis of two acceleration postprocessing methods (peak identification vs. fatigue-derived rainflow counting) as part of a recently proposed framework was conducted using an example bridge and train combination. Results demonstrate that rainflow counting yields more conservative creep estimates with the bulk of cumulative vibration-induced creep attributable to accelerations exceeding 3 m/s². However, discretizing acceleration ranges into 1 m/s² bins introduced significant errors compared to continuous cycle data, highlighting sensitivity to analysis parameters. These findings underscore the complexity of reconciling laboratory-derived harmonic vibration models with real-world bridge dynamics, where non-uni-form acceleration patterns dominate. The research directly informs ongoing efforts to refine standardized criteria for ballasted track stability, particularly through the InBridge4EU project's systematic re-evaluation of vibration lim-its and their engineering implications. By quantifying discrepancies between computational approaches, this work advances the development of robust protocols for predicting track degradation under high-speed operational loads. T2 - 11th International Conference on Experimental Vibration Analysis for Civil Enginering Structures (EVACES 2025) CY - Porto, Portugal DA - 02.07.2025 KW - Infrastructure KW - Railway bridges KW - Ballasted track KW - Railway bridge dynamics KW - Rainflow counting PY - 2025 AN - OPUS4-63658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Baeßler, Matthias ED - Cunha, Álvaro ED - Caetano, Elsa T1 - On the reassessment of bridge superstructure vibrations for high-speed traffic N2 - The acceleration thresholds of bridge superstructures remain critical for designing and reassessing railway bridges on high-speed lines, with ballasted track systems historically limited to 3.5 m/s2 vertical accelerations due to destabilization risks. As part of the European InBridge4EU project, this study addresses methodological uncertainties in linking vertical bridge vibrations to lateral track creep—a key focus area for modernizing assessment protocols. A comparative analysis of two acceleration postprocessing methods (peak identification vs. fatigue-derived rainflow counting) as part of a recently proposed framework was conducted using an example bridge and train combination. Results demonstrate that rainflow counting yields more conservative creep estimates with the bulk of cumulative vibration-induced creep attributable to accelerations exceeding 3 m/s2. However, discretizing acceleration ranges into 1 m/s2 bins introduced significant errors compared to continuous cycle data, highlighting sensitivity to analysis parameters. These findings underscore the complexity of reconciling laboratory-derived harmonic vibration models with real-world bridge dynamics, where non-uniform acceleration patterns dominate. The research directly informs ongoing efforts to refine standardized criteria for ballasted track stability, particularly through the InBridge4EU project’s systematic re-evaluation of vibration limits and their engineering implications. By quantifying discrepancies between computational approaches, this work advances the development of robust protocols for predicting track degradation under high-speed operational loads. T2 - 11th International Conference on Experimental Vibration Analysis for Civil Enginering Structures (EVACES 2025) CY - Porto, Portugal DA - 02.07.2025 KW - Infrastructure KW - Railway bridges KW - Ballast destabilization KW - Acceleration limit KW - Ballasted track KW - Rainflow counting PY - 2025 SN - 978-3-031-96105-2 DO - https://doi.org/10.1007/978-3-031-96106-9_53 VL - 675 SP - 506 EP - 515 PB - Springer CY - Cham AN - OPUS4-64267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Benseghier, Z. A1 - Luu, L.-H. A1 - Cuéllar, Pablo A1 - Bonelli, S. A1 - Philippe, P. T1 - On the erosion of cohesive granular soils by a submerged jet: a numerical approach N2 - This paper presents an erosion interpretation of cohesive granular materials stressed by an impinging jet based on the results of a micromechanical simulation model. The numerical techniques are briefly described, relying on a two-dimensional Lattice Boltzmann Method coupled with a Discrete Element Methods including a simple model of solid intergranular cohesion. These are then used to perform a parametric study of a planar jet in the laminar regime impinging the surface of granular samples with different degrees of cohesive strength. The results show the pertinence of using a generalized form of the Shields criterion for the quantification of the erosion threshold, which is valid for cohesionless samples, through empirical calibration, and also for cohesive ones. Furthermore, the scouring kinetics are analysed here from the perspective of a selfsimilar expansion of the eroded crater leading to the identification of a characteristic erosion time and the quantification of the classical erosion coefficient. However, the presented results also challenge the postulate of a local erosion law including erodibility parameters as intrinsic material properties. The paper then reviews the main limitations of the simulation and current interpretation models, and discusses the potential causes for the observed discrepancies, questioning the pertinence of using time-averaged macroscopic relations to correctly describe soil erosion. The paper concludes addressing this question with a complementary study of the presented simulations re-assessed at the particle-scale. The resulting local critical shear stress of single grains reveals a very wide dispersion of the data but nevertheless appears to confirm the general macroscopic trend derived for the cohesionless samples, while the introduction of cohesion implies a significant but systematic quantitative deviation between the microscopic and macroscopic estimates. Nevertheless, the micro data still shows consistently that the critical shear stress does actually vary approximately in linear proportion of the adhesive force. KW - Soil erosion KW - Granular cohesion KW - Lattice Boltzmann Method KW - Discrete Element Method KW - Impinging jet PY - 2023 DO - https://doi.org/10.1007/s10035-022-01289-5 VL - 25 IS - 8 SP - 1 EP - 20 PB - Springer AN - OPUS4-56525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Ebell, Gino A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Schneider, Ronald ED - Lienhart, Werner ED - Krüger, Markus T1 - On potentials and challenges of physics-informed SHM for civil engineering structures N2 - Physics-informed structural health monitoring, which integrates realistic physical models of material behavior, structural response, damage mechanisms, and aging processes, offers a promising approach to improve monitoring capabilities and inform operation and maintenance planning. However, the associated technical challenges and model requirements are context-specific and vary widely across applications. To illustrate the relevance and potential of the topic, two application examples are presented. The first focuses on monitoring the modal characteristics of a prestressed road bridge, where strong sensitivity to temperature variations limits the diagnostic capabilities of conventional vibration-based global monitoring. The discussion highlights how environmental influences can obscure structural changes, and emphasizes that purely data-based approaches are inherently limited to detecting anomalies and do not enable comprehensive condition diagnostics. The second example explores a physics-informed monitoring approach for prestressed concrete bridges affected by hydrogen-induced stress corrosion cracking. T2 - SHMII-13 CY - Graz, Austria DA - 01.09.2025 KW - Hydrogen Stress Corrosion Cracking KW - SHM KW - Physics informed PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643271 SN - 978-3-99161-057-1 DO - https://doi.org/10.3217/978-3-99161-057-1-039 SP - 245 EP - 251 PB - Verlag der Technischen Universität Graz CY - Graz, Austria AN - OPUS4-64327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias T1 - On potentials and challenges of physics-informed SHM for civil engineering structures N2 - Physics-informed structural health monitoring, which incorporates realistic physical models of material behavior, structural response, damage mechanisms, and aging processes, offers a promising framework to enhance monitoring capabilities and inform operation and maintenance planning. Nevertheless, the technical challenges and model requirements associated with this approach are highly context-dependent and can vary significantly across different applications. The presentation focusses on two case studies that highlight challenges and progress in Physics informed SHM. T2 - SHMII-13 CY - Graz, Austria DA - 01.09.2025 KW - SHM KW - Physics informed KW - Hydrogen Stress Corrosion Cracking PY - 2025 AN - OPUS4-64326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Balscheit, Hagen T1 - Offshore Gründungen - Nichtlineare Effekte bei der stahlbaulichen Auslegung großer Pfahlgründungen für Offshore Windenergieanlagen N2 - Dieser Kurzvortragg erläutert nichtlineare Phänomene die angesichts der aktuell wachsenden Dimensionen von Monopfahlgründungen für Offshorewindenergieanlagen zunehmend an Bedeutung gewinnen. Insbesondere wird dabei auf das Pfahlfußbeulen sowie das Schalenbeulen des bereits installierten Pfahles eingegangen. T2 - 27. Brandburgischer Bauingeniertag BBIT2023 CY - Cottbus, Germany DA - 09.06.2023 KW - Beulen KW - Pfahlfußbeulen KW - Stabilität KW - Monopile KW - Windenergie PY - 2023 AN - OPUS4-57653 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schepers, Winfried A1 - Brinkgreve, Ronald B. J. A1 - Holtzendorff, Kira A1 - Wegener, Dirk A1 - Appel, Silke A1 - Efthymiou, Georgia A1 - Krajewski, Wolfgang A1 - Machaček, Jan A1 - Meier, Thomas A1 - Nseir, Bashar A1 - Rangelow, Peter A1 - Schmitt, Jürgen A1 - Staubach, Patrick A1 - Vrettos, Christos T1 - Numerische Ermittlung von Baugrundschwingungen bei dynamisch belasteten Fundamenten: Empfehlungen zur Modellierung T1 - Numerical analysis of soil vibrations due to vibrating foundations: Guidance for model design N2 - AbstractIn der Praxis tätige geotechnisch Planende kommen in zunehmendem Maße mit dynamischen Fragestellungen in Berührung. Hersteller von geotechnischer Berechnungssoftware haben entsprechend ihre ursprünglich für statische Aufgabenstellungen konzipierten Produkte um die Möglichkeit zur Lösung von Wellenausbreitungsproblemen im Baugrund erweitert. Den Anwendern fehlt aber häufig die notwendige Erfahrung zur Durchführung dieser Art von numerischen Berechnungen. Die Arbeitskreise 1.4 „Baugrunddynamik“ und 1.6 „Numerik in der Geotechnik“ der Deutschen Gesellschaft für Geotechnik (DGGT) haben diese Entwicklung aufgegriffen und einen gemeinsamen Unterarbeitskreis „Numerik in der Baugrunddynamik“ gegründet. Der vorliegende Beitrag stellt die aktuellen Ergebnisse der Arbeit des Unterarbeitskreises vor und fasst die gewonnenen Erkenntnisse in Form von Empfehlungen zusammen. N2 - Geotechnical engineers are increasingly concerned with wave propagation problems. Manufacturers of geotechnical analysis software added features for soil dynamic analyses to their products initially devised for static geotechnical analyses. Though, users often lack the experience for conducting such advanced numerical analyses. Working groups 1.4 "Soil dynamics" and 1.6 "Numerical analyses in geotechnical engineering" of DGGT German Society for Geotechnical Engineering established a joint subgroup "Numerical analyses in soil dynamics" to address this shortcoming. The present paper presents the work of the subgroup so far and provides some guidance on conducting numerical analyses in soil dynamics. KW - Wellenausbreitung KW - Numerische Methoden KW - Empfehlungen KW - Modellgröße KW - Zeitschrittweite PY - 2024 DO - https://doi.org/10.1002/gete.202400016 SN - 0172-6145 VL - 47 IS - 4 SP - 254 EP - 268 PB - Ernst CY - Berlin AN - OPUS4-62078 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias T1 - Numerical Modelling of Local Pile Deformations and Buckling incorporating the Pile-Soil-Interaction N2 - Pile Tip Buckling and Buckling of embedded piles both depend very much on the pile-soil-interaction and its modelling. The presentation gives an overview about current problems and research activities in the light of the development of numerical models. T2 - WESC Wind Energy Science Conference CY - Hannover, Germany DA - 25.05.2021 KW - Offshore Wind Energy Converter KW - Pile Foundation KW - Monopile Buckling KW - Pile Tip Buckling PY - 2021 AN - OPUS4-53033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Balscheit, Hagen T1 - Nichtlineares Tragverhalten stahlbaulicher Offshore-Strukturen unter spezieller Berücksichtigung der Bauwerk-Boden-Interaktion N2 - Der Vortrag gibt einen Überblick über die ingenieurmäßige Handhabung der stahlbaulichen Bemessung von großen Monopiles für Offshorewindenergieanlagen. Besonderer Focus liegt dabei auf jenen Phänomenen, welche durch eine starke Interaktion zwischen Stahlstruktur und Boden gekennzeichnet werden. T2 - Ringvorlesung: Praxisreihe Stahlbau CY - Innsbruck, Austria DA - 09.05.2023 KW - Pile Tip Buckling KW - Shell Buckling KW - Soil Struture Interaction PY - 2023 AN - OPUS4-57521 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Natural frequencies and modes of poles, beams, floors, road and rail bridges N2 - In the last three decades, the vibrations of many floors and bridges have been measured. The contribution shows some evaluation methods, experimental results and some modelling and theoretical results. Simple evaluation methods have been developed for single and coupled floors. Two coupled beams have been measured in good agreement with the theory. A more complex coupling model has been found for a large wooden floor in a castle consisting of six floor bays which correlates well with the measurements. Damaged and intact poles have been tested by their natural frequencies and damping values, and a fair correlation between the degree of damage and the shift of the frequency. Road bridges have been analysed in detail and some examples are presented. Railway bridges and trains are studied for resonant excitation. The risk of resonance can be estimated in frequency domain by using axle-sequence spectra of the train and the natural frequencies of the bridge. A measurement example shows the amplification, but even stronger the cancellation of the subsequent axle responses. Several high-speed trains and freight trains have been analysed for their potential resonance amplification. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Modalanalyse KW - Bauwerke KW - Bauteile KW - Brücken KW - Achsfolgespektren PY - 2020 SP - 1573 EP - 1585 PB - KULeuven CY - Leuven AN - OPUS4-51211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Natural frequencies and modes of poles, beams, floors, road and rail bridges N2 - In the last three decades, the vibrations of many floors and bridges have been measured. The contribution shows some evaluation methods, experimental results and some modelling and theoretical results. Simple evaluation methods have been developed for single and coupled floors. Two coupled beams have been measured in good agreement with the theory. A more complex coupling model has been found for a large wooden floor in a castle consisting of six floor bays which correlates well with the measurements. Damaged and intact poles have been tested by their natural frequencies and damping values, and a fair correlation between the degree of damage and the shift of the frequency. Road bridges have been analysed in detail and some examples are presented. Railway bridges and trains are studied for resonant excitation. The risk of resonance can be estimated in frequency domain by using axle-sequence spectra of the train and the natural frequencies of the bridge. A measurement example shows the amplification, but even stronger the cancellation of the subsequent axle responses. Several high-speed trains and freight trains have been analysed for their potential resonance amplification. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Modalanalyse KW - Bauwerke KW - Bauteile KW - Brücken KW - Achsfolgespektren PY - 2020 AN - OPUS4-51213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Multivariate Gaussian Process Regression for 3D site characterization from CPT and categorical borehole data N2 - Accurate prediction of subsurface stratigraphy and geotechnical properties, along with quantification of associated uncertainties, is essential for improving the design and assessment of geotechnical structures. Several studies have utilized indirect data from Cone Penetration Tests (CPTs) and employed statistical and Machine Learning methods to quantify the geological and geotechnical uncertainty. Incorporating direct borehole data can reduce uncertainties. This study proposes a computationally efficient multivariate Gaussian Process model that utilizes site-specific data and: (i) jointly models multiple categorical (USCS labels) and continuous CPT variables, (ii) learns a non-separable covariance structure leveraging the Linear Model of Coregionalization, and (iii) predicts a USCS based stratigraphy and CPT parameters at any location within the 3D domain. The results demonstrate that integrating geotechnical and geological data into a unified model yields more reliable predictions of subsurface stratification, enabling the parallel interpretation of both USCS classification and CPT profiles. Importantly, the model demonstrates its potential to integrate multiple variables from different sources and data types, contributing to the advancement of methodologies for the joint modeling of geotechnical, geological, and geophysical data. KW - Geotechnical site-characterization KW - Cone Penetration Tests KW - Stratigraphy prediction KW - Multivariate Gaussian process KW - Variational inference KW - Linear Model of Coregionalization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629456 DO - https://doi.org/10.1016/j.enggeo.2025.108052 SN - 1872-6917 VL - 352 SP - 1 EP - 19 PB - Elsevier B.V. AN - OPUS4-62945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Multivariate Gaussian Process for 3D subsurface stratigraphy prediction from CPT and labelled borehole data N2 - Quantifying uncertainties in subsurface properties and stratigraphy can lead to better understanding of the ground conditions and enhance the design and assessment of geotechnical structures. Several studies have utilized Cone Penetration Test (CPT) data and employed Bayesian and Machine Learning methods to quantify the geological uncertainty, based on the Robertson’s soil classification charts and the Soil Behaviour Type Index (Ic). The incorporation of borehole data can reduce the stratigraphic uncertainty. Significant challenges can arise, however, mainly due to the intrinsic differences between field and laboratory-based soil classification systems, which can potentially lead to inconsistent soil classification. To this end, this study proposes a multivariate Gaussian Process model that utilizes site-specific data and: i) jointly models multiple categorical (USCS labels) and continuous (Ic) variables, ii) learns a (shared) spatial correlation structure and the betweenoutputs covariance, and iii) produces two types of dependent classification outputs. The results indicate that the integration of geotechnical and geological information into a unified model can provide more reliable predictions of the subsurface stratification, by allowing simultaneous interpretation of USCS and Ic profiles. Importantly, the model demonstrates the potential to integrate multiple variables of different types, aiming to contribute to the development of a methodology for joint modeling of geotechnical, geological and geophysical data. T2 - 7th International Conference on Geotechnical and Geophysical Site Characterization CY - Barcelona, Spain DA - 18.06.2024 KW - Geotechnical site-characterization KW - Probabilistic KW - Soil classification KW - Gaussian Process PY - 2024 SP - 1733 EP - 1740 AN - OPUS4-60712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -