TY - JOUR A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Long-term mechanical and shrinkage properties of cementitious grouts for structural repair N2 - Grouts have numerous applications in construction industry such as joint sealing, structural repair, and connections in precast elements. They are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23oC and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Grout KW - Long-term shrinkage KW - Micro silica KW - Fly ash KW - Metakaolin PY - 2019 U6 - https://doi.org/10.21809/rilemtechlett.2019.82 SN - 2518-0231 VL - 4 SP - 9 EP - 15 PB - RILEM Publications SARL CY - 4 avenue du Recteur Poincaré, 75016 Paris, France AN - OPUS4-48712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz A1 - Shamsuddoha, Md A1 - Thiele, Marc A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten T1 - Comparison of cracks formed in scaled grouted connection of offshore energy structures under static and cyclic loads N2 - Global energy consumption will increase in the future necessitating both fossil fuels and renewable energy choices - especially wind energy. Such high energy demand requires installation of offshore energy structures, rigs, platforms and towers, which are susceptible to adverse environmental conditions along with maintenances. Due to their large size and remote locations, cylindrical grouted joints are often adopted between substructure and foundation in these offshore platforms and wind structures such as monopiles. However, these connections are composite structures with exterior sleeve, interior pile and infill mortar. Degradation and settlements were reported inside similar connections, which were installed in last three decades. Besides, grouting in the offshore sites were proven difficult to obtain ideal load bearing capacity. In-situ loading conditions were also found to be affecting the failure mechanism inside such connections. This study aims at characterizing the nature of cracks generated in these grouted connections under both static and cyclic loading. Scaled grouted joints were manufactured using a novel reusable mold, and connections were loaded to failure to visualize the main failure patterns. An assessment between failure under these two types of load is drawn along with comparison to previously available literature. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Grouted connection KW - Crack formation KW - Crack pattern KW - Static load KW - Cyclic load PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-487961 SP - Th.2.A.1-1 EP - Th.2.A.1-9 AN - OPUS4-48796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Stutz, H. H. T1 - Modelling and calibration for cyclic soil-structure interface behaviour N2 - The structural performance of many geotechnical systems (e.g. axially-loaded pile foundations), depends on the shearing resistance at the soil interface, which may govern the load bearing capacity of the foundation. Experimental investigations have shown that this interaction is mainly localised within a narrow shear band next to the structure. Under cyclic loading, a contraction of the soil at the interface may arise (net volume loss), possibly leading to a stress relaxation and thus to a reduction of the load bearing capacity (the so-called friction fatigue). Based on the constitutive similarities between soil continua and interfaces, we propose here the adaption of a Generalized Plasticity model for sandy soils for the numerical analysis of interface problems. In this contribution, the results of an experimental campaign for the parameter calibration of the constitutive model are presented. The tests have been conducted with a ring shear device involving different normal stresses, roughness of the steel plates as well as cyclic loading. The new modelling approach shows promising results and has the additional practical advantage that the interface zone and the soil continuum can both be described with the same constitutive model in general boundary value problems. T2 - Konferenz 7th International Symposium on Deformation Characteristics of Geomaterials CY - Glasgow, Scotland DA - 26.06.2019 KW - Soil-structure interaction KW - Offshore foundations PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-489096 VL - 92 SP - 13007 EP - 13013 PB - EDP Sciences CY - Glasgow, Scotland AN - OPUS4-48909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Peter A1 - Schwarz, Johannes A1 - Cuéllar, Pablo A1 - Hüsken, Götz A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten A1 - Morrone, C. T1 - Compaction grouting to improve the pile bearing capacity in non-cohesive soil N2 - The aim of an ongoing research project is to develop a design approach for typical offshore driven piles (e.g. Jacket piles) based on the application of injections by compaction grouting directly at the pile shaft. The paper aims to present the results of laboratory and in-situ tests, which reveal the efficiency and the promising potential of the optimised foundation concept for a more economic dimensioning of pile foundations and to increase their bearing capacity in non-cohesive soil at any moment after installation. T2 - Twenty-ninth International Ocean and Polar Engineering Conference CY - Honolulu, HI, USA DA - 16.06.2019 KW - Offshore Pile Foundation KW - Compaction Grouting KW - Grout KW - Injection Sequence KW - Tensile Capacity PY - 2019 SN - 978-1-880653-85-2 SN - 1098-6189 VL - II SP - 2178 EP - 2184 PB - International Society of Offshore and Polar Engineers (ISOPE) CY - Cupertino, California, USA AN - OPUS4-48505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias ED - Papadrakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Structural health monitoring KW - Bayesian methods KW - Environmental effects PY - 2020 SN - 978-618-85072-2-7 SN - 978-618-85072-0-3 SP - 1254 PB - Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA) CY - Athens, Greece AN - OPUS4-51590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias ED - Papadrakakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Implementing a Structural Health Monitoring system using digital models of the BAM large drop test facility in Horstwalde N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - Drop Tests KW - System Identification KW - Digital Models KW - BIM PY - 2020 UR - https://generalconferencefiles.s3-eu-west-1.amazonaws.com/eurodyn_2020_ebook_procedings_vol1.pdf SN - 978-618-85072-0-3 VL - 1 SP - 1293 EP - 1304 PB - Institute of Structural Analysis and Antiseismic Research CY - Athen AN - OPUS4-51592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Zobel, D. A1 - Cuéllar, Pablo A1 - Geißler, Peter A1 - Hüsken, Götz A1 - Grabe, J. T1 - Improvement of the Bearing Capacity of Offshore Pile Foundations N2 - The Presentation gives an overview about Background, Needs and challenges with respect to pile design and modular pile capacity increase in the Frame of Offshore-Wind Foundations. Results and ideas of the Project TOP are presented. The presentation is prepared jointly by TUHH and BAM. T2 - Offshore Wind R&D Conference 2018 CY - Bremerhaven, Germany DA - 14.11.2018 KW - Grout Injection KW - Pile Capacity KW - TOP PY - 2018 AN - OPUS4-46626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias ED - Alexander, M.G. ED - Beushausen, H. ED - Dehn, F. ED - Moyo, P. T1 - Workability and mechanical properties of ultrafine cement based grout for structural rehabilitation: A parametric study on the partial replacement with SCMs N2 - Grouting is a universal repair and strengthening technique, which is constantly used for structural remediation of concrete components, trenches, mine subsidence, dam joints, restoration of masonry structures, and geological stabilizations. Having an extremely small particle size of only few microns, ultrafine cements are ideal for grouting applications due to their superior permeability and compressive strength properties of the hardened cement paste compared to that of the less-expensive, but coarser ordinary Portland cements. Supplementary cementitious materials (SCMs) are often used to replace ultrafine cement in order to modify certain properties and to reduce costs. The aim of this experimental study is to investigate the effect of three supplementary materials: microsilica (MS), fly ash (FA), and metakaolin (MK) on the workability, and mechanical properties of an ultrafine cement based grout with a constant water-binder ratio and constant superplasticizer content. Maximum percentages of replacement with ultrafine cement were 6% by volume of cement for MS and 16% for FA, and MK. In general, results suggest that the workability is improved by addition of FA, whereas is reduced, when modified with MS and MK. The compressive strength of grout after cement replacement remains comparable to that of pure cement grout. However, there is a tendency of the MS to positively affect the compressive strength opposite to FA, whereas flexural strength is positively affected by FA. Based on the results, it is evident that grouts with Hägerman cone flow more than 500 mm and compressive strength of more than 90 MPa after 28 days can be produced. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) CY - Cape Town, South Africa DA - 19.11.2018 KW - Grouting KW - Repair KW - Box-Behnken KW - Supplementary cementitious materials KW - Analysis of variance PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-464769 SN - 2261-236X VL - 199 SP - 07006-1 EP - 07006-7 PB - MATEC Web of Conferences AN - OPUS4-46476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Hille, Falk T1 - Strategies for discriminating environmental from damage based variations in monitoring data N2 - Right from the beginning of applying SHM to bridge structures it was obvious that environmental based perturbations on the measurement significantly influence the ability to identify structural damage. Strategies are needed to classify such effects and consider them appropriately in SHM. Various methods have been developed and analyzed to separate environmental based effects from damage induced changes in the measures. Generally, two main approaches have emerged from research activity in this fields: (a) statistics based tools analyzing patterns in the data or in computed parameters and (b) methods, utilizing the structural model of the bridge taking into account environmental as well as damage based changes of stiffness values. With the back-ground of increasing affordability of sensing and computing technology, effort should be made to increase sensitivity, reliability and robustness of procedures, separating environmental from damage caused changes in SHM measures. The contribution describes both general strategies and points out their Advantages and drawbacks. As basis, a review on relevant methods was conducted. The aim of the study is to classify approaches for separating damage describing information from environmental based perturbations in dependency of the SHM objective. And such, it is intended to describe a best practice in designing concepts for Monitoring infrastructure, naturally effected by environmental influences. T2 - IABMAS 2018 CY - Melbourne, Australia DA - 09.07.2018 KW - SHM KW - Environmental PY - 2018 AN - OPUS4-46060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Schneider, Ronald A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Said, Samir T1 - Anwendung von kontinuierlichen sensor-basierten Monitoringverfahren zur Bewertung von Infrastrukturbauwerken N2 - Kontinuierliche Sensorbasierte Bauwerksmessungen leisten einen wichtigen Beitrag zur Sicherheit von Verkehrsbauwerken. Hierzu werden im Vorhaben AISTec Referenzbauwerke und Referenzverfahren untersucht. Der Vortrag stellt die Expertise des FB 7.2, Herangehensweisen und Projektziele vor´. T2 - Kick-Off AIStec CY - Weimar, Germany DA - 17.10.2018 KW - Zivile Sicherheit KW - Brücken KW - SHM PY - 2018 AN - OPUS4-46325 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Babutzka, Martin A1 - Trappe, Volker A1 - Pittner, Andreas A1 - Krankenhagen, Rainer A1 - Kühne, Hans-Carsten T1 - Vorstellung des Aktivitätsfelds Erneuerbare Energie N2 - Auf der Beiratssitzung des TF Energie wurde das Aktivitätsfeld Erneuerbare Energien in seinem breiten Spektrum (aber selektive Auswahl) vorgestellt. T2 - Beiratssitzung TF Energie CY - BAM Berlin-Adlershof, Germany DA - 09.04.2019 KW - Erneuerbare Energien KW - Windenergie PY - 2019 AN - OPUS4-47751 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Schneider, Ronald T1 - OWEC repowering from a structural engineering and research perspective N2 - A significant number of new wind farms has to be installed and, at the same time, existing wind farms reaching the end of their planned life need to be reused efficiently to ensure that the ambitous goals for deploying offshore wind are met. Some relevant reuse alternatives for offshore wind farms are lifetime extension, repowering utilizing existing substructures and full replacement. In this presentation - starting from experience gained from extending the lifetime of the of the U1 metro viaduct in Berlin - we discuss end-of-life decision making in offshore wind. We focus particularly on issues concerning substructures and highlight existing challenges and opprtunities in research and development. T2 - RWE RePowering Event CY - Wilhelmshaven, Germany DA - 10.10.2023 KW - Offshore wind KW - End-of-life decision making KW - Repowering KW - Substructures PY - 2023 AN - OPUS4-58632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Balscheit, Hagen A1 - Victor, A. A1 - Thiele, Marc A1 - Cuellar, Pablo A1 - Baeßler, Matthias A1 - Lüddecke, F. T1 - Experimental Investigation on Buckling Behavior of soil-embedded Piles N2 - Monopiles are currently the predominant foundation type for offshore wind turbines in Europe. Due to the increasing dimensions of the turbines, pile diameters beyond 10m become necessary. A design-relevant failure mode of monopiles is the local buckling of the pile wall in the embedded sections. Relevant buckling guidelines do not consider the soil-structure interaction specifically, although the embedment may allow for a reduction of wall thickness. However, Eurocode-based design concepts require a validation with comparative buckling cases for validation, either in terms of buckling curve parameters for both the algebraic stress-based and semi-numerical LBA/MNA design concept or as a calibration factor kGMNIA for fully numerical GMNIA calculations. These parameters are not yet available for embedded shells. To close this gap, we have conducted experiments on piles embedded in sand to investigate local buckling under soil-structure-interaction. The results will be used to calibrate numerical models. This research was carried out as part of the VERBATIM research project, funded by PTJ/BMWK and supported by the Carbon Trust's Offshore Wind Accelerator consortium. T2 - EUROSTEEL 2023 CY - Amsterdam, The Netherlands DA - 11.09.2023 KW - Wind KW - Wind Energy KW - Shell Buckling KW - Offshore KW - Soil-Structure-Interaction PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-583641 SN - 2509-7075 VL - 6 IS - 3-4 SP - 1729 EP - 1734 PB - Ernst & Sohn Gmb AN - OPUS4-58364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Balscheit, Hagen A1 - Cuéllar, Pablo A1 - Geißler, Peter A1 - Thiele, Marc A1 - Schepers, Winfried A1 - Fontoura Barroso, Daniel T1 - Large Monopiles: Experimental and numerical investigation of monopile tip buckling during installation as well as of local pile buckling under operational conditions N2 - The research project Verification of Buckling Assessment and Behaviour in Large Monopiles (VERBATIM) focuses on challenges arising due to the ongoing increase of dimensions of monopiles as foundation for offshore wind turbines. This project is focused on two main topics: - Monopile tip buckling during pile installation - Local buckling of embedded piles during operation It is known from previous investigations and experiences in practice that large deformations of a monopile tip during offshore installation works can occur. These large deformations initiated at the tip of the monopile are commonly referred to as “pile tip buckling”. Own research focuses on optimising monopile dimensions to reduce the cost of monopile foundations for offshore wind turbines while preventing pile tip buckling. Buckling of embedded cylindrical shells for offshore structures is a common engineering task. Structures can be analysed using standard software and have been done so in recent studies e.g., Gottschalk. However, the trend towards larger monopile and optimised structures has led to a fundamental need for better and verified models. A main challenge is the submodelling of the structure-soil-interaction. Developing such complex models is one main goal of the VERBATIM project. For both main topics model tests were performed at the laboratories of BAM and TU Berlin. These experimental results were used to verify related numerical models and simulations. T2 - WindEurope CY - Copenhagen, Denmark DA - 25.04.2023 KW - Monopiles KW - Tip Buckling KW - Pile Buckling KW - Foundations KW - Offshore KW - Windenergy PY - 2023 AN - OPUS4-57405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Ziegler, Fred A1 - Said, Samir A1 - Wille, Frank A1 - Quercetti, Thomas A1 - Minack, Mathias A1 - Sterthaus, Jens T1 - Dynamisches Verhalten und Überwachung des Großen Fallturms der BAM in Horstwalde N2 - Falltürme sind Bauwerke, die als Versuchsanlagen sehr speziellen, impulsartigen Belastungen ausgesetzt sind. Am Fallturm auf dem Testgelände Technische Sicherheit (TTS) der BAM wurde bei Routineinspektionen eine Abnahme der strukturellen Integrität in Form von Vorspannungsverlusten in den Bolzen der Stahlverbindungen festgestellt. Um ein Verständnis für die zugrundeliegenden Trag- und Schädigungsmechanismen zu erlangen, wurde ein umfassendes Structural Health Monitoring (SHM) System geplant und am Bauwerk installiert unter Nutzung von digitalen Bauwerksmodellen. Für die Auslegung des Überwachungssystems, insbesondere aber zur Unterstützung der Untersuchung des Schädigungsprozesses, wurden Finite-Elemente-Modelle erstellt. Um sicherzustellen, dass die FE-Modelle das reale Tragwerksverhalten mit ausreichender Genauigkeit abbilden, mussten sie jedoch in Bezug auf die gemessenen Antworten des Tragwerks kalibriert werden. Der vorliegende Beitrag beschreibt experimentelle und numerische Untersuchungen zur Identifizierung des strukturellen Systems des Stahlrohrgitterturms in Vorbereitung einer Überwachungskampagne. Die Auswertung von gemessenen Schwingungen unter ambienter Anregung ermöglichte die Identifizierung der Eigenfrequenzen mehrerer globaler Schwingungsmoden des Fallturms. Zur Modellvalidierung wurde zunächst eine Sensitivitätsanalyse durchgeführt, um die Parameter mit dem größten Einfluss zu ermitteln. Anschließend wurde ein evolutionärer Algorithmus (EA) zur Optimierung nach dem Prinzip der Minimierung der Differenzen zwischen gemessenen und simulierten charakteristischen Antworten eingesetzt. Das aktualisierte Modell wurde schließlich an der dynamischen Reaktion der Turmstruktur infolge einer realen Falltest-induzierten Stoßbelastung validiert. Die Ergebnisse zeigten eine gute Übereinstimmung zwischen numerischen und experimentellen Ergebnissen. N2 - Drop test towers are structures subjected to very specific dynamic loadings. At the drop test tower at the Test Site Technical Safety (TTS) of BAM routine inspections revealed a decline of structural integrity in form of loss of pretension in bolts of structural steel connections. To get an understanding about the underlying damage mechanisms as well as to assure the structural safety in operation, a multifaceted Structural Health Monitoring (SHM) system was planned and installed at the structure with the help of digital models. For planning the monitoring system but especially for supporting the investigation of the damaging process finite element models are deployed. Though, to ensure the capability of the FE model to reproduce the real structural behavior in sufficient accuracy, it needs to be calibrated in respect to measured responses of the structure. The present contribution describes experimental and numerical investigations to identify the structural system of the steel tube lattice tower in preparation of the monitoring campaign. An ambient vibration test allowed the identification of the natural frequencies of several global vibrational modes of the drop test tower. For model updating first a sensitivity analysis is applied to identify the most influencing parameter. In succession a genetic algorithm was applied for optimization in the sense of minimization of the difference between measured and simulated characteristic responses. The updated model is finally validated on the dynamic response of the tower structure to a real drop test induced impact loading. The results showed a good agreement between numerical and experimental results though the robustness of the simulation should be improved by more sophisticated numerical modelling. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.04.2022 KW - Großer Fallturm Horstwalde KW - Structural Health Monitoring KW - Belastungsversuch KW - Modalanalyse KW - Schwingungsdynamik KW - Finite Elemente Simulation PY - 2022 AN - OPUS4-55470 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Schepers, Winfried A1 - Geißler, Peter A1 - Breithaupt, Matthias A1 - Basedau, Frank A1 - Balscheit, Hagen T1 - VERBATIM: Project Introduction and Large Scale Experiments N2 - The presentation summarizes the scope of the joint project VERBATIM on buckling of large Monopiles. The presented work from the authors focusses on the experimental field tests of large predented piles during driving and a numerical investigation on the observed buckling behaviour. T2 - Colloquium „Buckling of Offshore Wind Energy Structures“ CY - Berlin, Germany DA - 14.02.2024 KW - Buckling KW - Offshore KW - Wind Energy Structures KW - Monopiles KW - Pile-Tip-Buckling PY - 2024 AN - OPUS4-59535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -