TY - JOUR A1 - Savidis, S. A1 - Bergmann, M. A1 - Schepers, Winfried A1 - Fontara, I.-K. T1 - Wave propagation in inhomogeneous media via FE/PML method N2 - The Perfectly Matched Layer (PML) method is an efficient approach to imposing radiation conditions at the bounded region of interest in case of wave propagation in unbounded domains. This paper presents and validates 3D FE/PML numerical schemes based on two different PML formulations for homogeneous and inhomogeneous geological media exhibiting discrete or continuous inhomogeneity. In the equation of motion for the PML domain the applied stretching behavior is expressed either as complex material properties or as complex coordinates. Both PML formulations are implemented in the FEM and verified against analytical solutions. Three different types of material inhomogeneity are considered: layered half-space, continuously inhomogeneous half-space with linear velocity profile and continuously inhomogeneous half-space with nonlinear velocity profile. Sensitivity analyses are conducted, and the performance of the developed numerical schemes is investigated taking into account a broad variation of the PML parameters. Recommendations are given for the optimal values of the PML parameters for the case of homogeneous and inhomogeneous geological media. KW - Perfectly Matched Layer (PML) KW - Unbounded domain KW - Finite elements KW - Continuously inhomogeneous geological media PY - 2022 DO - https://doi.org/10.1002/gete.202100028 VL - 45 IS - 2 SP - 98 EP - 107 PB - Ernst & Sohn CY - Berlin AN - OPUS4-54969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiehle, Philipp A1 - Simon, Sebastian A1 - Baier, J. A1 - Dennin, L. ED - Forde, M. T1 - Influence of relative humidity on the strength and stiffness of unstabilised earth blocks and earth masonry mortar N2 - Aim of this study is to provide information about moisture dependent material behaviour of unstabilised loadbearing earth blocks and mortars. Compressive strength and Young’s modulus were investigated after conditioning in varying relative humidity reaching from 40 % up to 95 %. The material composition and physical properties were investigated to understand the influence of relative humidity onto the mechanical properties. A normalisation of strength and stiffness by the values obtained at 23 ◦C and 50 % relative humidity reveals a linear dependence of compressive strength and Young’s modulus that is regardless of the material composition. Thus, it is possible to describe the influence of relative humidity onto the load-bearing behaviour of unstabilised earth masonry materials in a generally valid formulation. KW - Earth block masonry KW - Load-bearing behaviour KW - Compressive strength KW - Moisture content KW - Sorption isotherm PY - 2022 DO - https://doi.org/10.1016/j.conbuildmat.2022.128026 SN - 0950-0618 VL - 342 IS - Part A SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-54949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The role of vehicle dynamics in train-induced ground vibrations and the detection of irregular axle-pulse responses due to a varying track support stiffness N2 - Train-induced ground vibrations are all generated by the vehicle, by static or dynamic vehicle loads. The most important and most accepted excitation are the dynamic wheel loads from the passage over track irregularities. Dynamic wheel loads will be compared from parallel axle-box and ground vibration measurements at more than seven sites. Some low-frequency excitation of ground vibrations, typically between 10 and 30 Hz, cannot be found in the axle-box measurements. Therefore, other vehicle modes, such as rigid bogie modes, flexible carriage modes, rigid and flexible wheelset modes, have been analysed for additional excitation forces. These vehicle dynamics analyses give an explanation for higher axle-box results at high frequencies, but not for the excitation of the higher low-frequency ground-vibration component. Finally, the effect of the moving static train loads will be analysed. For a regular track and soil, the moving static train loads yield the quasi-static response which exists only in the low-frequency nearfield of the track. If the support stiffness is randomly varying along the track, the pulses on the track generate an additional low-frequency component which is called the irregular pulse responses. This component will be demonstrated by numerical analysis where all axle pulses are superposed in frequency domain. KW - Wheelset KW - Vehicle-track interaction KW - Rail roughness KW - Random dynamics and vibrations KW - Modal analysis PY - 2022 DO - https://doi.org/10.1177/09544097221086064 SN - 0954-4097 VL - 236 IS - 10 SP - 1218 EP - 1233 PB - Sage CY - London AN - OPUS4-55000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glienke, R. A1 - Kalkowsky, F. A1 - Hobbacher, A. F. A1 - Holch, A. A1 - Thiele, Marc A1 - Marten, F. A1 - Kersten, R. A1 - Henkel, K.-M. T1 - Evaluation of the fatigue resistance of butt‑welded joints in towers of wind turbines - A comparison of experimental studies with small scale and component tests as well as numerical based approaches with local concepts N2 - Wind turbines are exposed to a high number of load cycles during their service lifetime. Therefore, the fatigue strength verification plays an important role in their design. In general, the nominal stress method is used for the fatigue verification of the most common used butt-welded joints. The Eurocode 3 part 1–9 is the current design standard for this field of application. This paper presents recent results of fatigue tests on small-scaled specimens and large components with transverse butt welds to discuss the validity of the FAT-class. Furthermore, results from numerical simulations for the verification with the effective notch stress and the crack propagation approach are used for comparison. Based on the consistency between the numerical results and the fatigue tests, the influence of the seam geometry on the fatigue resistance was investigated. Finally, a prediction of the fatigue strength of butt-welded joints with plate thicknesses up to 80 mm was carried out. KW - Transverse butt weld KW - Weld imperfections KW - Wind turbine tower KW - Fatigue strength KW - Local approaches KW - Large components KW - Wind energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596648 DO - https://doi.org/10.1007/s40194-023-01630-3 SN - 1878-6669 SP - 1 EP - 26 PB - Springer CY - Berlin AN - OPUS4-59664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vehicle Dynamics and Train‑Induced Ground Vibration—Theoretical Analyses and Simultaneous Vehicle, Track, and Soil Measurements N2 - Ground vibrations near railway lines are generated by the forces that are acting between wheel and rail. It seems to be a straight forward assumption that the vehicle dynamics are important for the level and the frequencies of the excitation forces. Different vehicle dynamics phenomena are analysed for their role in the excitation of ground vibrations: rigid body modes of the bogies, elastic (bending) modes of the car body, and elastic modes of the wheelset. The theoretical analyses use rigid body models, simplified elastic models, and detailed elastic models. Some of these problems are vehicle–track interaction problems where 3D finite‑element boundary‑element models have been used for the track and soil. It is shown that the rigid or flexible vehicle modes are well in the frequency range of ground vibrations (4 to 100 Hz). They have an influence on the excitation force but the additional forces are rather small and can be neglected in ground vibration prediction. The theoretical results are checked by experimental results of a simultaneous measurement of vehicle, track, and ground vibrations. KW - Rigid vehicle model KW - Flexible car body KW - Flexible wheelset KW - Dynamic loads KW - Ground vibration PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569796 DO - https://doi.org/10.3390/vehicles5010013 VL - 5 IS - 1 SP - 223 EP - 247 PB - MDPI CY - Basel AN - OPUS4-56979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sadowski, A. A1 - Seidel, M. A1 - Al-Lawati, H. A1 - Azizi, E. A1 - Balscheit, Hagen A1 - Böhm, M. A1 - Chen, Lei A1 - van Dijk, I. A1 - Doerich-Stavridis, C. A1 - Kunle Fajuyitan, O. A1 - Filippidis, A. A1 - Winther Fischer, A. A1 - Fischer, C. A1 - Gerasimidis, S. A1 - Karampour, H. A1 - Kathirkamanathan, L. A1 - Subramanian, S. A1 - Topkaya, Cem A1 - Wagner, H. N. R. A1 - Wang, J. A1 - Wang, J. A1 - Kumar Yadav, K. A1 - Yun, X. A1 - Zhang, P. T1 - 8-MW wind turbine tower computational shell buckling benchmark - Part 1: An international ‘round-robin’ exercise N2 - An assessment of the elastic-plastic buckling limit state for multi-strake wind turbine support towers poses a particular challenge for the modern finite element analyst, who must competently navigate numerous modelling choices related to the tug-of-war between meshing and computational cost, the use of solvers that are robust to highly nonlinear behaviour, the potential for multiple near-simultaneously critical failure locations, the complex issue of imperfection sensitivity and finally the interpretation of the data into a safe and economic design. This paper reports on an international ‘round-robin’ exercise conducted in 2022 aiming to take stock of the computational shell buckling expertise around the world which attracted 29 submissions. Participants were asked to perform analyses of increasing complexity on a standardised benchmark of an 8-MW multi-strake steel wind turbine support tower segment, from a linear elastic stress analysis to a linear bifurcation analysis to a geometrically and materially nonlinear buckling analysis with imperfections. The results are a showcase of the significant shell buckling expertise now available in both industry and academia. This paper is the first of a pair. The second paper presents a detailed reference solution to the benchmark, including an illustration of the Eurocode-compliant calibration of two important imperfection forms. KW - Wind turbine tower KW - Computational KW - Shell buckling KW - Benchmark PY - 2023 DO - https://doi.org/10.1016/j.engfailanal.2023.107124 SN - 1350-6307 VL - 148 SP - 1 EP - 23 PB - Elsevier Science CY - Oxford AN - OPUS4-57019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liehr, A. A1 - Wegener, T. A1 - Degener, Sebastian A1 - Bolender, A. A1 - Möller, N. A1 - Niendorf, T. T1 - Experimental Analysis of the Stability of Retained Austenite in a Low‐Alloy 42CrSi Steel after Different Quenching and Partitioning Heat Treatments N2 - Quenching and partitioning (Q&P) steels are characterized by an excellent combination of strength and ductility, opening up great potentials for advanced lightweight components. The Q&P treatment results in microstructures with a martensitic matrix being responsible for increased strength whereas interstitially enriched metastable retained austenite (RA) contributes to excellent ductility. Herein, a comprehensive experimental characterization of microstructure evolution and austenite stability is carried out on a 42CrSi steel being subjected to different Q&P treatments. The microstructure of both conditions is characterized by scanning electron microscopy as well as X‐ray diffraction (XRD) phase analysis. Besides macroscopic standard tensile tests, RA evolution under tensile loading is investigated by in situ XRD using synchrotron and laboratory methods. As a result of different quenching temperatures, the two conditions considered are characterized by different RA contents and morphologies, resulting in different strain hardening behaviors as well as strength and ductility values under tensile loading. In situ synchrotron measurements show differences in the transformation kinetics being rationalized by the different morphologies of the RA. Eventually, the evolution of the phase specific stresses can be explained by the well‐known Masing model. KW - Condensed Matter Physics KW - General Materials Science PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581618 DO - https://doi.org/10.1002/adem.202300380 SN - 1438-1656 VL - 25 IS - 17 SP - 1 EP - 16 PB - Wiley AN - OPUS4-58161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faghih-Naini, Sara A1 - Kuckuk, Sebastian A1 - Zint, Daniel A1 - Kemmler, Samuel A1 - Köstler, Harald A1 - Aizinger, Vadym T1 - Discontinuous Galerkin method for the shallow water equations on complex domains using masked block-structured grids N2 - We evaluate masked block-structured grids for ocean domains which allow to represent small-scale geometric features without resorting to very small blocks or excessive mesh resolution. The considered approach aims to combine the geometric flexibility of unstructured meshes with the computational efficiency of stencil-based discretizations and is implemented and tested in a quadrature-free discontinuous Galerkin shallow water solver. We investigate the accuracy and the computational performance of the scheme on a range of realistic ocean domains meshed with blocks of different size and provide some comparisons to results obtained on unmasked block-structured grids and unstructured meshes. KW - Water Science and Technology PY - 2023 DO - https://doi.org/10.1016/j.advwatres.2023.104584 VL - 182 SP - 1 EP - 11 PB - Elsevier AN - OPUS4-58884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, W.-H. A1 - Xu, Z.-M. A1 - Liu, M.-Y. A1 - Tang, D.-H. A1 - Lu, W. A1 - Li, Z.-H. A1 - Teng, J. A1 - Han, X.-H. A1 - Said, Samir A1 - Rohrmann, R. G. T1 - Estimation of the Lateral Dynamic Displacement of High-Rise Buildings underWind Load Based on Fusion of a Remote Sensing Vibrometer and an Inclinometer N2 - This paper proposes a novel method to estimate the lateral displacement of high-rise structures under wind loads. The coefficient β(x) is firstly derived, reflecting the relation between the structural lateral dynamic displacement and the inclination angle at the height x of a structure. If the angle is small, it is the ratio between the structural fundamental mode shape and its first-order derivative without influence of external loads. Several dynamic experiments of structures are performed based on a laser remote sensing vibrometer and an inclinometer, which shows that the fundamental mode is dominated in the structural displacement response under different types of excitations. Once the coefficient β(x) is curve-fitted by measuring both the structural lateral dynamic displacement and the inclination angle synchronously, the real-time structural lateral displacement under operational conditions is estimated by multiplying the coefficient β(x) with the inclination angle. The advantage of the proposed method is that the coefficient β(x) can be identified by lateral dynamic displacement measured in high resolution by the remote sensing vibrometer, which is useful to reconstruct the displacement accurately by the inclination angle under operational conditions KW - Inclination angle KW - High-rise building KW - Lateral dynamic displacement KW - Remote sensing vibrometer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506833 DO - https://doi.org/10.3390/rs12071120 VL - 12 IS - 7 SP - 1120 PB - MDPI CY - 4052 Basel, Schweiz AN - OPUS4-50683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Teng, Jun A1 - Tang, De-Hui A1 - Zhang, Xiao A1 - Hu, Wei-Hua A1 - Said, Samir A1 - Rohrmann, Rolf G. T1 - Automated modal analysis for tracking structural change during construction and operation phases N2 - The automated modal analysis (AMA) technique has attracted significant interest over the last few years, because it can track variations in modal parameters and has the potential to detect structural changes. In this paper, an improved density-based spatial clustering of applications with noise (DBSCAN) is introduced to clean the abnormal poles in a stabilization diagram. Moreover, the optimal system model order is also discussed to obtain more stable poles. A numerical Simulation and a full-scale experiment of an arch bridge are carried out to validate the effectiveness of the proposed algorithm. Subsequently, the continuous dynamic monitoring system of the bridge and the proposed algorithm are implemented to track the structural changes during the construction phase. Finally, the artificial neural network (ANN) is used to remove the temperature effect on modal frequencies so that a health index can be constructed under operational conditions. KW - Automated Modal Analysis for Tracking Structural Change during Construction and Operation Phases PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475116 UR - https://www.mdpi.com/1424-8220/19/4/927/pdf DO - https://doi.org/10.3390/s19040927 SN - 1424-8220 VL - 19 IS - 4 SP - 927, 1 EP - 23 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-47511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Compliance and damping of piles for wind tower foundation in nonhomogeneous soils by the finite-element boundary-element method N2 - A combined finite-element boundary-element method for the dynamic interaction of the soil with flexible structures such as single piles or complete wind energy towers has been developed. Flexible piles in different soils are analysed in frequency domain. The different parameters such as the stiffness of the soil, the bending stiffness and the radius of the hollow pile are analysed for their influence on the complex compliances. The results have been determined as specific power laws which are different for the different load cases (horizontal, rocking, coupling) and for the different soil models (Winkler, continuum with constant, root-parabolic and proportional-linear stiffness variation). The strongest influence of the soil stiffness can be found for the homogeneous soil and the horizontal component. Winkler soils have a weaker influence than the corresponding continuous soils. An offshore wind energy tower has been modeled and calculated for wind and wave loads. KW - Pile foundation KW - Finite-element boundary-element method KW - Pile bending stiffness KW - Soil stiffness KW - Continuously inhomogeneous soils KW - Layered soils KW - Wind energy tower PY - 2019 DO - https://doi.org/10.1016/j.soildyn.2018.12.005 SN - 0267-7261 VL - 120 IS - 5 SP - 228 EP - 244 PB - Elsevier CY - London AN - OPUS4-47891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Ternary mix design of grout material for structural repair using statistical tools N2 - Repair is an indispensable part of the maintenance of structures over their lifetimes. Structural grouting is a widely used remediation technique for concrete components, trenches, mine subsidence, dam joints, restoration of masonry structures, and geological stabilizations. A structural grout system should be injectable in narrow spaces and hence include ingredients with finer particles. Ultrafine cements are ideal for these type of demanding grouts due to their superior properties compared to that of the less expensive, but coarser ordinary Portland cement (OPC). Supplementary cementitious materials (SCMs) are often used to replace OPC clinker based binder in order to modify certain properties and to reduce costs. The most commonly used SCMs are fly ash (FA), and ground granulated blast furnace slag (GGBS). For various special applications microsilica (MS), and metakaolin (MK) are also used. Identifying the optimum replacement contents of OPC by SCMs are a challenge during the design of such grouts. The aim of this experimental study is to investigate the effect of the selected SCMs (FA, MS and MK) on the slump flow, time of efflux, viscosity, shrinkage, and compressive and flexural strength of ultrafine cement based grouts with constant water-binder ratio and superplasticizer content. The test program was formulated using Box-Behnken design principles. Maximum percentages of replacement with ultrafine cement was 6% by volume of cement for MS and 16% for FA, and MK. The results suggest that most investigated grouts have the potential to be used for structural applications. The appropriate quadratic models are then formulated through statistical tools and presented as response surfaces. The trends indicate that fly ash improves the rheological properties, whereas microsilica and metakaolin positively affect shrinkage and mechanical properties to some extent. Based on the influence of SCMs and priorities among the properties, Decision Matrix Analysis (DMA) is carried out to select the most suitable ones among the SCMs. The analysis suggests that microsilica and fly ash are more suitable as SCMs than metakaolin without affecting the properties. KW - Grouting KW - Microsilica KW - Fly ash KW - Metakaolin KW - Workability KW - Viscosity KW - Strength KW - Mix design KW - Box-Behnken KW - Decision matrix analysis PY - 2018 DO - https://doi.org/10.1016/j.conbuildmat.2018.08.156 SN - 0950-0618 SN - 1879-0526 VL - 189 SP - 170 EP - 180 PB - Elsevier Ltd. AN - OPUS4-45922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Morgenthal, Guido ED - Cha, Young-Jin T1 - A Bayesian Probabilistic Framework for Building Models for Structural Health Monitoring of Structures Subject to Environmental Variability N2 - Managing aging engineering structures requires damage identification, capacity reassessment, and prediction of remaining service life. Data from structural health monitoring (SHM) systems can be utilized to detect and characterize potential damage. However, environmental and operational variations impair the identification of damages from SHM data. Motivated by this, we introduce a Bayesian probabilistic framework for building models and identifying damage in monitored structures subject to environmental variability. The novelty of our work lies (a) in explicitly considering the effect of environmental influences and potential structural damages in the modeling to enable more accurate damage identification and (b) in proposing a methodological workflow for model‐based structural health monitoring that leverages model class selection for model building and damage identification. The framework is applied to a progressively damaged reinforced concrete beam subject to temperature variations in a climate chamber. Based on deflections and inclinations measured during diagnostic load tests of the undamaged structure, the most appropriate modeling approach for describing the temperature‐dependent behavior of the undamaged beam is identified. In the damaged state, damage is characterized based on the identified model parameters. The location and extent of the identified damage are consistent with the cracks observed in the laboratory. A numerical study with synthetic data is used to validate the parameter identification. The known true parameters lie within the 90% highest density intervals of the posterior distributions of the model parameters, suggesting that this approach is reliable for parameter identification. Our results indicate that the proposed framework can answer the question of damage identification under environmental variations. These findings show a way forward in integrating SHM data into the management of infrastructures. KW - Verkehrsinfrastukturen KW - SHM KW - Model Updating KW - Environmental and Operational Variability KW - Damage Identification KW - Model Building PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605027 DO - https://doi.org/10.1155/2024/4204316 SN - 1545-2255 VL - 2024 IS - 1 SP - 1 EP - 23 PB - Wiley AN - OPUS4-60502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nerger, Deborah A1 - Moosavi, Robabeh A1 - Bracklow, F. A1 - Hering, M. A1 - Kühn, T. A1 - Curbach, M. A1 - Hille, Falk A1 - Rogge, Andreas T1 - Planar tomography and numerical analysis for damage characterization of impact loaded RC plates N2 - The damage analysis of reinforced concrete (RC) is of high interest for reasons of effective maintenance and structural safe-ty of buildings. The damage structures of RC plates loaded by an impact were investigated, applying X-ray planar tomogra-phy and finite element method (FEM). Planar tomography allows getting three-dimensional information of the RC elements and the damage including crack, spalling and scabbing. The FEM model validated on the tomography data justifies the appli-cation for further predictions of the damage description. In this study, we investigated concrete plates of three different thick-ness subjected to impacts at different low- and medium-velocity, whereby the used impactor had a flat tip, which resulted in small penetrations on the front side and scabbing on the rear side. In order to quantify the damage, the damage volume and its distribution through the plate were computed and the correlations between degree of damage and impact velocity were found out. KW - Impact KW - Damage characterization KW - Planar tomography KW - Numeric simulation KW - Reinforced concrete structure PY - 2020 DO - https://doi.org/10.1002/cend.202000017 VL - 8 SP - 1 EP - 19 PB - Wiley AN - OPUS4-51117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schepers, Winfried A1 - Brinkgreve, RBJ A1 - Appel, S. T1 - Recommendations on finite element modelling of non-seismic excitation in soil-structure interaction problems N2 - Nowadays geotechnical engineering firms have powerful software tools to extent their consult-ing business also into dynamic soil-structure interaction, which before has been restricted to a rather small community of specialized experts in this field, and they certainly do. This is par-ticularly true with respect to non-seismic sources, that is all kinds of human induced vibrations. Hence, there is a demand from clients as well as from contractors to have guidance on the re-quirements as well as the limits of numerical modelling of soil-structure interaction. From the literature as well as from relevant standards, recommendations for the numerical modelling of soil-structure interaction problems involving seismic actions are well known, e. g. ASCE/SEI 4-16. There are, however, some particularities when dealing with human-induced vibrations, which are absent in seismic analyses. For human-induced excitations very little specific guid-ance has been published in the past. A machine foundation on a homogeneous half space ex-cited by harmonic loads with excitation frequency between 4 Hz and 64 Hz has been ana-lysed by means of several commercially available software packages. Parametric studies have been performed to verify if recommendations for seismic soil-structure analyses are valid for non-seismic analyses as well. This paper provides details on the benchmark example and the most important conclusions from the undertaken parametric studies. T2 - XII International Conference on Structural Dynamics CY - Delft, Netherlands DA - 02.07.2023 KW - Numerische Analysen KW - Referenzbeispiel KW - Maschinenfundament KW - Wellenausbreitung PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604931 DO - https://doi.org/10.1088/1742-6596/2647/8/082014 SN - 1742-6596 VL - 2647 IS - 25 SP - 1 EP - 13 PB - IOP Publishing AN - OPUS4-60493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schepers, Winfried A1 - Kulke, D. T1 - Cone penetration tests and dynamic soil properties N2 - ISO 14837-32:2015 and DIN EN 1998-1/NA:2021 as well as prEN 1997-2:2022 allow for us-ing correlations between the results of in-situ soil penetration tests and shear wave velocity (or shear modulus) to determine soil properties to be used in dynamic analyses. While the ISO and prEN standards even provide some recommendations on specific correlations to be used, the DIN standard does not. Due to the statistical nature of such correlations their general applica-bility has to be verified. We collected data sets from test sites from Germany as well as New Zealand at which cone penetration tests (CPT) as well as seismic site investigation methods were conducted. These sites comprise sandy soils as well as clayey soils, mixed soils as well as glacial soils. We compare the results of several correlations between CPT results and shear wave velocity. The accuracy of such correlations is assessed with respect to the accuracy of seismic in-situ tests. It turns out that for clean sands such correlations between CPT and Vs have a similar order of variability as seismic in-situ tests conducted at the same site. The higher the fines portion of the soil, the higher the variability of the statistical correlations, and conse-quently the less the general applicability. For glacial soils and other special soil types usage of statistical correlations to determine dynamic soil properties is not recommended. T2 - XII International Conference on Structural Dynamics CY - Delft, Netherlands DA - 02.07.2023 KW - Wave propagation KW - Soil properties KW - Dynamic excitation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604887 DO - https://doi.org/10.1088/1742-6596/2647/25/252005 VL - 2647 SP - 1 EP - 11 PB - IOP Publishing CY - Bristol AN - OPUS4-60488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hille, Falk A1 - Sowietzki, D. A1 - Makris, R. T1 - Luminescence-based early detection of fatigue cracks N2 - Classic non-destructive fatigue crack detection methods reveal the state of the fatigue damage evolution at the moment of application, generally not under operational conditions. The here introduced crack luminescence method realizes a clear visibility of the occurred and growing crack in loaded components during operation. Different established experiments show that due to the sensitive coating a crack Formation can be detected even in early stage under the premise the crack reached the surface. The coating consists of two layers with different properties and functions. The bottom layer emits light as fluorescence under UV radiation. The top layer covers the fluorescing one and prevents the emitting of light in case of no damage at the surface. In case of surface crack occurrence, the luminescent light is clearly noticeable by visual observations and also by standard camera equipment which makes automated crack detection possible as well. It is expected that crack luminescence can increase structural safety as well as reduce costs and time for inspections and preventive maintenance. KW - Coating KW - Fatigue KW - Crack damage detection KW - Luminescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510517 DO - https://doi.org/10.1016/j.matpr.2020.02.338 SN - 2214-7853 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-51051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartels, Jan-Hauke A1 - Xu, Ronghua A1 - Kang, Chongjie A1 - Herrmann, Ralf A1 - Marx, Steffen T1 - Experimental Investigation on the Transfer Behavior and Environmental Influences of Low-Noise Integrated Electronic Piezoelectric Acceleration Sensors N2 - Acceleration sensors are vital for assessing engineering structures by measuring properties like natural frequencies. In practice, engineering structures often have low natural frequencies and face harsh environmental conditions. Understanding sensor behavior on such structures is crucial for reliable masurements. The research focus is on understanding the behavior of acceleration sensors in harsh environmental conditions within the low-frequency acceleration range. The main question is how to distinguish sensor behavior from structural influences to minimize errors in assessing engineering structure conditions. To investigate this, the sensors are tested using a long-stroke calibration unit under varying temperature and humidity conditions. Additionally, a mini-monitoring system configured with four IEPE sensors is applied to a small-scale support structure within a climate chamber. For the evaluation, a signal-energy approach is employed to distinguish sensor behavior from structural behavior. The findings show that IEPE sensors display temperature-dependent nonlinear transmission behavior within the low-frequency acceleration range, with humidity having negligible impact. To ensure accurate engineering structure assessment, it is crucial to separate sensor behavior from structural influences using signal energy in the time domain. This study underscores the need to compensate for systematic effects, preventing the underestimation of vibration energy at low temperatures and overestimation at higher temperatures when using IEPE sensors for engineering structure monitoring. KW - Acceleration sensors KW - Environmental influence KW - IEPE KW - Structural Health Monitoring KW - Low-frequency shaker PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594623 UR - https://www.mdpi.com/2673-8244/4/1/4/ DO - https://doi.org/10.3390/metrology4010004 SN - 2673-8244 VL - 4 IS - 1 SP - 46 EP - 65 PB - MDPI CY - Basel AN - OPUS4-59462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Vibration-based system identification of a large steel box girder bridge N2 - The Bundesanstalt für Materialforschung und -prüfung (BAM) collaborates with TNO to develop a software framework for automated calibration of structural models based on monitoring data. The ultimate goal is to include such models in the asset management process of engineering structures. As a basis for developing the framework, a multi-span road bridge consisting of ten simply supported steel box girders was selected as a test case. Our group measured output-only vibration data from one box girder under ambient conditions. From the data, we determined eigenfrequencies and mode shapes. In parallel, we developed a preliminary structural model of the box girder for the purpose of predicting its modal properties. In this contribution, we provide an overview of the measurement campaign, the operational modal analysis, the structural modeling and qualitatively compare the identified with the predicted modes. As an outlook, we discuss the further steps in the calibration process and future applications of the calibrated model. T2 - XII International Conference on Structural Dynamics (EURODYN 2023) CY - Delft, The Netherlands DA - 02.07.2023 KW - Verkehrsinfrastukturen KW - SHM KW - Model updating KW - System identification KW - Operational modal analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605041 DO - https://doi.org/10.1088/1742-6596/2647/18/182039 SN - 1742-6596 VL - 2647 IS - 18 SP - 1 EP - 9 PB - IOP Publishing CY - Bristol AN - OPUS4-60504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Statistical subspace-based damage detection with estimated reference N2 - The statistical subspace-based damage detection technique has shown promising theoretical and practical results for vibration-based structural health monitoring. It evaluates a subspacebased residual function with efficient hypothesis testing tools, and has the ability of detecting small changes in chosen system parameters. In the residual function, a Hankel matrix of Output covariances estimated from test data is confronted to its left null space associated to a reference model. The hypothesis test takes into account the covariance of the residual for decision making. Ideally, the reference model is assumed to be perfectly known without any uncertainty, which is not a realistic assumption. In practice, the left null space is usually estimated from a reference data set to avoid model errors in the residual computation. Then, the associated uncertainties may be non-negligible, in particular when the available reference data is of limited length. In this paper, it is investigated how the statistical distribution of the residual is affected when the reference null space is estimated. The asymptotic residual distribution is derived, where its refined covariance term considers also the uncertainty related to the reference null space estimate. The associated damage detection test closes a theoretical gap for real-world applications and leads to increased robustness of the method in practice. The importance of including the estimation uncertainty of the reference null space is shown in a numerical study and on experimental data of a progressively damaged steel frame. KW - Damage detection KW - Uncertainty quantification KW - Statistical tests KW - Ambient excitation KW - Vibration measurement PY - 2022 DO - https://doi.org/10.1016/j.ymssp.2021.108241 SN - 0888-3270 VL - 164 SP - 108241 PB - Elsevier Ltd. AN - OPUS4-52998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -