TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias ED - Papadrakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Structural health monitoring KW - Bayesian methods KW - Environmental effects PY - 2020 SN - 978-618-85072-2-7 SN - 978-618-85072-0-3 SP - 1254 PB - Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA) CY - Athens, Greece AN - OPUS4-51590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Baeßler, Matthias T1 - Fatigue crack detection methods for high-cyclic loaded steel structures and challenges in mechanical testing N2 - For the generation of renewable energy offshore wind farms play an important role. The majority of these wind generators are connected to steel foundation structures. Steady increasing power output of these wind turbines leads to new challenges as well for engineers of the related support structures. Caused by the high-cyclic loading of these structures by wind and waves fatigue plays a very important role. Besides the consideration of fatigue within the design process it is additionally an important topic and challenge to monitor the existing steel structures relating to potential fatigue cracks occurring during their lifetime. This plays a role for a fundamental understanding of mechanisms as investigated in testing but also for inspection in real structures. Since the structures of the offshore wind generators are very large and in addition partially under water effective and reliable methods for fatigue crack detection are required. This contribution will present results of recent investigations on different crack detection methods applied on high-cycle fatigue tests on small welded steel samples as well as on welded steel components. The comparison of these measurements will show what are the advantages and disadvantages of the different methods and which method is potentially more suitable for the application on real offshore wind structures. It is outlined where challenges for detection methods exist. Furthermore, in this context the resulting challenges for the execution of material testing especially caused by the increasing dimensions of wind energy converters will by exemplarily presented. T2 - EERA JP Wind & SETWind Online Annual Event 2020 CY - Online meeting DA - 14.09.2020 KW - Fatigue KW - Crack detection KW - Steel structures PY - 2020 AN - OPUS4-51356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Geißler, Peter T1 - Computational Geomechanics for Offshore Wind N2 - Simulations for the Safety and Efficiency of Foundations in the Offshore Wind Energy Production. T2 - Poster Challenge - EERA JP Wind Online Annual Event 2020 CY - Online meeting DA - 14.09.2020 KW - Numerical simulations KW - Marine geomechanics KW - Offshore wind energy PY - 2020 UR - https://www.eerajpwind.eu/events/eera-jp-wind-setwind-annual-event-2020/ AN - OPUS4-51280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nerger, Deborah A1 - Hille, Falk A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Kühn, T. A1 - Hering, M. A1 - Bracklow, F. T1 - Post-impact evaluation at RC plates with planar tomography and FEM N2 - Due to the wide range of applications, the easy production and the large field of use, reinforced concrete (RC) is a widespread building material. This variety of applications is reflected in a wide range of physical material properties. Not only therefor it still is a technical challenge to provide all necessary test conditions for experimentally reproducing dynamic effects under impact loading of RC structures. In this paper we present investigations on the thicknesses of RC plates under low and medium high velocity impact loading by a flat-tipped impactor. The planar tomography setup at BAM is used to visualize the impact damage and to characterize the damage features such as cracks, scabbing and spalling. Further, the comparison of tomography results with those of an applied numeric simulation analysis is used to verify the numeric models for future damage prognosis under impact loading. Using the results of both, the tomographic as well as the FE analysis, different damage features were investigated and compared regarding their validity. Crack damage plays a leading part and the significance of summarized crack values as well as their distribution is analyzed. The total damage value but also the determined damage distribution both provide an input for describing damage as a function of the impactor velocity and plate thickness. KW - Reinforced concrete structure KW - Post-impact evaluation KW - Damage characterization KW - Ansys Autodyn KW - Drucker-Prager KW - Planar tomography PY - 2020 DO - https://doi.org/10.1016/j.matpr.2020.05.671 SP - 1 EP - 10 PB - Elsevier AN - OPUS4-51115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias ED - Papadrakakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Implementing a Structural Health Monitoring system using digital models of the BAM large drop test facility in Horstwalde N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - Drop Tests KW - System Identification KW - Digital Models KW - BIM PY - 2020 UR - https://generalconferencefiles.s3-eu-west-1.amazonaws.com/eurodyn_2020_ebook_procedings_vol1.pdf SN - 978-618-85072-0-3 VL - 1 SP - 1293 EP - 1304 PB - Institute of Structural Analysis and Antiseismic Research CY - Athen AN - OPUS4-51592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Victor, A. A1 - Lüddecke, F. ED - Triantafyllidis, T. T1 - Stability and large deformations of slender structures supported by soil materials N2 - The stability and geometric nonlinearities of slender structures are a major topic in structural design. While this topic is most relevant in the field of Structural Engineering, e.g. for steel or concrete structures, only few applications take the role of soil-structure-interaction explicitly into account. The focus of this paper is placed on the impact of soil support and its modelling for the buckling analysis based on examples both for pile foundations and for railway track stability. The general interaction between steel design and the geotechnical input will be addressed. The paper discusses and summarizes a range of subtopics based on experience and current research at the author’s institute. KW - Buckling soil-structure-interaction offshore piles track PY - 2020 SN - 978-3-030-28515-9 SN - 978-3-030-28516-6 DO - https://doi.org/10.1007/978-3-030-28516-6 SN - 1613-7736 SN - 1860-0816 VL - 91 SP - 355 EP - 369 PB - Springer CY - Cham, Switzerland AN - OPUS4-49166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Rackwitz, F. A1 - Lüddecke, F. T1 - Recap: Main Results of the BUMP Study and Relevance for VERBATIM N2 - Zusammenfassung des Forschungsprojekts BUMP hinsichtlich der Relevanz für das Projekt VERBATIM N2 - BUMP had been a theoretical prestudy on open issues for the pile tip buckling of large monopiles. The presentation summarizes the main results and considers the impact for the ongoing VERBATIM project. VERBATIM is set up as a mainly experimental verification project for pile buckling. T2 - Kick-Off Projekt VERBATIM CY - BAM, Berlin, Germany DA - 23.01.2020 KW - Buckling piles circular shells PY - 2020 AN - OPUS4-50515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Kontinuierliches Bauwerksmonitoring – Sensor-basiert (AP4) N2 - Kontinuierliche sensorbasierte Bauwerksmessungen leisten einen wichtigen Beitrag zur Sicherheit von Verkehrsbauwerken. Hierzu werden im Vorhaben AISTEC Referenzbauwerke und Referenzverfahren untersucht mit Schwerpunkt auf den Einfluss klimatischer Bedingungen. Der Vortrag stellt den aktuellen Projektstand des FB 7.2 vor. T2 - 3. Verbundtreffen AISTEC CY - Online meeting DA - 05.05.2020 KW - Zivile Sicherheit KW - Brücken KW - Structural Health Monitoring PY - 2020 AN - OPUS4-50796 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models -- each estimated from data measured in a reference state -- are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - IFAC World Congress 2020 CY - Online meeting DA - 11.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 SP - 13858 AN - OPUS4-51617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Deborah A1 - Moosavi, Robabeh A1 - Bracklow, F. A1 - Hering, M. A1 - Kühn, T. A1 - Curbach, M. A1 - Hille, Falk A1 - Rogge, Andreas T1 - Impact damage characterization at RC plates with planar tomography and FEM N2 - Prediction of dynamic effects of reinforced concrete structures under impact loading is a technical challenge. This is a consequence of the great variability of the physical properties resulting from the wide adaptability of reinforced concrete and a consequence of the wide range of impact loading. Experiments and numerical investigations are normally used on a small scale to address the problem. In this paper, impact tests on reinforced conrete plates with the lateral dimensions of 1.5 m x 1.5 m and a thickness of 30 cm are presented. In bending reinforcement, besides the velocity two properties are varied, the diameter and the spatial distribution of the rebars. Experiments are performed at the Otto-Mohr-Laboratory of the Institute of Concrete Structures of the Technische Universit¨at Dresden. Due to the accelerated fall of the impactor the velocity ranges between 20 and 70 m/s. In addition to the measured quantities such as bearing forces, accelerations are also measured at 4 different positions on and under the plate, as well as the deflection at several positions. The measured data are used for the analysis of the damage form and the numerical examinations with the program Ansys Autodyn and the material model after Drucker-Prager. Numerical investigations support the tests, with detailed analysis of individual effects. These numerical computations and the planar tomographic investigations were carried out at BAM in Berlin. With the help of planar tomographic evaluation, the damaged structure is made visible and compared with the numerical results. Influences of the bending reinforcement are explained on the basis of damage evaluation in the local area and on selected measured values. In addition to the test evaluation, the tomographic and numerical methods are presented. T2 - XI International Conference on Structural Dynamics (EURODYN 2020) CY - Online meeting DA - 23.11.2020 KW - Post-impact evaluation KW - Damage characterization KW - Planar tomography KW - Drucker-Prager KW - Ansys Autodyn PY - 2020 AN - OPUS4-51768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias T1 - Implementing a Structural Health Monitoring System using Digital Models of the BAM Large Drop Test Facility N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - System Identification KW - Digital Twin KW - Point Cloud KW - Drop Test PY - 2020 AN - OPUS4-51734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only Systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models { each estimated from data measured in a reference state { are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then con icts May arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - 21st IFAC World Congress CY - Berlin, Germany DA - 13.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 AN - OPUS4-52366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omidalizarandi, M. A1 - Herrmann, Ralf A1 - Kargoll, B. A1 - Marx, S. A1 - Paffenholz, J. A1 - Neumann, I. T1 - A validated robust and automatic procedure for vibration analysis of bridge structures using MEMS accelerometers N2 - Today, short- and long-term structural health monitoring (SHM) of bridge infrastructures and their safe, reliable and cost-effective maintenance has received considerable attention. From a surveying or civil engineer’s point of view, vibration-based SHM can be conducted by inspecting the changes in the global dynamic behaviour of a structure, such as natural frequencies (i. e. eigenfrequencies), mode shapes (i. e. eigenforms) and modal damping, which are known as modal parameters. This research work aims to propose a robust and automatic vibration analysis procedure that is so-called robust time domain modal parameter identification (RT-MPI) technique. It is novel in the sense of automatic and reliable identification of initial eigenfrequencies even closely spaced ones as well as robustly and accurately estimating the modal parameters of a bridge structure using low numbers of cost-effective micro-electro-mechanical systems (MEMS) accelerometers. To estimate amplitude, frequency, phase shift and damping ratio coefficients, an observation model consisting of: (1) a damped harmonic oscillation model, (2) an autoregressive model of coloured measurement noise and (3) a stochastic model in the form of the heavy-tailed family of scaled t-distributions is employed and jointly adjusted by means of a generalised expectation maximisation algorithm. Multiple MEMS as part of a geo-sensor network were mounted at different positions of a bridge structure which is precalculated by means of a finite element model (FEM) analysis. At the end, the estimated eigenfrequencies and eigenforms are compared and validated by the estimated parameters obtained from acceleration measurements of high-end accelerometers of type PCB ICP quartz, velocity measurements from a geophone and the FEM analysis. Additionally, the estimated eigenfrequencies and modal damping are compared with a well-known covariance driven stochastic subspace identification approach, which reveals the superiority of our proposed approach. We performed an experiment in two case studies with simulated data and real applications of a footbridge structure and a synthetic bridge. The results show that MEMS accelerometers are suitable for detecting all occurring eigenfrequencies depending on a sampling frequency specified. Moreover, the vibration analysis procedure demonstrates that amplitudes can be estimated in submillimetre range accuracy, frequencies with an accuracy better than 0.1 Hz and damping ratio coefficients with an accuracy better than 0.1 and 0.2 % for modal and system damping, respectively. KW - Vibration analysis KW - Automatic modal parameters identification KW - MEMS KW - FEM analysis KW - Bridge monitoring PY - 2020 UR - https://www.degruyter.com/view/journals/jag/14/3/article-p327.xml DO - https://doi.org/10.1515/jag-2020-0010 SN - 1862-9016 VL - 14 IS - 3 SP - 1 EP - 28 PB - De Gruyter CY - Berlin AN - OPUS4-51338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nerger, Deborah A1 - Moosavi, Robabeh A1 - Bracklow, F. A1 - Hering, M. A1 - Kühn, T. A1 - Curbach, M. A1 - Hille, Falk A1 - Rogge, Andreas T1 - Planar tomography and numerical analysis for damage characterization of impact loaded RC plates N2 - The damage analysis of reinforced concrete (RC) is of high interest for reasons of effective maintenance and structural safe-ty of buildings. The damage structures of RC plates loaded by an impact were investigated, applying X-ray planar tomogra-phy and finite element method (FEM). Planar tomography allows getting three-dimensional information of the RC elements and the damage including crack, spalling and scabbing. The FEM model validated on the tomography data justifies the appli-cation for further predictions of the damage description. In this study, we investigated concrete plates of three different thick-ness subjected to impacts at different low- and medium-velocity, whereby the used impactor had a flat tip, which resulted in small penetrations on the front side and scabbing on the rear side. In order to quantify the damage, the damage volume and its distribution through the plate were computed and the correlations between degree of damage and impact velocity were found out. KW - Impact KW - Damage characterization KW - Planar tomography KW - Numeric simulation KW - Reinforced concrete structure PY - 2020 DO - https://doi.org/10.1002/cend.202000017 VL - 8 SP - 1 EP - 19 PB - Wiley AN - OPUS4-51117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straub, D. A1 - Schneider, Ronald A1 - Bismut, E. A1 - Kim, H.-J. T1 - Reliability analysis of deteriorating structural systems N2 - Reliability analysis of deteriorating structural systems requires the solution of time-variant reliability problems. In the general case, both the capacity of and the loads on the structure vary with time. This analysis can be approached by approximation through a series of time-invariant reliability problems, which is a potentially effective strategy for cases where direct solutions of the time-variant reliability problem are challenging, e.g. for structural systems with many elements or arbitrary load processes. In this contribution, we thoroughly Review the formulation of the equivalent time-invariant reliability problems and extend this approximation to structures for which inspection and monitoring data is available. Thereafter, we present methods for efficiently evaluating the reliability over time. In particular, we propose the combination of sampling-based methods with a FORM (first-order reliability method) approximation of the series system reliability problem that arises in the computation of the lifetime reliability. The framework and algorithms are demonstrated on a set of numerical examples, which include the computation of the reliability conditional on inspection data. KW - Monitoring KW - Reliability KW - Deterioration KW - Structural systems KW - Bayesian analysis KW - Inspection PY - 2020 DO - https://doi.org/10.1016/j.strusafe.2019.101877 VL - 82 SP - Paper 101877, 1 PB - Elsevier Ltd. AN - OPUS4-48952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sanayei, Mohammad Hassan A1 - Farhat, A. A1 - Luu, L.-H. A1 - Werner, L. A1 - Rettinger, C. A1 - Philippe, P. A1 - Cuellar, Pablo T1 - Micromechanical framework for a 3d solid cohesion model - implementation, validation and perspectives N2 - This article presents a solid cohesion model for the simulation of bonded granular assemblies in the frame of 3D discrete element approaches (DEM). A simple viscoplastic cohesion model for 2D geometries is extended to 3D conditions, while its yield criterion is generalized as a hyper-surface in the space of bond solicitations to include torsional moments. The model is then calibrated using experimental results of uniaxial traction at both the microscopic and macroscopic scales with an artificial granular cohesive soil. The paper finally presents some simulated results on the macromechanical sample traction application and briefly discusses the model's current limitations and promising prospects for subsequent works. T2 - VII International Conference on Particle-Based Methods PARTICLES 2021 CY - Hamburg, Germany DA - 04.10.2021 KW - Granular Cohesive Materials KW - DEM KW - Micromechanical Tensile Failure KW - Macromechanical Sample Strength PY - 2021 SP - 1 EP - 10 AN - OPUS4-53716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sanayei, Mohammad Hassan A1 - Farhat, A. A1 - Luu, Li-Hua A1 - Werner, L. A1 - Rettinger, C. A1 - Philippe, P. A1 - Cuellar, Pablo T1 - Micromechanical framework for a 3D solid cohesion model - Implemantation, validation and perspectives N2 - This article presents a solid cohesion model for the simulation of bonded granular assemblies in the frame of 3D discrete element approaches (DEM). A simple viscoplastic cohesion model for 2D geometries is extended to 3D conditions, while its yield criterion is generalized as a hyper-surface in the space of bond solicitations to include torsional moments. The model is then calibrated using experimental results of uniaxial traction at both the microscopic and macroscopic scales with an artificial granular cohesive soil. The paper finally presents some simulated results on the macromechanical sample traction application and briefly discusses the model's current limitations and promising prospects for subsequent works. T2 - VII International Conference on Particle-Based Methods PARTICLES 2021 CY - Hamburg, Germany DA - 04.10.2021 KW - Granular Cohesive Materials, KW - DEM KW - Micromechanical Tensile Failure KW - Macromechanical Sample Strength PY - 2021 AN - OPUS4-53726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Resonances of railway bridges analysed in frequency domain by the modal-force-excitation, bridge-transfer and axle-sequence spectra N2 - In this article, the passage of different trains over different bridges will be studied for resonant excitation. The intensity of the resonance will be estimated in frequency domain by using three separated spectra. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of the train. The influences of train speed, bridge length, bridge support, track irregularities, and train type on the resonance amplitudes will be analysed for each of these spectra separately for getting a better insight. A variety of axle-sequence spectra and corresponding rules will be presented for different vehicles and trains. As examples, the passage of a slow freight train over a long-span bridge, a normal passenger train over a medium-span bridge, and a high-speed train over a short bridge will be analysed. Corresponding measurements show the amplification, but also the cancellation of the subsequent axle responses. Namely in one of the measurement examples, the first mode of the bridge was amplified and the second mode was cancelled at a low speed of the train and vice versa at a higher speed. KW - Railway bridge KW - Bridge vibration KW - Train passage KW - Axle sequence KW - Resonance KW - Cancellation KW - Fequency domain PY - 2021 DO - https://doi.org/10.1016/j.engstruct.2021.113282 SN - 0141-0296 VL - 249 SP - 1 EP - 9 PB - Elsevier Ltd. CY - London AN - OPUS4-53766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of building noise and vibration – 3D finite element and 1D wave propagation models N2 - Construction work or traffic excite nearby buildings, and the perceptible or audible vibration can be a nuisance for the inhabitants. The transfer of the vibration from the free field to the building has been calculated by the finite element method for many models in consultancy and research work. The analysis for all storeys of certain building points such as walls, columns and floors unveiled some rules, some typical modes, and some wavetype responses. A simplified building-soil model has been created, which includes well these effects of building-soil resonance, wall/column resonance, floor resonances, and the high-frequency reduction. The model consists of one wall for a wall-type apartment building or a column for each specific part (mid, side or corner) of a column-type office building. The building response in the high-frequency (acoustic) region is calculated as mean values over all storeys and over wider frequency bands, by wave-type asymptotes of an infinitely tall building, and by the soil to wall ratio of impedances. The secondary noise is predicted by Transfer values between the building vibration (center of floors, walls at a room corner) and the sound pressure. T2 - Euronoise 2021 CY - Online meeting DA - 25.10.2021 KW - Building vibration KW - Finite element models KW - Soil-wall-floor model KW - Apartment building KW - Office tower PY - 2021 SN - 978-989-53387-0-2 SP - 1792 EP - 1801 AN - OPUS4-53702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of building noise and vibration – 3D finite element and 1D wave propagation models N2 - Construction work or traffic excite nearby buildings, and the perceptible or audible vibration can be a nuisance for the inhabitants. The transfer of the vibration from the free field to the building has been calculated by the finite element method for many models in consultancy and research work. The analysis for all storeys of certain building points such as walls, columns and floors unveiled some rules, some typical modes, and some wavetype responses. A simplified building-soil model has been created, which includes well these effects of building-soil resonance, wall/column resonance, floor resonances, and the high-frequency reduction. The model consists of one wall for a wall-type apartment building or a column for each specific part (mid, side or corner) of a column-type office building. The building response in the high-frequency (acoustic) region is calculated as mean values over all storeys and over wider frequency bands, by wave-type asymptotes of an infinitely tall building, and by the soil to wall ratio of impedances. The secondary noise is predicted by Transfer values between the building vibration (center of floors, walls at a room corner) and the sound pressure. T2 - Euronoise 2021 CY - Online meeting DA - 25.10.2021 KW - Building vibration KW - Finite element models KW - Soil-wall floor model KW - Apartment building KW - Office tower PY - 2021 AN - OPUS4-53703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -