TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Dynamic track-soil interaction – calculations and measurements about slab and ballast tracks N2 - The dynamic behaviour of slab and ballast tracks has been investigated by measurements and calculations. Hammer impacts and train passages have been analysed. Measurements have been performed by geophones (velocity transducers) which have been time-integrated to displacements. The calculations are done in frequency-wavenumber domain for multi-beam-on-continuous soil models. The characteristics of the different tracks and track elements have been established in theory and experiment. The frequency-dependent compliances (displacement transfer functions) show clear rail-on-rail-pad resonances or highly damped track-soil resonances. Compared to the rail and sleeper, the track plate has much lower amplitudes. The slab track has usually the highest rail amplitudes due to soft rail pads. The train passage yields track displacements which are a superposition of the axle loads from the two neighbouring axles of a bogie and from the two bogies of two neighbouring carriages. This global behaviour is characteristic for the track plate of the slab track whereas the rails of the slab and the ballast track behave more local with only one bogie of influence. The measurements agree very well with the theory of the continuous soil in case of the six measured slab tracks and acceptably well for the six measured ballast tracks. The measurements allow to find appropriate model parameters and to check the models, for example the Winkler model of the soil has been found less appropriate as it reacts more locally. KW - Slab track KW - Ballast track KW - Train passage KW - Hammer impact KW - Track-soil interaction PY - 2021 DO - https://doi.org/10.1631/jzus.A1900651 SN - 1673-565X VL - 22 IS - 1 SP - 21 EP - 36 PB - Zhejiang University Press CY - Hangzhou AN - OPUS4-52107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Benseghier, Z. A1 - Cuéllar, Pablo A1 - Luu, L.-H. A1 - Delenne, J.-Y. A1 - Bonelli, S. A1 - Philippe, P. T1 - Relevance of Free Jet Model for Soil Erosion by Impinging Jets N2 - The surface erosion of soil samples caused by an impinging jet can be analyzed using the jet erosion test (JET), a standard experimental test to characterize the erosion resistance of soils. This paper specifically addresses the flow characteristics of a laminar impinging jet over the irregular surface of granular beds to discuss the pertinence and relevance of commonly used empirical estimations based on a selfsimilar model of a free jet. The JET is here investigated at the microscale with a coupled fluid-particle flow numerical odel featuring the lattice Boltzmann method (LBM) for the fluid phase combined with the discrete element method (DEM) for the mechanical behavior of the solid particles. The hydrodynamics of a laminar plane free jet are confronted with the results from a parametric study of jet impingement, both on solid smooth and fixed granular surfaces, that take into account variations in particle size, distance from jet origin, and jet Reynolds number. The flow characteristics at the bed surface are here quantified, including the maximal values in tangential velocity and wall shear stress, which can be regarded as the major cause of particle detachments under hydrodynamic solicitation. It is shown that the maximal velocity at the impinged surface can be described by the free jet self-similar model, provided that a simple empirical coefficient is introduced. Further, an expression is proposed for the maximal shear stress in laminar conditions, including a Blasius-like friction coefficient that is inversely proportional to the square root of the jet Reynolds number. To conclude, finally, the JET erosion of different cohesionless granular samples is analyzed, confirming that the threshold condition at the onset of granular motion is consistent with the Shields diagram and in close agreement with previous experimental results. KW - Lattice Boltzmann method KW - Soil erosion KW - Discrete element method KW - Laminar flow KW - Jet impingement PY - 2020 DO - https://doi.org/10.1061/(ASCE)HY.1943-7900.0001652 VL - 146 IS - 1 SP - 04019047 PB - ASCE AN - OPUS4-49491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, Vivian A1 - Thiele, Marc A1 - Pirskawetz, Stephan A1 - Meng, Birgit A1 - Rogge, Andreas T1 - Characterizing the Fatigue Behavior of High-Performance Concrete for Wind Energy Structures N2 - Severe mechanical fatigue conditions for worldwide proliferating windfarms are a Major challenge for high-performance concrete in towers, connecting joints and foundations of wind turbines. High-performance concrete offers potential for the application in offshore windfarms, not only regarding its good mechanical, but also chemical resistivity due to low diffusivity in the highly densified microstructure. For a more reliable fatigue assessment, monitoring based on nondestructive testing can be a valuable complement to design rules. Both approaches demand reliable experimental data, information about scalability and the development of standardized testing methods. This article presents results of an ongoing research program of BAM (Bundesanstalt für Materialforschung und -prüfung), which is a part of a joint national project (WinConFat) funded by the German Federal Ministry for Economic Affairs and Energy. The subproject implemented by BAM examines the fatigue behavior in dependence of size and slenderness for varying concrete strength at different stress levels. Besides fatigue strength, nondestructive testing is carried out additionally. Methods used are strain measurement and ultrasonic testing. The change of strain, stiffness and ultrasonic pulse velocity in the fatigue process is discussed. Results disclose a deeper insight into the damage process under cyclic loading of high-performance concrete and contribute to improve nondestructive monitoring. T2 - LORCENIS - Long Lasting Reinforced Concrete fpr Energy Infrastructure under Severe Operating Conditions CY - Ghent, Belgium DA - 10.09.2019 KW - Compressive Cyclic loading KW - Fatigue KW - High-strength concrete KW - Non destructive testing KW - Ultrasonic testing PY - 2019 SN - 978-9-463-88638-3 SP - 1 EP - 4 AN - OPUS4-49500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rica, S. A1 - Van Baars, S. A1 - Kullolli, Borana ED - Ülgen, D. ED - Saygili, A. ED - Kahyaoglu, M. R. ED - Durmaz, S. ED - Toygar, O. ED - Göcügenci, A. T1 - The importance of the horizontal stresses on the bearing capacity of a foundation pile N2 - In case one wants to predict or design the bearing capacity of a foundation pile and there are no possibilities to perform an in-situ test, such as a Cone Penetration Test, the pile bearing capacity is in most cases estimated with analytical formulas. The most known and used method is the Meyerhof method published some decades ago. There are also other design methods such as derived from a certain failure mechanism around the pile tip, which is, in most cases, wedge failure mechanism. This failure mechanism was originally developed for a shallow (infinite) strip foundation, though. Therefore, it represents a plane failure mechanism. Numerical simulations on loaded foundation piles performed with the Plaxis software Show however, that the failure mechanism of a foundation pile represents a far more complex threedimensional failure mechanism around the pile tip. In addition, the existing analytical methods for foundation piles are based on the vertical stresses in the soil, as if the failure mechanism is the same as of a shallow foundation. Numerical simulations, performed in Plaxis show that, not the vertical, but the horizontal stresses, play an important role on the pile bearing capacity. Plaxis represents the stresses in the soil by using the procedure. So, different horizontal soil stresses are obtained for different values of the lateral earth pressure coefficient. The results show that the pile tip bearing capacity depends strongly on the horizontal stresses in the soil, but only for. The same results were observed by using a Material Point Method (MPM). Consequently, the analytical methods should estimate the pile bearing. T2 - 1st Mediterranean Young Geotechnical Engineers Conference CY - Bodrum, Turkey DA - 23.09.2019 KW - Analytical Design Methods KW - Foundation Pile KW - Horizontal stress PY - 2019 UR - http://mygec2019.org/ VL - 2019 SP - 151 EP - 158 PB - 1st Mediterranean Young Geotechnical Engineers Conference CY - Bodrum, Turkey AN - OPUS4-49639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, Vivian A1 - Thiele, Marc A1 - Pirskawetz, Stephan A1 - Meng, Birgit A1 - Rogge, Andreas T1 - Characterizing the Fatigue Behavior of High-Performance Concrete for Wind Energy Structures N2 - Severe mechanical fatigue conditions for worldwide proliferating windfarms are a Major challenge for high-performance concrete in towers, connecting joints and foundations of wind turbines. High-performance concrete offers potential for the application in offshore windfarms, not only regarding its good mechanical, but also chemical resistivity due to low diffusivity in the highly densified microstructure. For a more reliable fatigue assessment, monitoring based on nondestructive testing can be a valuable complement to design rules. Both approaches demand reliable experimental data, information about scalability and the development of standardized testing methods. This article presents results of an ongoing research program of BAM (Bundesanstalt für Materialforschung und -prüfung), which is a part of a joint national project (WinConFat) funded by the German Federal Ministry for Economic Affairs and Energy. The subproject implemented by BAM examines the fatigue behavior in dependence of size and slenderness for varying concrete strength at different stress levels. Besides fatigue strength, nondestructive testing is carried out additionally. Methods used are strain measurement and ultrasonic testing. The change of strain, stiffness and ultrasonic pulse velocity in the fatigue process is discussed. Results disclose a deeper insight into the damage process under cyclic loading of high-performance concrete and contribute to improve nondestructive monitoring. T2 - LORCENIS - Long Lasting Reinforced Concrete for Energy Infrastructue under Severe Operating Conditions CY - Gent, Belgium DA - 10.09.2019 KW - Compressive Cyclic loading KW - Fatigue KW - High-strength concrete KW - Non destructive testing KW - Ultrasonic testing PY - 2019 AN - OPUS4-49474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Deborah A1 - Hille, Falk A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Kühn, T. A1 - Hering, M. A1 - Bracklow, F. T1 - Post-impact evaluation at RC plates with planar tomography and FEM N2 - Due to the many possible applications, the uncomplicated production and the high application range, reinforced concrete is a widely used building material. This large range of physical material properties still poses an engineering challenge in determining all necessary requirements for predicting dynamic effects under impact load. Many aspects of impact have already been examined and some correlations have been studied intensively. Examples are the work of Lastunen and Booker, who studied the influence of projectile properties on the impact form. Li has also investigated the local effects of an impact. The field of detailed damage analysis has not been in focus so far. This presentation shows some studies in medium-velocity impact with the focus on post-impact damage evaluation. The impactor is modified so that the test plates show low penetration on the top and scabbing on the bottom. With the unique tomography lab test stand at BAM the plate is scanned after the impact and the damage is analyzed. Cracks and scabbing are made visible with a reconstruction. The comparison of simulation and tomography allows to create prognosis models for damage characterization. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Impact KW - Damage characterization KW - Planar tomography KW - Numeric simulation KW - Reinforced concrete structure PY - 2019 AN - OPUS4-49691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Berechnung der Erschütterungsminderung von Eisenbahngleisen mit ein- und zweidimensionalen Modellen N2 - Eindimensionale Modelle des Gleises aus einem Schienenstützpunkt, zweidimensionale Modelle enthalten die Kraftverteilung der Schiene. Eindimensionale Modelle machen einen Fehler, weil sie eine zu große Fahrzeugmasse berücksichtigen. Man kann jedoch bei der Berechnung der Minderungswirkung von Gleiselementen eindimensionale Gleismodelle verwenden, um die Kraftübertragung des Gleises bzw. die Minderungswirkung des Gleises zu berechnen. Die Wechselwirkung mit dem Fahrzeug kann einfach mit der dynamischen Stützpunktsteifigkeit berechnet werden. Dabei muss die Stützpunktsteifigkeit mit einer charakteristischen Gleislänge multipliziert werden, die frequenz- und systemabhängig ist. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Munich, Germany DA - 14.01.2020 KW - Richtige Fahrzeugmasse KW - Erschütterungsminderung KW - Elastische Gleiselemente KW - Rechenverfahren PY - 2020 AN - OPUS4-50268 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Benseghier, Z. A1 - Cuéllar, Pablo A1 - Luu, L.-H. A1 - Bonelli, S. A1 - Philippe, P. T1 - A parallel GPU-based computational framework for the micromechanical analysis of geotechnical and erosion problems N2 - This article deals with the relevance and practical feasibility of micromechanical simulations for their application to general geomechanical problems involving fluid-saturated granular assemblies, whether frictional or cohesive. A set of conceptual and numerical tools is here presented, advocating for a parallel computation using graphical processing units (GPUs) to treat large numbers of degrees of freedom with conventional Desktop computers. The fluid phase is here simulated with a particle-resolved approach in the frame of the Lattice Botzmann Method (LBM) while the granular solid phase is modelled as a collection of discrete particles from a Molecular Dynamics DEM perspective. The range of possible material behaviours for the solid granular phase is intended here to cover a broad spectrum from purely frictional to viscous cohesive materials with either brittle or transient debonding features. Specific details of the implementation and some validation cases are put forward. Finally, some exemplary applications in the fields of soil erosion and geotechnical profile installation are provided along with a discussion on the parallel performance of the presented models. The results show that a micromechanical approach can be feasible and useful in practice, providing meaningful insights into complex engineering problems like the erosion kinetics of a soil under an impinging jet or the penetration resistance of a deep foundation in a layered soil profile. KW - Offshore geomechanics KW - Erosion KW - Micromechanical modelling KW - LBM-DEM KW - GPU Parallel computing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502309 DO - https://doi.org/10.1016/j.compgeo.2019.103404 VL - 120 SP - Paper 103404, 1 PB - Elsevier Ltd. AN - OPUS4-50230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, W.-H A1 - Tang, D.-H. A1 - Wang, M. A1 - Liu, J.-L. A1 - Li, Z.-H. A1 - Lu, W. A1 - Teng, J. A1 - Said, Samir A1 - Rohrmann, R. G. T1 - Resonance Monitoring of a Horizontal Wind Turbine by Strain-Based Automated Operational Modal Analysis N2 - A strain-based automated operational modal analysis algorithm is proposed to track the long-term dynamic behavior of a horizontal wind turbine under operational conditions. This algorithm is firstly validated by a scaled wind turbine model, and then it is applied to the dynamic strain responses recorded from a 5 MW wind turbine system. We observed variations in the fundamental frequency and 1f, 3f excitation frequencies due to the mass imbalance of the blades and aerodynamic excitation by the tower dam or tower wake. Inspection of the Campbell diagram revealed that the adverse resonance phenomenon and Sommerfeld effect causing excessive vibrations of the wind tower. KW - Strain KW - Automated operational modal analysis KW - Resonance KW - Horizontal wind turbine PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503350 DO - https://doi.org/10.3390/en13030579 VL - 13 IS - 3 SP - 579 EP - 584 PB - MDPI CY - Schweiz, Basel AN - OPUS4-50335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - State of the art and development perspectives of deep foundations for offshore wind converters T1 - Estado del arte y perspectivas de desarrollo de las cimentaciones profundas para aerogeneradores offshore N2 - This presentation provides an overview of the main geotechnical aspects associated with deep foundations in the context of offshore wind generation. The most common deep foundation typologies (large diameter monopiles and multipile typologies) as well as new trends under development (e.g. suction buckets) and their current limits will be briefly described. The talk concludes with a brief review of advanced topics not covered in classical pile design, such as hydromechanical coupling effects (pore pressure generation), cyclic accumulation of deformations, cyclic degradation of axial capacity or pile-setup gains. T2 - Ciclo de Conferencias: Aplicaciones de la Geotecnia en la generación de Energía. Sociedad Argentina de Ingeniería Geotécnica SAIG CY - Online meeting DA - 02.12.2020 KW - Offshore wind energy KW - Deep foundations KW - Offshore geomechanics PY - 2020 AN - OPUS4-51729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias T1 - Implementing a Structural Health Monitoring System using Digital Models of the BAM Large Drop Test Facility N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - System Identification KW - Digital Twin KW - Point Cloud KW - Drop Test PY - 2020 AN - OPUS4-51734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - Design challenges for Offshore wind-farms. From foundation mechanics to wind-farm aerodynamics N2 - This talk provides a brief introduction on general engineering design challenges for the offshore wind energy production. Some general features of the offshore wind-energy field from a civil engineering perspective are firstly presented, followed by a brief discussion of some of the main geomechanical issues for the foundation of the offshore turbines into the seabed. In the following part, an overview of relevant fluid-structure interactions and some options for an efficient numerical analysis are provided, where the hydromechanical Wave–Tower interaction is firstly discussed. Then, some general aspects of the windfarm aerodynamics are introduced. On the one hand, some modelling possibilities for the wake analysis of single turbines and turbine groups are discussed. And on the other hand the relevance of such analyses for a proper windfarm layout optimization is pointed out. In particular, this talk shows that: i) The bearing capacity of turbine multi-pile foundations can degrade under cyclic loading (waves, wind, …), while for monopile foundations cyclic hydromechanical coupling effects may take place, which may lead to a foundation softening; ii) Numerical analysis of a turbine’s interaction with wind/waves is useful and affordable, while simplified models can already provide a useful insight into the windfarm aerodynamics. iii) Turbulent wake analysis is very relevant for the windfarm layout. T2 - Colloquium "Energy systems compared", Winter semester 20/21, Faculty of Physics CY - Online meeting DA - 21.01.2021 KW - Offshore wind energy KW - Marine geotechnics KW - Fluid-structure interaction KW - Numerical modelling PY - 2021 AN - OPUS4-52038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Train-induced ground vibration due to the irregularities of the soil N2 - Many measurements of train induced ground vibrations show high amplitudes for a certain mid-frequency range. This ground vibration component cannot be well explained by dynamic loads of the train. Many characteristics indicate that the axle impulses, which are scattered by an irregular soil, are the excitation. This new understanding of railway-induced ground vibration is verified by numerical analysis. The response of the regular homogeneous and irregular inhomogeneous soils has been calculated by the finite-element method in frequency domain. A specific superposition of the impulse responses has been invented including time shift, axle sequence, track filter and hanning filter. The superposition yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil of which the stiffness varies randomly in space, the superposition yields a mid-frequency ground vibration component from the scattering of the axle impulses. The existence and the importance of this component can thus be demonstrated by the calculations. Some rules of the influence of distance, train speed, soil stiffness, strength and width of the stiffness variation have been derived from the calculations. Many measurements show the unique explanation of the mid-frequency ground vibration component by the scattered axle impulses. KW - Train-induced ground vibration KW - Static axle loads KW - Quasi-static response; KW - Axle impulses KW - Irregular soil KW - Random stiffness variation KW - Scattered axle impulses PY - 2021 DO - https://doi.org/10.1016/j.soildyn.2020.106438 SN - 0267-7261 VL - 140 SP - 106438 PB - Elsevier Ltd. CY - London AN - OPUS4-52006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models – each estimated from data measured in a reference state – are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - 21st IFAC World Congress CY - Online meeting DA - 13.07.2020 KW - Linear parameter varying systems KW - Fault detectionchanging KW - Process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524652 DO - https://doi.org/10.1016/j.ifacol.2020.12.868 SN - 2405-8963 VL - 53 IS - 2 SP - 13668 EP - 13673 PB - Elsevier AN - OPUS4-52465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Thiele, Marc A1 - Makris, Ralf T1 - Specification for high-speed tensile tests on reinforcement bar coupler systems N2 - This document presents the specification for the execution and evaluation of high-speed tensile tests on reinforcement bar coupler systems. This specification was developed at BAM - Bundesanstalt für Materialforschung und -prüfung (Federal Institute for Materials Research and Testing, Germany) - following test principles from related international standards. The present document represents the latest status of the test specification. It is noted that until 2010 the test procedure was characterised on a test velocity based on L0. In an improved test conception and after intensive investigations in cooperation with industry partners, this procedure has been updated to consider instead a test velocity based on Lr, since this warrants more comparable and meaningful results. KW - Test specification KW - Coupler systems KW - High-speed KW - Tensile test KW - Reinforcement PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525075 DO - https://doi.org/10.26272/opus4-52507 SP - 1 EP - 29 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin ET - V01 AN - OPUS4-52507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only Systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models { each estimated from data measured in a reference state { are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then con icts May arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - 21st IFAC World Congress CY - Berlin, Germany DA - 13.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 AN - OPUS4-52366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - Deep foundations for offshore wind turbines. Part 1: Axial behaviour T1 - Cimentaciones profundas para aerogeneradores marinos. Parte 1: Comportamiento axial N2 - This presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided into two lectures. The first lecture presents a brief introduction to the context and peculiarities of such foundations, and then focuses on the particular case of axially loaded piles. This part is most relevant for the relatively slender piles of the multi-pile substructures (i.e. jackets and tripods). A clear distinction between physical phenomenology and practical design is drawn here. T2 - CEDEX-UNED 2021 Master course on Soil Mechanics and Geotechnical Engineering CY - Online meeting DA - 24.03.2021 KW - Offshore wind energy KW - Deep foundations KW - Offshore geomechanics KW - Axial load bearing KW - Design models PY - 2021 AN - OPUS4-52341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - Deep foundations for offshore wind turbines. Part 2: Lateral behaviour and Advanced topics T1 - Cimentaciones profundas para aerogeneradores marinos. Parte 2: Comportamiento lateral y temas avanzados N2 - his presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided into two lectures. The second lecture continues with the case of laterally loaded offshore piles, which bears most relevance for the case of the monopile foundations. Here again, a clear separation between physical reality and design methods is intended. Finally, the last part of the second lecture introduces several advanced topics which lie outside the classical design approaches, namely the hydromechanical coupling effects (i.e. the excess pore-pressure generation around the monopiles), the cyclic pile fatigue and the so-called pile setup (i.e. the time effects on the axial pile capacity). The relevance of the latter two topics is illustrated with experimental results from a field testing campaign on real large-scale piles. T2 - CEDEX-UNED 2021 Master course on Soil Mechanics and Geotechnical Engineering CY - Online meeting DA - 24.03.2021 KW - Offshore wind energy KW - Deep foundations KW - Offshore geomechanics KW - Lateral load bearing KW - Cyclic degradation KW - Pile ageing PY - 2021 AN - OPUS4-52342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF ED - Baeßler, Matthias ED - Rogge, Andreas ED - Schiefelbein, N. ED - Möller, G. T1 - Messen im Bauwesen 2018 N2 - Der Tagungsband zur 10. Fachtagung „Messen im Bauwesen“ enthält die Beiträge der Autoren zum diesjährigen Thema „Messtechnische Anwendungen und deren Einbindung in digitale Bauwerksmodelle“ enthält. Building Information Modeling (BIM) ermöglicht einen integralen Entwurfs-, Ausführungs- und Instandsetzungsprozess und verspricht Bauwerke von höherer Qualität bei niedrigeren Kosten und kürzeren Projektlaufzeiten. Was BIM aber im konkreten Anwendungsfall bedeutet, ist generell noch Teil eines umfassenden Diskussionsprozesses, insbesondere für die Integration der Ergebnisse von Bauwerksmessungen aus der Ausführungs- und Betriebsphase. Die diesjährige Ausgabe der Tagung „Messen im Bauwesen“ befasst sich schwerpunktmäßig mit verschiedenen Aspekten des BIM in der bestehenden Baupraxis, beschreibt Technologien hinter BIM und zeigt die vielfältigen Möglichkeiten eines Einsatzes von Messverfahren sowohl in der Bauausführung als auch beim Lebenszyklusmanagement von Bauwerken auf. Auf Basis dieser Schwerpunktsetzung möchten wir wieder aus der Sicht des Bauingenieurs und des Geodäten von Praxisbeispielen aus Hoch- und Tiefbau berichten. Die Vorträge sind zusammengestellt mit Blick insbesondere auf Bau- und Vermessungsingenieure in Ingenieurbüros sowie der Verwaltung in den Bereichen Planung, Ausführung und Betrieb von Infrastrukturbauwerken. T2 - Messen Im Bauwesen 2018 CY - BAM, Berlin, Germany DA - 13.11.2018 KW - BIM KW - Monitoring KW - Messen im Bauwesen PY - 2018 SN - 978-3-9818564-1-5 SP - 7 EP - 109 PB - Eigenverlag CY - Berlin AN - OPUS4-46663 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Zobel, D. A1 - Cuéllar, Pablo A1 - Geißler, Peter A1 - Hüsken, Götz A1 - Grabe, J. T1 - Improvement of the Bearing Capacity of Offshore Pile Foundations N2 - The Presentation gives an overview about Background, Needs and challenges with respect to pile design and modular pile capacity increase in the Frame of Offshore-Wind Foundations. Results and ideas of the Project TOP are presented. The presentation is prepared jointly by TUHH and BAM. T2 - Offshore Wind R&D Conference 2018 CY - Bremerhaven, Germany DA - 14.11.2018 KW - Grout Injection KW - Pile Capacity KW - TOP PY - 2018 AN - OPUS4-46626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -