TY - CONF A1 - Hering, Marcus A1 - Fiedler, Georg A1 - Schubert, T. A1 - Hille, Falk A1 - Hüsken, Götz A1 - Beckmann, B. ED - Rogge, Andreas ED - Meng, Birgit T1 - Großmaßstäbliche Impaktversuche mit Stahlbetonplatten – Konzeptionierung und Vorbereitung N2 - Seit 1977 ist der Flugzeugabsturz ein wesentliches Belastungsszenario bei der Auslegung von Kernkraftwerken. Zur Untersuchung dieses Szenarios wurden umfassende Studien durchgeführt, welche die Reaktion von Stahlbetonkonstruktionen unter Stoßbelastung analysieren. Da großmaßstäbliche Experimente teuer und aufwendig sind, gewinnen skalierte Versuche zunehmend an Bedeutung. Im Rahmen eines Forschungsprojekts der TU Dresden und der BAM wurden Grundlagen für skalierte Impaktversuche im großen Maßstab geschaffen, um die Übertragbarkeit vom Labor- auf Realmaßstab zu ermöglichen. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Fallturm KW - Impakt KW - Stahlbetonbauteile PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613257 SN - 978-3-9818564-7-7 SP - 278 EP - 285 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61325 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Deresse, N. E. A1 - Thiele, Marc A1 - Pirskawetz, Stephan A1 - Sarem, M. A1 - Francois, St. A1 - Verstrynge, E. T1 - Evaluation of Concrete Fatigue Damage with Elastic Wave-based Measurement Techniques N2 - The fatigue damage evolution and the fatigue life of quasi-brittle materials such as concrete are not yet completely understood. Accordingly to get better insights, researchers have recently been incorporating advanced measuring techniques in their fatigue experiments. In this research, acoustic emission techniques (AET), active ultrasonic, and deformation measurements are used to track the damage evolution of concrete samples subjected to fatigue loading. The samples are subjected to constant amplitude and stepwise fatigue loading in Brazilian splitting test set-ups. Initially, a good agreement is observed between the deformation and the ultrasonic measurements in capturing the crack propagation during Brazilian splitting tests. The three fatigue damage phases could be identified with all of the three techniques. The Phase II damage rates quantified by deformation measurements and AET in stepwise fatigue tests were used to predict the number of cycles to failure at various stress levels. The predictions were validated using the number of cycles to failure of the constant amplitude fatigue tests. T2 - 36th Conference of the European Working Group on Acoustic Emission CY - Potsdam, Germany DA - 18.09.2024 KW - Concrete KW - Acoustic emission KW - Ultrasonic testing KW - Fatigue PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-615677 DO - https://doi.org/10.58286/30228 SN - 1435-4934 VL - 29 IS - 10 SP - 1 EP - 10 PB - NDT.net AN - OPUS4-61567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models – each estimated from data measured in a reference state – are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - 21st IFAC World Congress CY - Online meeting DA - 13.07.2020 KW - Linear parameter varying systems KW - Fault detectionchanging KW - Process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524652 DO - https://doi.org/10.1016/j.ifacol.2020.12.868 SN - 2405-8963 VL - 53 IS - 2 SP - 13668 EP - 13673 PB - Elsevier AN - OPUS4-52465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Thiele, Marc A1 - Löhr, Manuel A1 - Loewe, Anna A1 - Degener, Sebastian A1 - Herrmann, Ralf T1 - Acoustic emission for monitoring of fatigue damage in concrete elements of wind turbine towers N2 - Wind energy has become an important player in the energy transition in Germany. Towers of onshore wind turbines are often designed as hybrid structures: the lower part is made of prestressed concrete whereas the upper part is made of steel tubes. The tall structures are permanently subjected to cyclic loads. A research project of BAM as part of the joint project WinConFat - Structure focusses on the evelopment of techniques to monitor fatigue damage evolution in the concrete part. Results of a previous project show that a combination of ultrasonic and acoustic emission testing can give an indication for critical conditions near the end of the fatigue life of the concrete. In the ongoing project acoustic emission sensors have been installed at the base and at the transition piece between concrete and steel of a hybrid wind turbine tower. Beside of acoustic emission measurement the sensor spacing allows for measuring the concrete ultrasonic velocity along the circumference in both levels. Additional measurements like strain, temperature, inclination, or acceleration allow for comparison of environmental loads and change of acoustic properties of the concrete. The paper focusses on first acoustic measurements recorded since December 2023 in comparison to operating data of the wind turbine. T2 - EWGAE2024: 36th Conference of the European Working Group on Acoustic Emission CY - Potsdam, Germany DA - 18.09.2024 KW - Concrete fatigue monitoring KW - Acoustic emission KW - Ultrasound KW - Hybrid wind turbine tower PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612197 DO - https://doi.org/10.58286/30234 SN - 1435-4934 VL - 29 IS - 10 SP - 1 EP - 9 AN - OPUS4-61219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Pitters, S. A1 - Ramasetti, Eshwar Kumar A1 - Schneider, Ronald A1 - Wedel, F. A1 - Hindersmann, I. ED - Rogge, Andreas ED - Meng, Birgit T1 - Föderiertes Datenmanagement von Monitoringdaten aus Structural Health Monitoring Anwendungen und daraus gewonnenen Trainingsdaten bei Spannbetonbrücken N2 - Beim Structural Health Monitoring entstehen eine Vielzahl von Daten, Metadaten und Modellen mit hohem Wert für die Beurteilung des Bauwerkszustands und der Prognose von Veränderungen. Kontinuierlich anwachsende Datenbestände müssen nachhaltig geteilt, genutzt und über die Bauwerkslebensdauer archiviert werden. Dabei stellen die Vielfalt der Messaufgaben, die Heterogenität der Daten, die dezentrale Erfassung und z. T. der Umfang eine Herausforderung für die beteiligten Akteure dar. Für den Datentransfer der Monitoringdaten zwischen der Straßenbauverwaltung und den Monitoringausführenden wird ein flexibles Abstimmungsverfahren vorgeschlagen und ein Lösungskonzept für ein föderiertes Datenmanagement skizziert. Eine weitere Herausforderung stellt die bauwerksübergreifende Zusammenstellung von Trainingsdaten für konkrete KI-Anwendungen dar. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Structural Health Monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612902 SN - 978-3-9818564-7-7 SP - 178 EP - 185 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61290 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Pitters, S. A1 - Hindersmann, I. A1 - Schneider, Ronald A1 - Wedel, F. ED - Rogge, Andreas ED - Meng, Birgit T1 - Leitfaden für den strategischen Einsatz von Monitoring an Straßenbrücken N2 - Für die Anwendung von Structural Health Monitoring (SHM) im Rahmen des Managements von Straßenbrü-cken wurde zur Unterstützung von Straßenbauverwaltungen, Ingenieurbüros, Bauunternehmen und weiteren Akteuren die Erstellung eines Leitfadens initiiert. Dieser Leitfaden stellt typische Anwendungsfälle für Monito-ring vor und schlägt für diese bewährte Herangehensweisen vor. Darüber hinaus bietet der Leitfaden Empfeh-lungen für Ausschreibung und Vergabe von Monitoringleistungen, eine Anleitung zur Bewertung des wirt-schaftlichen Nutzens von SHM, Hinweise zur optimal einsetzbaren Messtechnik sowie einen Ansatz für das Datenmanagement zur Integration der Monitoringdaten in das Brückenmanagement. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Leitfaden KW - Monitoring KW - Straßenbrücke PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612931 SN - 978-3-9818564-7-7 SP - 186 EP - 191 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61293 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiehle, Philipp A1 - Härder, M. A1 - Strangfeld, Christoph T1 - Moisture behaviour of earth block masonry under natural climate conditions – experimental and numerical studies N2 - The compressive stength of unstabilised earth masonry depends on the moisture content. Knowledge of the moisture content is necessary in order to be able to account for the impact of moisture on the structural design of earth block masonry. For conventional building materials it is possible to precisely forecast the component moisture according to the layered structure on the basis of hygrothermal simulations. However , it is still not clear to what degree these numerical calculations can offer valid results for earth building materials. Earth building materials have a number of special properties related to moisture storage and moisture transport that differ significantly from the physical simplifications that are a component of existing material models. The swelling and shrinking of earth materials and their organic components results in changes to the pore space, the sorption behaviour exhibits a clear hysteresis, and the experimental determination of hygrothermal parameters in continuous contact with liquid water is almost impossible. To adequately forecast the moisture content of earth block masonry under natural climate conditions, extensive investigations of the moisture behaviour of load-bearing earth block masonry have been carried out within the framework of this project. These efforts began with the performance of magnetic resonance spectroscopic tests on two load-bearing earth blocks, in order to quantify the adsorption and desorption processes at relative humidities of between 50 % and 90 % under controlled, isothermal laboratory conditions. Once this had been done, a modified test setup was used to determine the water absorption coefficient , from which the liquid transport coefficients were derived. Based on the hygrothermal parameters values that were thus determined, the model was calibrated using the WUFI software program [7]. Finally, long-term moisture measurements were conducted on an earth block masonry wall that was ex-Increasing shortages of raw materials and rising energy prices are resulting in continuous growth in the demand for earth construction. In comparison to conventional building materials, earth building materials offer three significant advantages that have become even more important in light of the energy crisis in 2021 and the associated increase in the price of building supplies by approx. 40 percent [1]. Firstly, water solubility makes it possible to fully separate and recover all of the material components, and in particular the sand component. Secondly, energy-intensive firing processes, such as those required for cement production or brick manufacture, are eliminated. And thirdly, earth is a local raw material that is available in large quantities [1]. However, the load-bearing capacity of earth building materials is very much dependent on the moisture content. An increase in the relative humidity results in a reduction in the clay mineral cohesion , and this in turn results in a decline in both the compressive strength and the modulus of elasticity. In this regard, the mechanical properties of earth block masonry change in inverse proportion to the relative humidity. In other words, with every percentage point increase in relative humidity, both the compressive strength and the modulus of elasticity decline by one percent [2] [4]. The internal walls of heated living areas are generally only subject to relatively small fluctuations in relative humidity (between 40 % and 60 %) [5], and short periods in excess of these levels (such as in bathrooms or kitchens) only lead to a significant increase in the moisture content of the uppermost layers [6]. Exterior walls, on the other hand, are subject to large seasonal fluctuations in temperate climates, with a relative humidity in excess of 90 % in winter months. However, the exterior walls of heated living areas must be insulated in accordance with the German Buildings Energy Act (GEG), and with masonry this is generally done us T2 - LEHM 2024 – 9. Internationale Fachtagung für Lehmbau CY - Weimar, Germany DA - 27.09.2024 KW - Earth stone KW - Masonry KW - Material moisture KW - Moisture monitoring KW - Hygrothermal simulations PY - 2024 SP - 1 EP - 10 AN - OPUS4-61220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, T. A1 - Bracklow, F. A1 - Unger, N. A1 - Hering, Marcus A1 - Beckmann, B. T1 - Impact Tests on Reinforced Concrete Slabs – Variation in Results and Residual Load Bearing Capacity due to Hard Impact N2 - Structures such as concrete slabs and concrete barriers of critical infrastructure facilities must be able to withstand impact events or severe accidents. In particular, the structural safety of the confinements of nuclear power plants against a possible aircraft impact is essential to ensure the safety of inhabitants and environment. This article presents research results of hard impact on reinforced concrete slabs, which have been carried out at the Institute of Concrete Structures (IMB) at TUD Dresden University of Technology Technische Universität (TU Dresden). A specially designed drop tower is available for this purpose on the premises of the Otto Mohr Laboratory of TU Dresden. In the framework of a research project many reinforced concrete slabs of dimension 1.5 x 1.5 x 0.2 m³ were tested by hard impact. The investigation on some already carried out impact tests on reinforced concrete slabs intend to show the range of deviation of impact tests. In particular, the possible standard deviations that should be regarded in impact tests are estimated for the applied test setup. Furthermore, the residual structural capacity of an undamaged and damaged reinforced concrete slab has been investigated. T2 - Conference: 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT) CY - Yokohama, Japan DA - 04.03.2024 KW - Reinforced Concrete KW - Drop Tower KW - Hard Impact PY - 2024 SP - 1 EP - 10 PB - IASMiRT CY - Yokohama, Japan AN - OPUS4-61915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Makris, Ralf ED - Aign, J. T1 - Reinforcement bar and reinforcement bar splicing systems under impact loading – Experimental tests and test specification N2 - Reinforced concrete is a widely used material for power generation structures, where load scenarios like impact loadings need to be considered. In this context mechanical splicing systems for the connection of reinforcement bars are of specific interest and impact resistance for the splicing systems has to be verified. High speed tensile tests need to be performed on splicing systems for reinforcement bars to confirm the capability of the coupler to resist impact loading. Furthermore, the ability of the reinforcement steel to dissipate energy by ductile behaviour with pronounced plastic strains should be confirmed by these tests. During the last decades comprehensive experiences were developed at BAM performing high speed tensile tests on reinforcement bars as well as on several splicing systems. For the lack of available standards defining these tests in detail an appropriate test procedure was developed and continuously optimized during this period at BAM. The test procedure is partially based on testing principles adapted from available standards. The main intention behind this test procedure is to perform high-speed tensile tests with a specific constant strain rate generated at the specimen. Furthermore, main objective was to establish a procedure to guarantee the comparability of test results for different diameter of reinforcement as well as for different types of couplers. Besides the pure execution of the high-speed tensile tests, the test specification also declares how to evaluate the measurements and the test results. Finally, some typical results will be presented in this contribution. T2 - SMIRT 26 CY - Potsdam, Germany DA - 10.07.2022 KW - Impact KW - Coupler systems KW - High-speed KW - Reinforcement PY - 2022 SP - 1 EP - 10 AN - OPUS4-55422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fiedler, Georg A1 - Hering, Marcus A1 - Schubert, T. A1 - Bracklow, F. A1 - Nerger, Deborah A1 - Hille, Falk A1 - Beckmann, B. ED - Wuttke, F. ED - Aji, H. ED - Özarmut, A. T1 - Schädigung von Stahlbetonplatten infolge eines harten Anpralls - Vergleich von halb-empirischen Methoden und experimentellen Ergebnissen N2 - Schutzbauwerke von systemkritischen Infrastruktureinrichtungen wie Betonwände und Betonbarrieren müssen Anprallereignissen oder schweren Unfällen in einem vertretbaren Maße widerstehen können. Anprallereignisse können verschiedenster Natur sein. Hierzu zählen Steinschlag, Fahrzeug- oder Flugzeuganprall oder auch Geschosseinschlag. Geschosseinschläge bzw. Bei den Anprall- oder Impaktereignissen wird zwischen hartem und weichem Anprall unterschieden, bei hartem Anprall verformt sich der Anprallkörper nicht oder nur geringfügig, bei weichem Anprall stark. In diesem Artikel werden Forschungsergebnisse zum harten Anprall auf bewehrte Stahlbetonplatten vorgestellt, welche über die letzten Jahre im Rahmen eines Kooperationsprojekts zwischen dem Institut für Massivbau (IMB) der Technischen Universität Dresden (TUD) und der Bundesanstalt für Materialforschung und -prüfung (BAM) durchgeführt wurden. Auf dem Gelände des Otto-Mohr-Labors (OML) der TUD steht hierfür ein speziell konzipierter Fallturm zur Verfügung. Der Aufbau im Fallturm lässt aktuell druckluftbeschleunigte Impaktversuche mit mittleren Anprallgeschwindigkeiten zu. Die durch Anprall geschädigten Stahlbetonplatten wurden anschließend bei der BAM mit Strahlung tomographisch untersucht. Diese Untersuchungen ermöglichen einen Blick auf die Schädigung und Rissstruktur im Inneren der Stahlbetonplatten. Ein Schwerpunkt der durchgeführten Untersuchung ist der Vergleich von Testergebnissen mit den häufig angewendeten halbempirischen Berechnungsmethoden zu den erforderlichen Wandstärken und den sich daraus ergebenden zulässigen Anprallgeschwindigkeiten. Bei diesem Vorgehen wird auch die mit analytischen Methoden abschätzbare Durchdringungsgeschwindigkeit bzw. Austrittgeschwindigkeit eines Projektils ermittelt und mit den realen Testergebnissen verglichen. Außerdem wird der Einfluss von sowohl externen als auch internen Strukturparametern auf Risse betrachtet und ein Fazit abgeleitet. Weiterhin werden laufende und zukünftige wissenschaftliche Untersuchungen zum Anprall auf Betonstrukturen am IMB und der BAM genannt. T2 - 18. D-A-CH-Tagung CY - Kiel, Germany DA - 13.09.2023 KW - Impakt KW - Harter Anprall an Stahlbetonstrukturen KW - Fallturm PY - 2023 SN - 978-3-930108-15-1 SP - 471 EP - 479 PB - Deutsche Gesellschaft für Erdbebeningenieurwesen und Baudynamik (DGEB) e.V. AN - OPUS4-58341 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Baeßler, Matthias ED - Rogge, Andreas ED - Meng, Birgit T1 - Temperatureinfluss auf Strukturmonitoring – Aktuelle Versuche N2 - Strukturmonitoring kann wertvolle Daten für die Zustandsbewertung und Schadensdetektion von Infrastrukturbauwerken liefern. Umgebungsbedingungen wie die Temperatur beeinflussen die Bauwerke und somit die Messdaten jedoch erheblich. Um Methoden für den Umgang mit Temperatureinflüssen zu entwickeln, wurden an der BAM Versuche an Stahlbeton- und Asphaltbalken unter kontrollierten Temperaturen von -40 °C bis 60 °C und definierten Schädigungen durchgeführt. Die Daten ermöglichen die Erforschung und Validierung neuer, auch unter Temperatureinfluss zuverlässiger Methoden des Strukturmonitorings. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Strukturmonitoring KW - Temperatureinfluss KW - Infrastrukturbauwerke KW - Stahlbeton- und Asphaltbalken PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613289 SN - 978-3-9818564-7-7 SP - 294 EP - 302 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61328 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Wille, Frank T1 - Dynamisches Verhalten und Überwachung des Großen Fallturms der BAM in Horstwalde N2 - Falltürme sind Bauwerke, die als Versuchsanlagen sehr speziellen, impulsartigen Belastungen ausgesetzt sind. Am Fallturm auf dem Testgelände Technische Sicherheit (TTS) der BAM wurde bei Routineinspektionen eine Abnahme der strukturellen Integrität in Form von Vorspannungsverlusten in den Bolzen der Stahlverbindungen festgestellt. Um ein Verständnis für die zugrundeliegenden Trag- und Schädigungsmechanismen zu erlangen, wurde ein umfassendes Structural Health Monitoring (SHM) System geplant und am Bauwerk installiert unter Nutzung von digitalen Bauwerksmodellen. Für die Auslegung des Überwachungssystems, insbesondere aber zur Unterstützung der Untersuchung des Schädigungsprozesses, wurden Finite-Elemente-Modelle erstellt. Um sicherzustellen, dass die FE-Modelle das reale Tragwerksverhalten mit ausreichender Genauigkeit abbilden, mussten sie jedoch in Bezug auf die gemessenen Antworten des Tragwerks kalibriert werden. Der vorliegende Beitrag beschreibt experimentelle und numerische Untersuchungen zur Identifizierung des strukturellen Systems des Stahlrohrgitterturms in Vorbereitung einer Überwachungskampagne. Die Auswertung von gemessenen Schwingungen unter ambienter Anregung ermöglichte die Identifizierung der Eigenfrequenzen mehrerer globaler Schwingungsmoden des Fallturms. Zur Modellvalidierung wurde zunächst eine Sensitivitätsanalyse durchgeführt, um die Parameter mit dem größten Einfluss zu ermitteln. Anschließend wurde ein evolutionärer Algorithmus (EA) zur Optimierung nach dem Prinzip der Minimierung der Differenzen zwischen gemessenen und simulierten charakteristischen Antworten eingesetzt. Das aktualisierte Modell wurde schließlich an der dynamischen Reaktion der Turmstruktur infolge einer realen Falltest-induzierten Stoßbelastung validiert. Die Ergebnisse zeigten eine gute Übereinstimmung zwischen numerischen und experimentellen Ergebnissen. N2 - Drop test towers are structures subjected to very specific dynamic loadings. At the drop test tower at the Test Site Technical Safety (TTS) of BAM routine inspections revealed a decline of structural integrity in form of loss of pretension in bolts of structural steel connections. To get an understanding about the underlying damage mechanisms as well as to assure the structural safety in operation, a multifaceted Structural Health Monitoring (SHM) system was planned and installed at the structure with the help of digital models. For planning the monitoring system but especially for supporting the investigation of the damaging process finite element models are deployed. Though, to ensure the capability of the FE model to reproduce the real structural behavior in sufficient accuracy, it needs to be calibrated in respect to measured responses of the structure. The present contribution describes experimental and numerical investigations to identify the structural system of the steel tube lattice tower in preparation of the monitoring campaign. An ambient vibration test allowed the identification of the natural frequencies of several global vibrational modes of the drop test tower. For model updating first a sensitivity analysis is applied to identify the most influencing parameter. In succession a genetic algorithm was applied for optimization in the sense of minimization of the difference between measured and simulated characteristic responses. The updated model is finally validated on the dynamic response of the tower structure to a real drop test induced impact loading. The results showed a good agreement between numerical and experimental results though the robustness of the simulation should be improved by more sophisticated numerical modelling. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.04.2022 KW - Großer Fallturm Horstwalde KW - Structural Health Monitoring KW - Belastungsversuch KW - Modalanalyse KW - Schwingungsdynamik KW - Finite Elemente Simulation PY - 2022 SN - 978-3-18-092379-6 SN - 978-3-18-102379-2 DO - https://doi.org/10.51202/9783181023792-265 SN - 0083-5560 VL - 2379 SP - 265 EP - 284 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-55472 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiehle, Philipp A1 - Härder, M. A1 - Strangfeld, Christoph T1 - Feuchteverhalten von Lehmsteinmauerwerk unter natürlichen Klimabedingungen – Experimentelle und numerische Untersuchungen N2 - Druckfestigkeit und Elastizitätsmodul von Lehmsteinmauerwerk nehmen mit steigendem Feuchtegehalt ab, weswegen die Mauerwerksdruckfestigkeit bei der Bemessung gemäß DIN 18940 in Abhängigkeit der maximal zu erwartenden Ausgleichsfeuchte abgemindert wird. Da bisher allerdings keine Messdaten zum Feuchtegehalt von Lehmsteinmauerwerk unter natürlichen Klimabedingungen vorliegen, stellen die normativen Grenzwerte lediglich eine konservative Abschätzung dar. Um die Feuchtegehalte von Lehmsteinmauerwerk und somit die Tragfähigkeit realitätsnah einschätzen zu können, wurden im Rahmen der vorliegenden Arbeit sowohl experimentelle als auch numerische Untersuchungen zum feuchtetechnischen Verhalten durchgeführt. Dabei wurden erstmalig magnetresonanzspektroskopische Untersuchungen an tragenden Lehmsteinen unterschiedlicher Herstellungsmethoden angewandt Weiterhin wurden Luftfeuchtesensoren in Lehmsteinmauerwerk eingebettet, um hygrische Langzeitfeuchtemessungen unter natürlichen Klimabedingungen durchzuführen. Auf Basis dieser Erkenntnisse wurde schließlich ein numerisches Modell kalibriert und Parameterstudien durchgeführt, um den unter realen Klimabedingungen tatsächlich auftretenden Feuchtegehalt im Lehmmauerwerk sowie dessen Verteilung über den Querschnitt einschätzen zu können und die normativen Grenzwerte zu überprüfen. Gezeigt wurde, dass die realitätsnahe instationäre Berechnung des Feuchtetransports mit üblichen hygrothermischen Simulationsprogrammen auf Basis einfacher feuchtetechnischer Kennwerte auch bei Lehmbaustoffen möglich ist. Der Einfluss des Quellens und Schwindens der enthaltenen Tonminerale und organischen Bestandteile wurde durch eine Modifikation bei der Ermittlung des Wasseraufnahmekoeffizienten explizit berücksichtigt und ist somit auch in den daraus abgeleiteten Transportkoeffizienten enthalten. Darüber hinaus wurde die Feuchtespeicherfunktion im überhygroskopischen Bereich auf Grundlage der Porenvolumenverteilung abgeschätzt. Die Approximation der Transportkoeffizienten und der Feuchtespeicherfunktion stellt dabei eine wesentliche Vereinfachung für Lehmbaustoffe dar, da ihre experimentelle Bestimmung aufgrund des Kontaktes mit Flüssigwasser kaum möglich ist. In Bezug auf das Feuchteverhalten üblicher Außenwandaufbauten von Wohnräumen konnte festgestellt werden, dass die Ausgleichsfeuchte im Lehmsteinmauerwerk stets unterhalb des in Nutzungsklasse 1 gemäß DIN 18940 zulässigen Grenzwertes von 65 % liegt. Je nach Putzsystem und Dämmstoff reduziert sich die Ausgleichsfeuchte auf Werte unter 60 %, wobei sich eine annähernd gleichmäßige Verteilung der Feuchte über den Mauerwerksquerschnitt hinweg einstellt. Bei Außenwänden von unbeheizten Räumen ergab sich eine maximale Ausgleichsfeuchte, die über weite Teile des Querschnitts unterhalb von 80 % lag. Der Ansatz einer maximalen Ausgleichsfeuchte von 90 % in Nutzungsklasse 2 ist folglich zu hoch angesetzt. Die zulässige Ausgleichsfeuchte bzw. der Umgebungsfeuchtefaktor in Nutzungsklasse 2 sollte dementsprechend angepasst werden T2 - LEHM 2024 – 9. Internationale Fachtagung für Lehmbau CY - Weimar, Germany DA - 27.09.2024 KW - Lehmstein KW - Mauerwerk KW - Materialfeuchte KW - Feuchtemonitoring KW - hygrothermische Simulation PY - 2024 SP - 1 EP - 10 AN - OPUS4-61217 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ratkovac, Mirjana A1 - Gerards-Wünsche, Paul A1 - Thiele, Marc A1 - Brackrock, Daniel A1 - Stamm, Michael T1 - Detection and monitoring of the fatigue crack growth on welds – Application-oriented use of NDT methods N2 - Early detection of fatigue cracks and accurate measurements of the crack growth play an important role in the maintenance and repair strategies of steel structures exposed to cyclic loads during their service life. Observation of welded connections is especially of high relevance due to their higher susceptibility to fatigue damage. The aim of this contribution was to monitor fatigue crack growth in thick welded specimens during fatigue tests as holistically as possible, by implementing multiple NDT methods simultaneously in order to record the crack initiation and propagation until the final fracture. In addition to well-known methods such as strain gauges, thermography, and ultrasound, the crack luminescence method developed at the Bundesanstalt für Materialforschung und -prüfung (BAM), which makes cracks on the surface particularly visible, was also used. For data acquisition, a first data fusion concept was developed and applied in order to synchronize the data of the different methods and to evaluate them to a large extent automatically. The resulting database can ultimately also be used to access, view, and analyze the experimental data for various NDT methods. During the conducted fatigue tests, the simultaneous measurements of the same cracking process enabled a comprehensive comparison of the methods, highlighting their individual strengths and limitations. More importantly, they showed how a synergetic combination of different NDT methods can be beneficial for implementation in large-scale fatigue testing but also in monitoring and inspection programs of in-service structures - such as the support structures of offshore wind turbines. T2 - Fatigue Design 2023 (FatDes 2023) CY - Senlis, France DA - 29.11.2023 KW - Fatigue KW - Welded KW - NDT KW - Crack growth PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600238 DO - https://doi.org/10.1016/j.prostr.2024.03.062 VL - 57 SP - 560 EP - 568 PB - Elsevier B.V. AN - OPUS4-60023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias ED - Papadrakakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Implementing a Structural Health Monitoring system using digital models of the BAM large drop test facility in Horstwalde N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - Drop Tests KW - System Identification KW - Digital Models KW - BIM PY - 2020 UR - https://generalconferencefiles.s3-eu-west-1.amazonaws.com/eurodyn_2020_ebook_procedings_vol1.pdf SN - 978-618-85072-0-3 VL - 1 SP - 1293 EP - 1304 PB - Institute of Structural Analysis and Antiseismic Research CY - Athen AN - OPUS4-51592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Baeßler, Matthias T1 - Optimal sensor placement for vibration-based structural health monitoring obtained via value of information analysis as part of a digital structural integrity management of offshore structures N2 - A digital structural integrity management of offshore structures enables an optimized planning of inspections and repairs with risk-based methods. In a risk-based approach, the inspection and repair strategy that minimizes the expected lifetime costs consisting of the expected inspection, repair and failure costs is determined. In addition to inspections, information on the structural condition can be continuously obtained by monitoring the vibration response of the structural system. Changes in the vibration characteristics quantified in terms of modal properties can be an indication of structural damage. In risk-based inspection and repair planning, the effect of monitoring results is determined via Bayesian updating of the structural condition and reliability. This information should be applied to inform decisions on inspections and may result in a reduced inspection effort. The benefit of continuously monitoring the structural health can be quantified in terms of the value of information, which corresponds to the difference between the expected lifetime costs with and without monitoring. In this work, we demonstrate in a numerical example how an optimized sensor placement for a vibration-based structural health monitoring system can be determined by maximizing the value of information. T2 - 3rd International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2022) CY - Online meeting DA - 08.06.2022 KW - Structural Health Monitoring KW - Value of Information KW - Offshore Wind Energy KW - Optimal Sensor Placement KW - Bayesian System Identification PY - 2022 UR - https://www.researchgate.net/publication/362569906_Optimal_sensor_placement_for_vibration-based_structural_health_monitoring_obtained_via_value_of_information_analysis_as_part_of_a_digital_structural_integrity_management_of_offshore_structures SN - 978-1-8383226-7-0 SP - 23 EP - 32 AN - OPUS4-55465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias A1 - El-Athman, Rukeia T1 - Research Data Management of Structural Health Monitoring Projects and Subsequent Applications of Artificial Intelligence Methods N2 - Structural health monitoring (SHM) intends to improve the management of engineering structures. The number of successful SHM projects – especially SHM research projects – is ever growing, yielding added value and more scientific insight into the management of infrastructure asset. With the advent of the data age, the value of accessible data becomes increasingly evident. In SHM, many new data-centric methods are currently being developed at a high pace. A consequent application of research data management (RDM) concepts in SHM projects enables a systematic management of raw and processed data, and thus facilitates the development and application of artificial intelligence (AI) and machine learning (ML) methods to the SHM data. In this contribution, a case study based on an institutional RDM framework is presented. Data and metadata from monitoring the structural health of the Maintalbrücke Gemünden for a period of 16 months are managed with the RDM system BAM Data Store, which makes use of the openBIS data management software. An ML procedure is used to classify the data. Feature engineering, feature training and resulting data are performed and modelled in the RDM system. T2 - 11th International Conference on Bridge Maintenance, Safety and Management (IABMAS2022) CY - Barcelona, Spain DA - 11.07.2022 KW - Research data management KW - Structural health monitoring KW - Artificial intelligence PY - 2022 SN - 978-1-032-35623-5 SN - 978-1-003-32264-1 DO - https://doi.org/10.1201/9781003322641-127 SP - 1061 EP - 1068 PB - CRC Press CY - Boca Raton AN - OPUS4-55493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Nerger, Deborah A1 - Moosavi, Robabeh A1 - Grunwald, Marcel T1 - Discussion on data evaluation of tomographic and numerical results N2 - The contribution discusses the processing and analysis of data generated on two different ways of investigations for impact damage in reinforced concrete structures. Damage investigations are essential to determine type and characteristics of damage and thus the residual capacity. Damage describing data is generated using two different types of investigation, a non-destructive tomographic as well as numerical examination. Subsequently, data of both sources was merged and analysed. Within the research project “Behaviour of structural components during impact load conditions caused by aircraft fuel tank collision” reinforces concrete plates were damaged by impact loading, see Hering (2020). Afterwards the damaged specimens were investigated tomographically as well as numerically using several methods and models. Aim of the presented research work was to specify an objective comparability of numerical data with experimentally determined damage patterns and based on this, to establish a quantitative damage evaluation. T2 - 26th International Conference on Structural Mechanics in Reactor Technology CY - Potsdam, Germany DA - 10.07.2022 KW - Impact damage on reinforced concrete KW - Tomographic damage evaluation KW - Numerical damage simulation PY - 2022 SP - 1 EP - 8 AN - OPUS4-55474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Gerards, Paul A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for data and structural integrity management for support structures in offshore wind farms based on building information modelling N2 - Support structures of wind turbines in German offshore wind farms are regularly inspected. Currently, inspection outcomes are generally not systematically recorded. This prevents their consistent handling and processing, which is a key requirement to enable an efficient structural integrity management. As part of the DiMoWind-Inspect project, a data model and reference designation system for such inspection results is developed to facilitate their identification, localization, quantification, tracing and linking throughout the lifetime of a wind farm and beyond. The inspection results together with structural health monitoring results and information on repairs form the basis for assessing and predicting the structural condition, estimating the remaining lifetime, and planning of future inspections, structural health monitoring, and repairs. As a basis for developing a digital structural integrity management, a generic framework is proposed in this paper, which describes the stakeholders, data, models, processes and workflows of the integrity management of support structures in offshore wind farms and their interrelations. The framework adopts a building information modelling approach to describe the information relevant to the structural integrity management. The central digital space of the framework is a common data environment. An implementation of the framework will enable a digital structural integrity management in which inspection, structural health monitoring, repair, assessment and planning outcomes generated throughout the life cycle of a wind farm can be consistently collected, managed, shared and processed by the relevant shareholders. T2 - 8th International Symposium on Reliability Engineering and Risk Management CY - Hannover, Germany DA - 04.09.2022 KW - Offshore wind energy KW - support structures KW - structural health monitoring KW - building information modelling KW - structural integrity management PY - 2022 DO - https://doi.org/10.3850/978-981-18-5184-1_MS-04-161-cd SP - 111 EP - 117 PB - Research Publishing CY - Singapore AN - OPUS4-55656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hering, Marcus A1 - Fiedler, Georg A1 - Schubert, T. A1 - Hille, Falk A1 - Hüsken, Götz A1 - Beckmann, B. A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Rogge, Andreas T1 - Investigation of multiple impact-damaged reinforced concrete structures as a reference for liquid penetration behavior and tomographic studies N2 - The structural integrity of outer reinforced concrete (RC) containments of nuclear power plants provides an essential shield against external hazards. If this containment is damaged by an impact event, such as an aircraft crash, the question arises to which degree the reinforced concrete containment still has its protective capability. This concerns both purely structural protection and protection against liquids penetrating the interior of the containment. Due to the dimensions of the containment structures, it is difficult to perform real scale impact experiments, so in the past decades plate geometries at medium scale have been used for investigations. Detailed investigations on the structural behaviour of RC members or RC plates subjected to impact loading have already been presented in Just et al., Hering, Hering et al., Bracklow et al., Hille et al. and Nerger et al. The following investigations deal with the single and multiple impact event (first hard impact and/or subsequent soft impact) on a RC specimen, which provides the basis for further investigations. A description of the test setup and the test procedure as well as a presentation of the test results from the impact tests are provided. Furthermore, the experimental program is presented, which the damaged RC specimens are to undergo to deal with the question of how much the impact-damaged RC structure has become permeable to liquid media, such as water and kerosene, depending on the intensity of the impact. The aim of these following investigations is to develop a test setup that can be applied to investigate the liquid penetration behaviour (LPB) of small, medium, and large-scale RC members. In addition to the liquid penetration experiments, the damaged specimens are to be examined by planar tomography to obtain the damage inside the specimen. The combination of damaging event, fluid penetration behaviour and tomography should enable a comprehensive understanding of the damage to the RC specimen. T2 - Conference: 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT) CY - Yokohama, Japan DA - 04.03.2024 KW - Drop tower KW - Hard impact KW - Soft impact KW - Multiple impact PY - 2024 SP - 1 EP - 10 PB - IASMiRT CY - Yokohama, Japan AN - OPUS4-59723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Baeßler, Matthias T1 - Probabilistische Systemidentifikation einer Versuchsstruktur für Substrukturen von Offshore-Windenergieanlagen mit statischen und dynamischen Messdaten N2 - In diesem Beitrag wird ein probabilistischer Ansatz zur Systemidentifikation für Tragstrukturen von Offshore-Windkraftanlagen vorgestellt. Der Schwerpunkt der Forschung liegt auf der Integration von globalen Systemantworten in Form von Eigenfrequenzen und -formen sowie Verschiebungen und Dehnungen als lokale Messdaten. Die unterschiedlichen Daten werden kombiniert für die Aktualisierung der Parameter eines Finite-Elemente-Modells genutzt. Zu diesem Zweck wird ein probabilistischer Ansatz nach Bayes verfolgt, um Vorwissen sowie Unsicherheiten einzubeziehen. Die Methodik wird bei einer Versuchsstruktur angewandt, die eine Jacket-Substruktur von Offshore-Windenergieanlagen nachbildet. Eine Systemidentifikation mit Hilfe von Überwachungsdaten ist wertvoll für Jacket-Substrukturen, da eine Zustandsanalyse für die Gewährleistung der strukturellen Integrität unerlässlich ist, aber hinsichtlich der schwierigen Offshore-Bedingungen möglichst effizient sein muss. In diesem Zusammenhang schafft diese Arbeit die Grundlage für eine Schadenserkennung, eine verbesserte Vorhersage der Ermüdungslebensdauer und optimierte Instandhaltungsstrategien. Während das Modell hinsichtlich der statischen Messdaten erfolgreich aktualisiert werden kann, sind Schwierigkeiten bei der Identifizierung der dynamischen Systemeigenschaften erkennbar. T2 - 8. VDI-Fachtagung Baudynamik 2025 CY - Würzburg, Germany DA - 02.04.2025 KW - Systemidentifikation KW - Versuchsstruktur KW - Jacket KW - Offshore-Windenergie PY - 2025 VL - 8 SP - 175 EP - 188 AN - OPUS4-62879 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias ED - Papadrakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Structural health monitoring KW - Bayesian methods KW - Environmental effects PY - 2020 SN - 978-618-85072-2-7 SN - 978-618-85072-0-3 SP - 1254 PB - Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA) CY - Athens, Greece AN - OPUS4-51590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models -- each estimated from data measured in a reference state -- are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - IFAC World Congress 2020 CY - Online meeting DA - 11.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 SP - 13858 AN - OPUS4-51617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias ED - Yokota, H. ED - Frangopol, D. M. T1 - Bayesian system identification of a reinforced concrete beam subject to temperature variations based on static response data N2 - Changes in the measured response of structural systems can be an indication of structural damages. However, such changes can also be caused by the effect of varying environmental conditions. To detect, localize and quantify changes or damages in structural systems subject to varying environmental conditions, physics-based models of the structural systems have to be applied which explicitly account for the influence of ambient conditions on the structural behavior. Data obtained from the structural systems should be used to calibrate the models and update predictions. Bayesian system identification is an effective framework for this task. In this paper, we apply this framework to learn the parameters of two competing structural models of a reinforced concrete beam subject to varying temperatures based on static response data. The models describe the behavior of the beam in the uncracked and cracked condition. The data is collected in a series of load tests in a climate chamber. Bayesian model class selection is then applied to infer the most plausible condition of the beam conditional on the available data. T2 - Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) CY - Online meeting DA - 11.04.2021 KW - Structural systems KW - Bayesian system identification KW - Damage identification KW - Environmental effects KW - Structural health monitoring PY - 2021 DO - https://doi.org/10.1201/9780429279119-125 SP - 934 EP - 941 PB - CRC Press AN - OPUS4-52809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Mevel, L. ED - Cunha, A. ED - Caetano, E. T1 - Stochastic subspace-based damage detection of a temperature affected beam structure N2 - Structural health monitoring (SHM) of civil structures often is limited due to changing environmental conditions, as those changes affect the structural dynamical properties in a similar way like damages can do. In this article, an approach for damage detection under changing temperatures is presentedand applied to a beam structure. The used stochastic subspace-based algorithm relies on a reference null space estimate, which is confronted to data from the testing state in a residual function. For damage detection the residual is evaluated by means of statistical hypothesis tests. Changes of the system due to temperature effects are handled with a model interpolation approach from linear parameter varying system theory. From vibration data measured in the undamaged state at some few reference temperatures, a model of the dynamic system valid for the current testing temperature is interpolated. The reference null space and the covariance matrix for the hypothesis test is computed from this interpolated model. This approach has been developed recently and was validated in an academic test case on simulations of a mass-spring-damper. In this paper, the approach is validated experimentally on a beam structure under varying temperature conditions in a climate chamber. Compared to other approaches, the interpolation approach leads to significantly less false positive alarms in the reference state when the structure is exposed to different temperatures, while faults can still be detected reliably. T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 CY - Online meeting DA - 30.06.2021 KW - Damage detection KW - Subspace methods KW - Temperature effects KW - Model interpolation KW - Climate chamber KW - Laboratory beam structure PY - 2021 SP - 1 EP - 6 AN - OPUS4-52999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Recknagel, Christoph ED - Cunha, Á. ED - Caetano, E. T1 - Enhancing structural models with material tests and static response data - a case study considering a steel beam with asphalt layer subject to temperature variations N2 - Gradual or sudden changes in the state of structural systems caused, for example, by deterioration or accidental load events can influence their load-bearing capacity. Structural changes can be inferred from static and/or dynamic response data measured by structural health monitoring systems. However, they may be masked by variations in the structural response due to varying environmental conditions. Particularly, the interaction of nominally load-bearing components with nominally non-load bearing components exhibiting characteristics that vary as a function of the environmental conditions can significantly affect the monitored structural response. Ignoring these effects may hamper an inference of structural changes from the monitoring data. To address this issue, we adopt a probabilistic model-based framework as a basis for developing digital twins of structural systems that enable a prediction of the structural behavior under varying ambient condition. Within this framework, different types of data obtained from real the structural system can be applied to update the digital twin of the structural system using Bayesian methods and thus enhance predictions of the structural behavior. In this contribution, we implement the framework to develop a digital twin of a simply supported steel beam with an asphalt layer. It is formulated such that it can predict the static response of the beam in function of its temperature. In a climate chamber, the beam was subject to varying temperatures and its static response wass monitored. In addition, tests are performed to determine the temperature-dependent properties of the asphalt material. Bayesian system identification is applied to enhance the predictive capabilities of the digital twin based on the observed data. T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-10) CY - Online meeting DA - 30.06.2021 KW - Digital twin KW - Structural health monitoring KW - Material tests KW - Bayesian updating PY - 2021 SN - 2564-3738 SP - 1537 EP - 1544 AN - OPUS4-54126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway vibration – fast physics-based models for the prediction of ground vibration and the identification of track damage N2 - The following applications of machine learning will be discussed: 1. The prediction of the wave propagation from a railway line (completely physics based for surface lines, physics-based machine learning for tunnel lines) 2. The track behaviour for the emission of train-induced ground vibration (physics based for homogeneous soil, machine learning for layered soil) 3. Track damage detection and quantification from frequency response functions and moving load responses 4. Bridge damage detection and localisation from modal analysis and moving load 5. The use of axle-box acceleration for the identification of track/sub-soil condition and bridge resonances. The prediction of railway vibration usually needs time-consuming finite element, boundary element and wavenumber domain calculations. For a user-friendly prediction software however, fast calculations are needed. Several time-consuming detailed calculations have been used to develop simpler and fast models for the surface railway lines. The more challenging prediction from tunnel lines will be attacked by purely mathematical and by physics-informed machine learning. The dynamic stiffnesses of isolated or un-isolated railway tracks from detailed calculations with a continuous soil have been approximated with the simpler Winkler soil. The vehicle-track resonance (P2 resonance) rules the effect of the mitigation measures, and it can also be used for the on-board monitoring of the track and sub-soil condition. For the identification of track damage such as gaps between sleepers, track slabs and layers, detailed models with a continuous soil have been updated to get the best fit to the measured frequency response functions from hammer tests and the deformation pattern from the moving load response. Whereas the track damage can be locally identified, this is more difficult for bridges where the modal analysis gives mainly global information. The influence lines of the inclination for statically passing vehicles (locomotive, truck, compaction roller) have been used to localise bridge damage (stiffness variations). The on-board monitoring of rail bridges needs special conditions (regular trains with special speeds) to excite and measure the bridge resonance. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Vibration prediction KW - Track damage detection KW - Human and machine learning KW - Wave propagation KW - Surface line KW - Tunnel KW - Bridge resonance PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612462 DO - https://doi.org/10.58286/29865 SN - 1435-4934 SP - 1 EP - 9 PB - NDT.net CY - Kirchwald AN - OPUS4-61246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hering, Marcus A1 - Agasty, Amit A1 - Costard, René A1 - Hüsken, Götz A1 - Chruscicki, Sebastian A1 - Hicke, Konstantin T1 - Explosion effects on reinforced concrete structures – A preliminary study of scaling laws N2 - Blast tests are required to investigate accidental or intentional blast events and to assess the level of protection for people and facilities in critical infrastructures. Conducting large-scale field tests for complex scenarios is very resource intensive. Reliable small-scale experiments are a promising alternative. However, the scaling laws for the design of reinforced concrete structures under blast loads are not sufficiently established. In our research work, a consortium made up of three BAM departments, focuses on reinforced concrete structures that are suitable for the standardization of scaled blast tests. As part of the feasibility study, blast tests were carried out on test specimens of different sizes on the BAM Test Site for Technical Safety (TTS). Various reinforced concrete plates were tested and subjected to different blast loads. The blast tests included various measurement techniques to quantify the blast load and the behavior of the reinforced concrete plate. The blast load was measured with flush-mounted piezoelectric pressure gauges, while accelerometers and embedded fiber optic sensor cables were used to characterize the dynamic behavior of the plate under blast loading. In addition, damage characteristics were also determined using distributed fiber optic sensing. The application of these measurement techniques as well as the use of different numerical software tools offer the possibility to verify or adapt the scaling laws. T2 - 19th International Symposium on Interaction of the Effects of Munitions with Structures (19th ISIEMS) CY - Bonn, Germany DA - 09.12.2024 KW - Scaling KW - Blast KW - Fiber optic sensing PY - 2024 SP - 1 EP - 9 AN - OPUS4-62258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Jürgen A1 - Eidenmüller, Moritz A1 - Auersch, Lutz T1 - Prognose von Erschütterungs- und Sekundärschall- Immissionen an Bahnlinien unter Verwendung von FEM Gebäudemodellen N2 - Die Errichtung von Wohngebäuden an Bahnstrecken erfordert Betrachtungen zur Begrenzung der Erschütterungs- und Sekundärschallimmissionen. Hierzu werden spektrale Prognoseverfahren ausgehend von Freifeldmessungen eingesetzt. Im rechnerischen Modell werden die Teilaspekte der Körperschallübertragung mit Hilfe von spektralen Übertragungsfunktionen beschrieben. Kenntnis über die Zusammenhänge dieser spektralen Übertragungsfunktionen erhält man im Wechselspiel von: - Messergebnissen von Körperschall- und Luftschallmessungen für einzelne Übertragungssysteme - Modellberechnungen mit der Finite-Elemente-Methode, Parameterstudien, Abgleich mit Messergebnissen - Modellberechnung mit der Finite-Elemente-Methode zur Wechselwirkung des schwimmenden Estrichs mit dem Gebäude T2 - VDI-Tagung Baudynamik CY - Würzburg, Germany DA - 02.04.2025 KW - Bahnerschütterungen KW - Gebäudemodelle KW - Schwimmender Estrich KW - Sekundärschall PY - 2025 SN - 978-3-18-092447-2 SN - 0083-5560 VL - 2447 SP - 301 EP - 314 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-62887 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Erschütterungsprognose mit KI? Schnelle Ersatzmodelle und physikbasiertes maschinelles Lernen in der Bauwerk-Boden-Dynamik N2 - Erschütterungsprognosen können mit sehr detaillierten Modellen durchgeführt werden. Dies ist sowohl bei der Erstellung des Modells (zum Beispiel für ein Finite-Element-Modell für Boden und Bauwerk), als auch bei der Berechnung zeitaufwändig, von einigen Minuten für die Wellenausbreitung in geschichteten Böden mit Wellenzahlintegralen bis zu mehreren Stunden für Randelementlösungen für die korrekte Bauwerk-Boden-Wechselwirkung. Hier sind einfache und schnelle Ersatzmodelle von Vorteil, die die Ergebnisse der detaillierten Berechnungen gut wiedergeben. Diese Ersatzmodelle können vollständig auf physikalischen Überlegungen beruhen (white-box Modelle) oder mit Hilfe von maschinellem Lernen aus einer Vielzahl von detaillierten Rechenergebnissen erzeugt werden (black-box Modelle). Erfahrungen mit black-box Modellen zeigen, dass es sinnvoll ist das maschinelle Lernen mit physikalischen Informationen anzureichern (grey-box Modelle). Es werden Anwendungsmöglichkeiten für physikbasiertes maschinelles Lernen im Bereich von Bahnerschütterungen aufgezeigt, die Erschütterungsemission durch die Fahrzeug-Fahrweg-Wechselwirkung, die Wellenausbreitung im Boden, die Erschütterungsimmission in Gebäude, Gleisschäden und das Monitoring von Eisenbahnbrücken. T2 - VDI-Tagung Baudynamik CY - Würzburg, Germany DA - 02.04.2025 KW - Bahnerschütterungen KW - Emissionsmodell KW - Immissionsmodell KW - Transmissionsmodell KW - Tunnelausbreitung KW - Gleisüberwachung PY - 2025 SN - 978-3-18-092447-2 SN - 0083-5560 VL - 2447 SP - 53 EP - 64 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-62886 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Papadrakakis, Manolis T1 - Frequency-wavenumber method for the wave propagation through the soil and the soil-structure interaction of railway tracks and building foundations near railway lines N2 - In soil-structure interaction, the soil and the (flexible) structures are modelled as elastic continua. The partial differential equations of elasticity can be transformed to algebraic equations in frequency-wavenumber domain where they can be solved by matrix methods. The results for the soil and a structure can be coupled in frequency-wavenumber domain, and the solution in space domain is obtained by an infinite wavenumber integral (the back-transformation). This method has several applications for the prediction of the emission, transmission and immission of railway-induced vibrations. The wave propagation in homogeneous or layered soils is calculated for surface and tunnel lines by a single wavenumber integration (transmission). The response of ballast or slab tracks (for the emission problem) and the foundation stiffness (for the immission problem) need an additional integration across the track or foundation width. In wavenumber domain, tracks and foundations of infinite length are analysed. Finite structures can be calculated by finite element models where the soil is calculated by the boundary element method. The Green’s functions for the boundary element method are calculated by a wavenumber integration as for the transmission problem. Some example results for all these tasks will be shown. The immission into buildings will be analysed in detail, and the effect of stiff slab foundations and (basement) walls on the incoming wavefield is quantified in a parameter study. The transfer function (the amplitude ratio) structure to free field usually starts with 1 at 0 Hz and decreases continuously with frequency. The reduction is due to the structural stiffness against wave deformation which turns to be higher than the stiffness of the soil, for example above the structure-soil coincidence frequency of the slab foundation. The reduction is better for a high structural stiffness and for a low soil stiffness. Walls are stiffer than plates for the relevant frequency range, but even walls and especially low basement walls are not infinitely rigid and can follow the wave deformation to a certain extent. These basic rules from frequency-wavenumber analysis can well be used for real building projects near railway lines where stiff foundations can be an alternative reduction method to the commonly used base isolation by elastic elements. T2 - COMPDYN 2025 CY - Rhodos, Greece DA - 15.06.2025 KW - Frequency-wavenumber method KW - Wave propagation KW - Soil-structure interaction KW - Building foundations KW - Mitigation measures PY - 2025 SP - 1 EP - 15 PB - NTUA CY - Athen AN - OPUS4-63470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference 2022 CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Simple prediction KW - Vehicle-track interaction KW - Layered soil KW - Soil-building interaction KW - Soil-wall-floor model KW - Propagation from a tunnel KW - Tunnel-pile transfer PY - 2022 SP - 1 EP - 13 PB - KU Leuven CY - Leuven AN - OPUS4-56603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Measurement and evaluation tools for ground and building vibrations from industrial pro-cesses, construction work, traffic and other sources N2 - Vibration measurements have many causes and many technical and natural sources. Problems can sometimes be solved by short-term measurements, but in many cases, a long-term measurement is necessary. In long-term measurements of days, weeks, months and even years, it is easy to collect a huge quantity of raw data, but at the end, the post-processing of these data can be exhausting (for example one-year vibration data of a wind energy tower). A software has been developed which con-sists of measuring and evaluation routines where the measuring routines can operate different meas-uring systems and different measuring cards. The main advantage of this software is the fact that the interesting evaluations can be integrated in the measuring process so that the characteristics of the vibration can be extracted without storing all the raw data. Only important time segments are stored, for example train passages. The overall concept of the software and the main evaluation routines will be described in some details. Examples of our measurement experience will illustrate the capabilities of the software. 1) Surveying construction work in nearby sensitive buildings (for example an old wind tunnel), including a stable alarm system and meaningful vibration limits. 2) Prediction of train-induced vibration for a planned building to prevent annoyance and to improve the building design. 3) Modal analysis and long term measurements of several single- or multi-span, concrete or steel bridges 4) Modal and wave analysis of coupled floors in a historical building (“Neues Palais” at Potsdam). 5) Soil properties of various measurement sites (different routines to evaluate the dispersion). Moreover, from many projects, amplitudes, frequencies, and attenuation laws have been collected and analysed for the different sources such as vibratory or impact pile driving and ground compaction, demolition work with different machines, blasting in quarries and in tunnel works, bomb and mine clearing. T2 - 28th International Congress on Sound and Vibration CY - Online meeting DA - 24.07.2022 KW - Ground vibration KW - Building vibration KW - Measurement KW - Evaluation KW - Modes KW - Waves PY - 2022 SP - 1 EP - 8 AN - OPUS4-56602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Effects of a varying track and soil stiffness on ground vibrations near railway lines N2 - Usually, geometric irregularities are considered as the main cause of ground vibrations from trains. A varying stiffness of the track, the track support and the soil can also generate ground vibrations. The regular stiffness variation of the track on and between the sleepers results in a deterministic dynamic axle load. The random stiffness variation of the track support yields also dynamic axle loads which are generated by the acceleration of the unsprung mass (from the varying wheel displacements under the static axle load). The random stiffness variation has a second effect. The pulses from the passage of the static axle loads are superposed regularly to the quasi-static response, but also irregularly to yield a “scattered” part of the axle pulses. The same holds for a random variation of the soil stiffness. All these effects of stiffness variations have been calculated by wavenumber-domain multi-beam track models, a random finite-element soil model and the superposition of axle impulses in a stochastic simulation. The results are confronted with many measurements at different sites. It is concluded that the stiffness variation of the track and the soil generate an important ground vibration component near railway lines. T2 - International Conference Railways 2022 CY - Montpellier, France DA - 22.08.2022 KW - Ground vibration KW - Axle loads KW - Irregularities KW - Varying stiffness PY - 2022 SP - 1 EP - 11 AN - OPUS4-56605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schepers, Winfried T1 - Die Courant-Friedrichs-Lewy-Bedingung als Genauigkeits- und Stabilitätsbedingung bei FEM-Berechnungen zur Wellenausbreitung N2 - Bei numerischen Berechnungen zur Wellenausbreitung im Zeitbereich mit der FE-Methode wird sehr häufig die Courant-Friedrichs-Lewy-Bedingung als zwingend einzuhaltende Bedingung für das Zeitschrittintegrationsverfahren genannt. Darin wird gefordert, dass eine sich ausbreitende Welle innerhalb eines Zeitschritts nicht mehr als die Distanz zum nächstgelegenen Knotenpunkt zurücklegen dürfe. Dies lässt erwarten, dass es sich um eine physikalisch begründbare Bedingung handelt. Es ist jedoch in der Literatur zu beobachten, dass nicht weiter ausgeführt wird, ob es sich um eine Genauigkeits- oder um eine Stabilitätsbedingung handelt, und ob sie für alle Zeitschrittverfahren einzuhalten ist oder nur für einige spezielle. Auch werden entsprechende Aussagen ohne weiteren Quellennachweis gemacht. Dieser Beitrag erläutert zunächst die Fragestellung, der Courant et al. in der Originalveröffentlichung von 1928 nachgegangen sind, und zeigt auf, welche Bedeutung die von ihnen gefundene Beziehung für die dort untersuchte Fragestellung hat. Anschließend wird der Frage nachgegangen, inwieweit die dort gewonnenen Erkenntnisse auf FEM-Berechnungen übertragen werden können. Die Betrachtung der Stabilitätsbedingungen verschiedener Zeitschrittintegrationsverfahren im Kontext von FEM-Berechnungen in der Strukturdynamik zeigt anschließend, dass es sich bei der CFL-Bedingung nicht um eine physikalisch begründbare Beziehung, sondern um eine rein numerische Bedingung ohne physikalischen Hintergrund handelt. T2 - 19. D-A-CH Tagung Erdbebeningenieurwesen und Baudynamik CY - Vienna, Germany DA - 18.09.2025 KW - Numerische Methoden KW - Zeitschrittintegration KW - Verkehrserschütterungen PY - 2025 SN - 978-3-200-10710-6 DO - https://doi.org/10.34726/10599 SP - 259 EP - 264 PB - Österreichische Gesellschaft für Erdbebeningenieurwesen und Baudynamik (OGE) CY - Wien AN - OPUS4-64191 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schepers, Winfried T1 - Kritische Betrachtung der Impedanzfunktionen harmonisch angeregter Fundamente N2 - In den aktuellen Entwürfen des Eurocode 8 Teil 5 (FprEN 1998-5:2024) und auch des Euro-codes 7 Teil 3 (E DIN EN 1997-3:2022-10) werden Formeln für die Steifigkeiten eines Hal-braums mit einem darin eingebetteten starren masselosen Rechteckfundament gegenüber einer harmonischen Anregung angegeben. Die Formeln sind im Wesentlichen eine Kombination der Ergebnisse der Veröffentlichungen von Gazetas (1991) und Pais et al. (1988) über Forschungs-arbeiten, die in den 1980er Jahren durchgeführt wurden. Sie basieren auf numerischen Berech-nungen, deren Ergebnisse durch Ausgleichskurven approximiert wurden. Eine genauere Analyse der den Formeln zugrunde liegenden Veröffentlichungen zeigt einige Inkonsistenzen zwischen Eurocodes und den ursprünglichen Veröffentlichungen, deren Ursache nicht ohne weiteres er-kennbar ist. Darüber hinaus werden in den Eurocodes nur frequenzunabhängige Steifigkeiten angegeben. Das führt zu der Frage, wie verlässlich die Formeln sind. An zwei Beispielen wird nachfolgend die Notwendigkeit einer kritischen Verwendung der Impedanzfunktionen gezeigt. T2 - 19. D-A-CH Tagung Erdbebeningenieurwesen und Baudynamik CY - Vienna, Austria DA - 18.09.2025 KW - Impedanzen KW - Wellenausbreitung KW - Erschütterungen PY - 2025 SN - 978-3-200-10710-6 DO - https://doi.org/10.34726/10599 SP - 245 EP - 246 PB - Österreichische Gesellschaft für Erdbebeningenieurwesen und Baudynamik (OGE) CY - Wien AN - OPUS4-64187 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Said, Samir A1 - Baeßler, Matthias ED - Curbach, M. ED - Marx, S. ED - Scheerer, S. ED - Hampel, T. T1 - Structural Health Monitoring der Maintalbrücke Gemünden zur Unterstützung einer prädiktiven Instandhaltung N2 - Nach den bisherigen Regeln werden Bauwerksprüfungen von Brücken in starr definierten Intervallen durchgeführt. Diese starre, periodische, zustandsbasierte Instandhaltungsstrategie soll zukünftig durch eine flexible und prädiktive Instandhaltung ersetzt werden. Hierbei sollen Inspektionen und Instandhaltungsmaßnahmen unterstützt durch autonome Systeme auf der Grundlage von Monitoringdaten geplant und zusätzlich bei unvorhergesehenen Ereignissen ausgelöst werden. Im Rahmen des Verbundforschungsvorhabens AISTEC wird ein Vorgehen für Großbauwerke und kleinere Regelbauwerke zur Umsetzung eines kombinierten globalen, schwingungsbasierten und quasistatischen Monitorings entworfen. An der Maintalbrücke Gemünden – einer semiintegralen Rahmenbrücke aus Spannbeton auf der Schnellfahrstrecke Hannover–Würzburg – wurde als Demonstrator ein Dauermonitoring realisiert. T2 - 11. Symposium Experimentelle Untersuchungen von Baukonstruktionen (SEUB) CY - Online meeting DA - 08.03.2021 KW - Structural Health Monitoring KW - Umwelteinflüsse KW - Prädiktive Instandhaltung PY - 2021 UR - https://tu-dresden.de/bu/bauingenieurwesen/imb/ressourcen/dateien/veranstaltungen/seub/11-seub-2021/2021_SEUB11_06_Herrmann_et_al.pdf?lang=de VL - 55 SP - 66 EP - 76 PB - Technische Universität Dresden CY - Dresden AN - OPUS4-52810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerards-Wünsche, Paul A1 - Ratkovac, Mirjana A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for assessing the reliability of crack luminescence – an automated fatigue crack detection system N2 - The new crack luminescence method offers the possibility of making fatigue surface cracks in metallic materials more visible during inspections through a special coating system. This coating system consists of two layers, whereby the first layer has fluorescent properties and emits visible light as soon as it is irradiated by UV light. The top layer is black and is designed to prevent the fluorescent layer from emitting if no crack develops in the underlying material. The technique proved particularly useful in a wide variety of fatigue tests of steel components under laboratory conditions. Moreover, it has the potential to be used in various industrial applications. To enable industrial deployment and integration into maintenance strategies, a concept study is developed in this contribution, resulting in a qualification framework that can serve as a foundation for determining the reliability of the crack luminescence system in terms of a probability of detection curve. Within this study, factors causing measurement variability and uncertainty are being determined and their influences assessed. Due to the extension of the system by a moving computer vision system for automated crack detection using artificial intelligence, additional long-term effects associated with structural health monitoring systems need to be incorporated into an extended probability of detection study as part of the technical justification. Finally, important aspects and findings related to design of experiments are discussed, and a framework for reliability assessment of a new optical crack monitoring method is presented, emphasizing the influence of various uncertainty parameters, including long-term effects such as system ageing. T2 - SPIE Conference Smart Structures + Nondestructive Evaluation 2023 CY - Long Beach, CA, USA DA - 24.03.2023 KW - Structural Health Monitoring KW - Non-Destructive Evaluation KW - Probability of Detection KW - Reliability KW - Artificial Intelligence KW - Computer Vision KW - Crack Luminescence KW - Wind PY - 2023 SN - 978-1-5106-6086-1 DO - https://doi.org/10.1117/12.2658390 SP - 1 EP - 15 AN - OPUS4-57244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Balscheit, Hagen A1 - Victor, A. A1 - Thiele, Marc A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Lüddecke, F. T1 - Experimental Investigation on Buckling Behavior of soil-embedded Piles N2 - Monopiles are currently the predominant foundation type for offshore wind turbines in Europe. Due to the increasing dimensions of the turbines, pile diameters beyond 10m become necessary. A design-relevant failure mode of monopiles is the local buckling of the pile wall in the embedded sections. Relevant buckling guidelines do not consider the soil-structure interaction specifically, although the embedment may allow for a reduction of wall thickness. However, Eurocode-based design concepts require a validation with comparative buckling cases for validation, either in terms of buckling curve parameters for both the algebraic stress-based and semi-numerical LBA/MNA design concept or as a calibration factor kGMNIA for fully numerical GMNIA calculations. These parameters are not yet available for embedded shells. To close this gap, we have conducted experiments on piles embedded in sand to investigate local buckling under soil-structure-interaction. The results will be used to calibrate numerical models. This research was carried out as part of the VERBATIM research project, funded by PTJ/BMWK and supported by the Carbon Trust's Offshore Wind Accelerator consortium. T2 - EUROSTEEL 2023 CY - Amsterdam, The Netherlands DA - 11.09.2023 KW - Wind KW - Wind Energy KW - Shell Buckling KW - Offshore KW - Soil-Structure-Interaction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583641 DO - https://doi.org/10.1002/cepa.2313 SN - 2509-7075 VL - 6 IS - 3-4 SP - 1729 EP - 1734 PB - Ernst & Sohn Gmb AN - OPUS4-58364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - 3D spatial modelling of CPT data for probabilistic preliminary assessment of potential pile tip damage upon collision with boulders N2 - Tip damage of monopiles from boulder collisions during installation has emerged as a critical design issue, primarily due to the combination of the widespread use of large-diameter piles and the complexity of the ground conditions at the available sites. Recently, a framework relating potential pile tip damage to cone tip resistance from Cone Penetration Tests (CPTs) has been proposed in the literature. Gaussian processes are powerful stochastic models that enable probabilistic spatial interpolation of soil data at any location within a site. On this basis, this study utilizes sparse CPT data from a site in the North Sea, to first develop an efficient Gaussian process regression model, which is used to derive a three-dimensional (3D) probabilistic predictive map of the cone tip resistance. Assuming deterministic loading conditions and a factual collision with a boulder of pre-defined properties, the cone tip resistance predictive model is subsequently used for a probabilistic preliminary assessment of potential pile tip damage. Results of the analysis are realistic 3D probability maps of potential damage that aim to support engineering judgment and contribute towards cost-effective site investigation planning and offshore wind farm design. T2 - 5th International Symposium on Frontiers in Offshore Geotechnics (ISFOG 2025) CY - Nantes, France DA - 09.06.2025 KW - CPT data KW - Gaussian process regression KW - Boulder impact KW - Preliminary pile tip damage assessment PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634417 SN - 978-2-85782-758-0 DO - https://doi.org/10.53243/ISFOG2025-323 SP - 505 EP - 510 PB - International Society for Soil Mechanics and Geotechnical Engineering CY - London AN - OPUS4-63441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Balscheit, Hagen A1 - Geißler, Peter A1 - Schepers, Winfried A1 - Cuèllar, Pablo T1 - Evaluation of pile tip buckling based on large scale tests N2 - Der Beitrag beschreibt eine groß angelegte Versuchskampagne mit Pfahlrammungen, um das Risiko des plastischen Versagens der Pfahlspitze besser zu verstehen und numerische Modelle zu validieren. Ein numerisches Modell mit transientem Bodenkontakt zeigt eine gute Übereinstimmung mit den Testergebnissen. Parametervariationen verdeutlichen, wie empfindlich die Pfahlreaktion auf Imperfektionen und Randbedingungen ist. T2 - 5TH INTERNATIONAL SYMPOSIUM ON FRONTIERS IN OFFSHORE GEOTECHNICS CY - Nantes, France DA - 09.06.2025 KW - Pile Tip Buckling KW - Monopile KW - Offshore Windenergy KW - Driving Refusal KW - Large Scale Test PY - 2025 SN - 978-2-85782-758-0 DO - https://doi.org/10.53243/ISFOG2025-476 SP - 1218 EP - 1223 PB - International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) CY - Nantes AN - OPUS4-63387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - System and damage identification for cars, floors and roofs, bridges, tracks and foundations by modal analyses, frequency response functions and moving-load responses N2 - The following objects have been analysed by frequency response functions and moving load responses. A simple modal analysis which is based on the transformed and weighted system equations has been tested for an automotive test car and for many floors in many buildings to get some rules for their natural frequency and damping. Moreover, six neighboured equal, weakly coupled, wooden floors in a castle have been measured by ambient and hammer excitation, and a special method to extract the different mode shapes of the closely spaced natural frequencies has been developed and tested. Different foundations, for which the soil-structure interaction is generally important, have been measured and compared with finite-element boundary-element models of varying soil properties. Similarly by FEBEM calculations, damages in railway tracks have been identified from flexibility functions (frequency response functions) and from the moving-load responses to normal train operation. Rail and foot bridges have been measured during train passages and by quasi-static tests with moving vehicles. The repeatability of the inclinometer measurements has been checked for different passages, passage directions, and measurement campaigns at a six-span foot bridge. Two rail bridges at the Hanover-Würzburg high-speed line have been measured and evaluated for integrity and for the train- and speed-dependent bridge resonances. The relation between the multi-axle and the single-axle excitation can be solved in frequency domain by the axle-sequence spectrum of the vehicle or the whole train. The single axle response has been used to identify track and bridge damages in laboratory and in situ. T2 - 10th International Operational Modal Analysis Conference (IOMAC 2024) CY - Naples, Italy DA - 21.05.2024 KW - Weakly coupled floors KW - Bridge passage KW - Track damage KW - Foundation-soil interaction KW - Flexibility function KW - Moving load response PY - 2024 SN - 978-3-031-61420-0 DO - https://doi.org/10.1007/978-3-031-61421-7_19 SN - 2366-2557 SP - 187 EP - 195 PB - Springer Nature Switzerland AG CY - Cham, Schweiz AN - OPUS4-61248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Vibrations of multi-span structures like floors, rail and road bridges N2 - Resonances of rail bridges due to the passage of trains have been mainly investigated for sin-gle-span bridges. When multi-span bridges are to be considered, it is of interest if stronger resonance amplifications must be taken into account. Measurements of several multi-span structures have been evaluated for natural frequencies and mode shapes. An integral rail bridge with three different spans shows a separated local resonance of the longest main span and clearly higher natural frequencies of the shorter side spans. A two-span continuous beam on the test area of the Federal Institute of Material Research and Testing showed a regular pattern of natural frequencies where always a pair of frequencies is found with a certain fre-quency ratio. The corresponding mode shapes are the out-of-phase and in-phase combinations of the first, second, third … bending mode. A seven-span road bridge has been monitored for one of the almost equally long spans. Similar mode shapes have been observed for different, clearly separated natural frequencies. Three modal analyses measurement campaigns have been performed on the whole bridge. The combined mode shapes of the seven spans have been clearly identified where different combinations of spans are dominating in the different mode shapes. Equal weakly coupled spans have been analysed for a large wooden floor in a castle. A cluster of natural frequencies has been observed and a special method to extract the mode shapes has been developed and tested. The consequences of multi-span bridges for rail traffic will be discussed. If n simply supported bridge spans have no coupling, n equal modes with amplitude A/n exist and their superposition would yield the same resonance as for a single bridge. Real simply supported bridges have always a weak coupling due to the track or the common piers. Therefore, the natural frequencies differ a little and they cannot be in reso-nance at the same time for the same train passage so that the resonance amplification cannot be as strong as for the single bridge. This rule holds also for the average amplitude of the time history of the bridge passage which is an adequate quantity to judge for the bridge behaviour. The maximum amplitude of the time histories of different bridge points are quite random and could exceed the values of a single bridge. The meaning of such criteria is questioned and fre-quency domain analyses are suggested for a clearer bridge analysis and understanding. T2 - DinEst 2024 Third Conference on Structural Dynamics CY - Seville, Spain DA - 12.09.2024 KW - Rail bridge PY - 2024 SP - 41 EP - 59 PB - Escuela Tecnica Superior de Ingenieria CY - Sevilla AN - OPUS4-61238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Die Minderung von Bahnerschütterungen – Messergebnisse aus Österreich, Deutschland und der Schweiz N2 - Die Minderung von Bahnerschütterungen neben Eisenbahnstrecken ist an vielen Stellen gemessen worden. Dabei ist neben der hochfrequenten Wirkung von elastischen Gleiselementen wie Schienenlager, Schwellensohlen und Unterschottermatten auch oft eine tieffrequente Minderung beobachtet worden. Diese tieffrequente Minderung wird interpretiert und mit der weiteren Lastverteilung der statischen Last erklärt. T2 - 3. Wiener Dynamik Tage CY - Vienna, Austria DA - 25.07.2024 KW - Bahnerschütterungen KW - Minderung KW - Messungen KW - Schwellensohlen KW - Unterschottermatten KW - Gleistrog PY - 2024 SP - 1 EP - 13 AN - OPUS4-61244 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of ground vibrations from rail tunnels –finite-element, boundary-element and wavenumber calculations N2 - The prediction of ground and building vibrations has been established for surface lines and has now been extended to tunnel lines. The wave propagation in homogeneous or layered soils (the transmission) is calculated by an integration in wavenumber domain. The wave amplitudes at different distances and for different frequencies will be analysed for the following situations. 1. The horizontal propagation from a surface point to a surface point constitutes the basic rules. 2. The horizontal propagation from a source point at depth to a receiver point at depth which is related to a building with a deep basement or on a pile foundation. 3. The propagation from depth to the surface, which is the normal case for free-field measurements, has some different characteristics, for example a weaker attenuation with the horizontal distance from the source, which can be approximated by the full-space solution and the reflection rules for incident waves. The emission from a tunnel structure has been calculated by a finite-element model of the tunnel combined with a boundary-element model of the soil giving the reduction compared to a point-load excitation. The immission has been analysed by finite-element models of tunnel-soil-building systems for examples of research and consultancy work. Measurement results from a high-speed and a metro line confirm some of the established rules. Figure T2 - Int. Conf. RASD, Recent Advance in Structural Dynamics CY - Southampton, GB DA - 01.07.2024 KW - Ground vibration KW - Tunnel line KW - Wave propagation KW - Wavenumber method KW - Building vibration KW - Thin layer method PY - 2024 SP - 1 EP - 12 CY - Southampton AN - OPUS4-61266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Conreaux, Laurence A1 - Said, Samir A1 - Müller, Roger T1 - The excitation, propagation, and mitigation of train-induced ground vibrations from the axle impulses on the track N2 - Train-induced vibrations in soft ground usually have a strong low-frequency component. This component has a characteristic spectrum which is related to the axle sequence and the speed of the train. Its attenuation with distance is weaker than the attenuation for higher frequencies, and it always dominates the far-field ground vibration. Narrow-band frequency analyses clearly show that this ground vibration component is due to the static axle loads. Axle box vibrations have a different characteristic where the first out-of-roundness of the wheels is the only remarkable low-frequency component. Therefore, the dynamic axle loads from wheel and track irregularities are not the reason for the strong ground vibration component. The moving static axle loads generate the quasi-static response of the soil at very low frequencies and at very near distances. A part of the original impulse spectrum is scattered when it propagates through an inhomogeneous ballast and soil with a randomly varying stiffness. The axle impulses are smoother for a higher bending stiffness or a lower support stiffness (under sleeper pads, under ballast mats) of the track. This mitigation of the ground vibration will be demonstrated by measurements at three sites in Switzerland as well as the characteristic of the soil and axle-box vibrations. T2 - Sixth International Conference on Railway Technology: Research, Development and Maintenance CY - Prague, Czech Republic DA - 01.09.2024 KW - Soil and vehicle measurements KW - Train passages KW - Ground vibration KW - Excitation mechanisms KW - Mitigation KW - Under sleeper pads KW - Under ballast mat PY - 2024 DO - https://doi.org/10.4203/ccc.7.13.2 SN - 2753-3239 VL - 7 SP - 1 EP - 13 PB - Civil-Comp Press CY - Edinburgh, United Kingdom AN - OPUS4-61240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Frequenz- und bodenabhängige Prognose und Minderung von Bahnerschütterungen N2 - Die Prognose und Minderung von Bahnerschütterungen haben eine lange Tradition in der Bundesanstalt für Materialforschung und -prüfung. Im Jahr 2006 wurde eine Prognose-Software fertiggestellt, die viele Forschungs- und Messergebnisse zusammenfasst. Sie umfasst die Teilbereiche Emission (die Anregung durch die Fahrzeug-Fahrweg-Untergrund-Wechselwirkung), die Transmission (die Ausbreitung durch den Boden) und die Immission (die Übertragung vom Freifeld in ein Gebäude). Die Prognose geschieht in allen Teilen mit einfachen Formeln, die veröffentlicht sind und zur Anwendung für Jedermann zur Verfügung stehen. Es werden Beispiele zur Emission und zur Transmission gezeigt. Im Bereich Transmissionsprognose werden zu den Anregungskräften (aus dem Emissionsteil) die Bodenerschütterungen als Schwinggeschwindigkeitsterzspektren berechnet. Das Ergebnis hängt stark von der Bodensteifigkeit, -dämpfung und -schichtung ab. Dies wurde später mit einer Messkampagne in der Schweiz an 10 Messorten bestätigt. Die Berechnung erfolgt näherungsweise für einen geschichteten Boden mit einer frequenzabhängigen Wellengeschwindigkeit (Dispersion) oder einem tiefenabhängigen Wellengeschwindigkeitsprofil. Die Anregungskräfte werden im Prognosebereich Emission mit einem 2-dimensionalen Gleismodell berechnet. 1-dimensionale Modelle liefern meist falsche Ergebnisse und 3-dimensionale Modelle (zum Beispiel mit der kombinierten Finite-Element-Randelement-Methode) sind für eine Erschütterungs¬prognose sicherlich zu aufwändig. Das 2-dimensionale Modell wurde an 3-dimensionale Ergebnisse so angepasst, dass die Ergebnisse für viele Gleise und Böden annähernd zutreffen. Auch Minderungs¬maßnahmen am Gleis können mit diesem Modell sehr gut berechnet werden. Die Prognoseverfahren wurden in den folgenden Jahren weiter verfeinert. Es wurde die quasi-statische Anregung durch die bewegten statischen Zuglasten mit einer Näherungsformel ergänzt, so dass auch das tieffrequente Nahfeld realistisch erfasst werden kann. Mit der Berücksichtigung der Achsfolge (insbesondere zwischen den Achsen im Drehgestell) ergeben sich zwei typische Minima in den Erschütterungsspektren, die oft auch in den Messungen beobachtet werden. Der Amplitudenanteil zwischen diesen beiden Minima ist oft stärker angehoben, so dass hier eine zusätzliche Erschütterungsanregung vermutet wird. Dieser Anteil kann rein empirisch prognostiziert werden, so wie das in den englischen Prognosen (zuletzt für das Highspeed2-Projekt) enthalten ist. Die Begründung dieses Anteils ist allerdings nicht die Achsfolge, sondern die Zerstreuung der statischen Achslastimpulse durch einen unregelmäßigen Gleisuntergrund und Boden. Die messtechnische Ermittlung eines Minderungseffektes ist komplizierter als allgemein angenommen. Es reicht nicht aus, jeweils an einem Messpunkt in der Nähe eines Gleises mit und ohne Minderungsmaßnahme die Erschütterungen zu messen und aus dem Verhältnis der Amplituden (beziehungsweise aus der Differenz der Pegel) „die Einfügedämmung“ zu ermitteln. Es wird an Beispielen gezeigt, wie man hier sinnvoller vorgehen kann. 1. Zunächst ist es wichtig, nicht nur die Einfügedämmung sondern auch die Originalspektren mit und ohne Minderung zu dokumentieren und zu veröffentlichen, damit man kontrollieren kann, ob wesentliche Amplituden und Frequenzbereiche reduziert sind oder ob es sich um eher zufällige Minderungen oder Verstärkungen handelt. (Beispiel Unterschottermatte/Raron, Müller/SBB) 2. Der Messpunkt sollte nicht im Nahbereich des Gleises liegen, da ansonsten eine zu günstige, falsche Einfügedämmung bestimmt wird. (Beispiel Tunnel/ Leipzig/Breitsamter) 3. Um Zufälligkeiten zu vermeiden, sollte man an mehr als einem Punkt messen. (Beispiel Unterschotterplatte/Altheim/Auersch) 4. Man sollte eigentlich immer auch die Bodenkennwerte (Steifigkeit, Dämpfung, Amplituden-abnahme, Übertagungsfunktion) messen. Selbst bei nahegelegene Messquerschnitten kann man Überraschungen erleben. (Beispiel erste ICE-Messungen/bei Würzburg/Auersch) 5. Bei verschiedenen Bodenkennwerten kann man eine Korrektur durchführen. (Beispiel Gleis-tröge/Mistler) Am besten bestimmt man ein äquivalentes Kraftspektrum zu jedem Messort und jedem Messzug (Beispiel Feste Fahrbahn/Gardelegen/Auersch) 6. Prinzipiell gibt es nicht die Einfügedämmung einer Maßnahme. Die Einfügedämmung ist immer boden- und referenzsystemabhängig. Die „beste“ Einfügungsdämmung erhält man mit einem steifen Untergrund (Beispiel Unterschottermatte/Tunnel/München Gasteig/Wettschureck) Das heißt aber nicht, dass die Maßnahme durch einen künstlich versteiften Untergrund besser wird (Beispiel Unterschottermatten/RRT2006/Auersch) Es werden Messbeispiele gezeigt, die alle neben einer hochfrequenten dynamischen Minderung auch eine mittelfrequente quasi-statische Minderung aufweisen. Dabei wird der mittelfrequente Zerstreuanteil der statischen Achslastimpulse durch die breitere Lastverteilung und damit die Impulsdehnung der Achslastimpulse reduziert. Diese Impulsdehnung lässt sich mit dem 2-dimensionalen Gleismodell berechnen. Die Minderungswirkung hängt aber wiederum vom Referenzsystem und dessen unregelmäßiger Steifigkeitsverteilung ab. Je unregelmäßiger der Boden und Gleisuntergrund des Referenzsystems, desto stärker ist die Minderungswirkung. T2 - 24. Symposium für Baudynamik und Erschütterungsmessungen CY - Dübendorf, Sitzerland DA - 09.06.2023 KW - Bahnerschütterungen KW - Erschütterungsprognose KW - Erschütterungsminderung KW - Elastische Gleiselemente KW - Gleiströge KW - Zerstreute Achsimpulse PY - 2023 SP - 1 EP - 32 PB - Ziegler Consultants CY - Zürich AN - OPUS4-57953 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Soil-foundation-structure problems related to train induced vibrations - the kinematic interaction of tunnel excited pile foundations and the inertial interaction of high rise buildings N2 - The soil-foundation-structure interaction is always important when building vibrations due to train passages have to be considered. The frequency range for train vibrations is up to 100 Hz. Normally, soft surface soils are crucial so that the wavelength can be much smaller than the foundation dimensions. Three topics are of interest for the prediction and the under-standing of building vibrations. 1. The „kinematic interaction“ or the „added foundation ef-fect“, which is calculated either by the combined boundary-element finite-element method or by the wavenumber domain method, results in a reduction of the free-field vibration. The stiff-ness of the foundation resists the wave deformation, plates and walls for horizontally propa-gating waves or piles for vertically incident waves. 2. The „inertial interaction“ or the „added building effect“ yields an amplification around the vertical building resonance, which may be a rigid mode on the compliant soil or a flexible mode for high-rise buildings, and a reduction at higher frequencies. This has been analysed by detailed finite element models of apartment and office buildings. 3. Base isolation is a method to further reduce building vibrations. It is important to know the soil-foundation impedance for the possible reduction, as well as the correct building impedance. A high-rise building cannot be considered as a rigid mass model. It has a frequency-dependent behaviour with longitudinal waves travelling from the founda-tion to the top of the building which include the effect of floor vibrations. Experiences from building projects in Vienna, Frankfort and Berlin will give some additional results for the ex-citation from tunnel lines, the kinematic response of pile foundations, and the inertial re-sponse of the flexible multi-storey buildings. T2 - COMPDYN 2023 CY - Athen, Greece DA - 12.06.2023 KW - Kinematic Interaction KW - Inertial Interaction KW - Surface Foundation KW - Pile Foundation KW - High-Rise Building PY - 2023 SP - 1 EP - 14 PB - NTUA CY - Athens AN - OPUS4-57959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long 1-span bridge on elastomeric bearings under standard train speeds, and to a long multi-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4 and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. T2 - XII International Conference on Structural Dynamics CY - Delft, The Netherlands DA - 03.07.2023 KW - Railway bridge KW - Transfer function KW - Modal force spectrum KW - Axle-sequence spectrum KW - Freight train KW - Passenger train KW - High-speed train KW - 2-span bridge KW - Long-span bridge PY - 2023 SP - 1 EP - 10 PB - TU Delft CY - Delft AN - OPUS4-57961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Train-induced ground vibrations - the emission and transmission from tunnel and surface lines N2 - Train-induced ground vibrations are quite different for tunnel and surface lines. The excitation of the track and ground vibration by the vehicle-track-soil interaction maybe influenced by the stiffer track support of the tunnel invert. The excited waves are propagating on a different path compared to the surface line. The wave propagation in the interior of the soil is calculated by a wavenumber integral in a similar way as the propagation along the surface and a general reduction of < 0.5 has been found. An additional reduction has been found because of the missing Rayleigh wave. The different excitation of tunnel lines is analysed theoretically by the combined finite-element boundary-element method and some results about the influencing tunnel and soil parameters will be shown. Measurements have been made at the Mühlberg-Tunnel in Germany. The vibrations of the train, the track and the soil have been measured simultaneously at the tunnel and a nearby surface line. Spectra will be shown for different train speeds between 60 and 160 km/h. A clear reduction effect for the tunnel line compared to the surface line has been observed in a specific (train-speed-dependent) frequency range. This agrees well with the observations of other research institutes. The mid-frequency tunnel-surface reduction seems to be a consequence of the stiffer track structure which leads to a wider distribution of the axle loads. Therefore, the axle impulses due to the train passage are longer and have a lower frequency content. This will have an effect on the ground vibrations at some distance which are present in case of an irregular transmission path through a ballast and soil with varying stiffness. A similar reduction effect can also be found for other track forms where the axle impulses are distributed on a longer track segment, for example slab tracks, tracks with under ballast plates, under ballast mats or under sleeper pads. T2 - 29th International Congress on Sound and Vibration CY - Prague, Czech Republic DA - 09.07.2023 KW - Ground vibration KW - Railway tunnel KW - Layered soil KW - Surface-tunnel reduction KW - Measurements PY - 2023 SP - 1 EP - 8 PB - IIAV CY - Auburn, USA AN - OPUS4-57962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Impacts Between Different Drop Masses and Different Targets in Different Scales N2 - The Federal Institute of Material Research and Testing has performed many impact tests from very small laboratory tests to very big “free-field” tests with heavy containers on stiff foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. Later on, a smaller drop test facility has been built on the ground inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which oc-cur during the drop tests. In addititon, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Dif-ferent sensors, accelerometers, accelerometers with mechanical filters, geo-phones (velocity transducers), strain gauges, and pressure cells have been ap-plied for these tasks. Signal transformations and model calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple esti-mation. T2 - Experimental Vibration Analysis for Civil Engineering Structures (EVACES 2023) CY - Milano, Italy DA - 30.08.2023 KW - Drop test KW - Vibration measurements KW - Container loading KW - Foundation load PY - 2023 SN - 978-3-031-39116-3 DO - https://doi.org/10.1007/978-3-031-39117-0_60 SN - 2366-2557 SP - 592 EP - 602 PB - Springer Nature Switzerland CY - Cham, Schweiz AN - OPUS4-58503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kemmler, Samuel A1 - Cuéllar, Pablo A1 - Rettinger, C. A1 - Köstler, H. T1 - A Fluid-Solid Coupled Micromechanical Simulation for the Analysis of Piping Erosion During the Seabed Installation of a Suction Bucket Foundation N2 - Suction buckets are a promising concept for the foundations of offshore wind turbines. During the installation process of a suction bucket, localized fluidization of the granular soil, so-called piping erosion, may lead to installation failure. A 3D fluid-solid coupled micromechanical simulation is presented to study the occurrence of piping. An Euler-Lagrangian coupling employs momentum exchange between the fluid phase and the geometrically resolved particles. We investigate the behavior of the soil for three cases with varying prescribed suction velocities. We observe piping in the case with the highest suction velocity by analyzing the deformation of the granular fabric and monitoring the differential pressure. The grains under the bucket wall-tip show the highest hydraulic gradients and forces at the onset of piping. This approach permits a detailed analysis of piping phenomena and brings novel insights on the triggering conditions for piping failure of suction-aided foundations. T2 - TC 105 International Symposium CY - Grenoble, France DA - 23.09.2024 KW - Micromechanical simulation KW - Piping erosion KW - Suction bucket foundation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629461 DO - https://doi.org/10.1088/1755-1315/1480/1/012024 SN - 1755-1307 VL - 1480 IS - 1 SP - 1 EP - 4 PB - IOP Publishing AN - OPUS4-62946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Hille, Falk A1 - Hofmann, Detlev A1 - Kind, Thomas ED - Isecke, B. ED - Krieger, J. T1 - Überwachung der Brücke Altstädter Bahnhof, Brandenburg./H. Begleituntersuchungen mit moderner Sensorik und zerstörungsfreier Prüfung N2 - Die B1 Brücke am Altstädter Bahnhof in Brandenburg an der Havel wurde im Dezember 2019 aufgrund von während einer turnusmäßigen Inspektion entdeckten Rissen und Hohlstellen entlang der vorgespannten Längsträger gesperrt und im Mai 2021 abgebrochen. In der Zwischenzeit wurde die Brücke detailliert überwacht. Vor dem Abriss wurden zudem umfangreiche Untersuchungen zur Bestandsaufnahme und Schadensanalyse sowie Tests moderner Sensorik vorgenommen. Dabei konnte sowohl die richtige, zuvor nicht sicher bekannte Anzahl von Spanngliedern in den Querträgern sicher ermittelt werden als auch durch moderne Varianten der Schwingungsmessungen und der faseroptischen Sensorik zusätzliche Kenntnisse püber das Bauwerksverhalten ermittelt werden . In dem Beitrag werden die Verfahren mit ihren Möglichkeiten und Grenzen vorgestellt, die Ergebnissee an der Brücke in Brandenburg erläutert und zukünftige Einsatzmöglichkeiten diskutiert. T2 - 5. Brückenkolloquium CY - Ostfildern, Germany DA - 06.09.2022 KW - Monitoring KW - Brücke KW - Radar KW - Vibration KW - Faseroptik PY - 2022 SN - 978-3-8169-3549-0 SP - 555 EP - 566 PB - Expert Verlag CY - Tübingen AN - OPUS4-55627 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Multivariate Gaussian Process for 3D subsurface stratigraphy prediction from CPT and labelled borehole data N2 - Quantifying uncertainties in subsurface properties and stratigraphy can lead to better understanding of the ground conditions and enhance the design and assessment of geotechnical structures. Several studies have utilized Cone Penetration Test (CPT) data and employed Bayesian and Machine Learning methods to quantify the geological uncertainty, based on the Robertson’s soil classification charts and the Soil Behaviour Type Index (Ic). The incorporation of borehole data can reduce the stratigraphic uncertainty. Significant challenges can arise, however, mainly due to the intrinsic differences between field and laboratory-based soil classification systems, which can potentially lead to inconsistent soil classification. To this end, this study proposes a multivariate Gaussian Process model that utilizes site-specific data and: i) jointly models multiple categorical (USCS labels) and continuous (Ic) variables, ii) learns a (shared) spatial correlation structure and the betweenoutputs covariance, and iii) produces two types of dependent classification outputs. The results indicate that the integration of geotechnical and geological information into a unified model can provide more reliable predictions of the subsurface stratification, by allowing simultaneous interpretation of USCS and Ic profiles. Importantly, the model demonstrates the potential to integrate multiple variables of different types, aiming to contribute to the development of a methodology for joint modeling of geotechnical, geological and geophysical data. T2 - 7th International Conference on Geotechnical and Geophysical Site Characterization CY - Barcelona, Spain DA - 18.06.2024 KW - Geotechnical site-characterization KW - Probabilistic KW - Soil classification KW - Gaussian Process PY - 2024 SP - 1733 EP - 1740 AN - OPUS4-60712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sanayei, Mohammad Hassan A1 - Farhat, A. A1 - Luu, L.-H. A1 - Werner, L. A1 - Rettinger, C. A1 - Philippe, P. A1 - Cuéllar, Pablo T1 - Micromechanical framework for a 3d solid cohesion model - implementation, validation and perspectives N2 - This article presents a solid cohesion model for the simulation of bonded granular assemblies in the frame of 3D discrete element approaches (DEM). A simple viscoplastic cohesion model for 2D geometries is extended to 3D conditions, while its yield criterion is generalized as a hyper-surface in the space of bond solicitations to include torsional moments. The model is then calibrated using experimental results of uniaxial traction at both the microscopic and macroscopic scales with an artificial granular cohesive soil. The paper finally presents some simulated results on the macromechanical sample traction application and briefly discusses the model's current limitations and promising prospects for subsequent works. T2 - VII International Conference on Particle-Based Methods PARTICLES 2021 CY - Hamburg, Germany DA - 04.10.2021 KW - Granular Cohesive Materials KW - DEM KW - Micromechanical Tensile Failure KW - Macromechanical Sample Strength PY - 2021 SP - 1 EP - 10 AN - OPUS4-53716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - Probabilistic approaches to the design and assessment of offshore foundations considering spatially varying site conditions N2 - In this contribution, we consider two applications in which probabilistic approaches can potentially complement or enhance the design and assessment of offshore wind turbine foundations. First, we illustrate in a numerical example that probabilistic modelling can be helpful in dealing with chang-es in turbine locations during the planning phase of an offshore wind farm. In this case, spatial probabilistic modelling of the ground conditions enables (a) an inference of the soil properties at the modified turbine location from field data collected at different locations across an offshore wind farm site and (b) an optimisation of further site investigations. Second, we discuss the uncer-tainties and risks associated with the installation of large diameter monopiles in soils with hetero-geneities such as strong layers and/or embedded boulders. Subsequently, we present a concept for modelling, understanding, and managing these risks based on a probabilistic model of the subgrade conditions, monopile, and subgrade-pile-interaction. T2 - 3rd International Conference on Structural Integrity for Offshore Energy Industry (SI 2021) CY - Online meeting DA - 15.11.2021 KW - Probabilistic modelling KW - Spatially varying ground conditions KW - Foundation reliability analysis KW - Monopile installation risks PY - 2022 SN - 978-1-8383226-3-2 SP - 9 EP - 17 AN - OPUS4-54531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerards-Wünsche, Paul A1 - Hille, Falk T1 - Zuverlässigkeitsbasierter Technologietransfer am Beispiel Risslumineszenz Von der ZfP im Labor zum KI-basierten SHM-System für die Industrie – Statusbericht N2 - Der Übergang neuer zerstörungsfreien Prüfmethoden (ZfP) aus dem Labor in die industrielle Anwendung stellt erhebliche Herausforderungen dar. Für visuelle ZfP-Techniken, wie die in dieser Studie verwendete Risslumineszenz-Methode, ist die Automatisierung der Fehlererkennung durch KI-gestützte Computer-Vision-Systeme ein logischer nächster Schritt. Findet dies als kontinuierliche Überwachung statt, entwickeln sich solche Systeme zu einer KI-gestützten SHM-Methode. Die Implementierung dieser Technologien in sicherheitskritischen Anwendungen erfordert jedoch einen robusten Nachweis ihrer Zuverlässigkeit, der durch diese Weiterentwicklung an Komplexität gewinnt. Während etablierte Standards für Probability of Detection (POD)-Studien in ZfP-Systemen existieren, fehlen entsprechende Normen für SHM-Systeme, insbesondere solche, die KI einsetzen. Obwohl statistische Methoden für SHM-Systeme verfügbar sind, um Datenabhängigkeiten zu berücksichtigen, ist ein ganzheitlicher POD-Ansatz notwendig, um beeinflussende und variable Störfaktoren umfassend zu adressieren und die Alterung des SHM-Systems zu berücksichtigen. Diese Arbeit demonstriert Fortschritte bei der Entwicklung einer maßgeschneiderten Methodik, die auf die spezifischen Anforderungen zugeschnitten ist, um die Zuverlässigkeit eines KI-gestützten SHM-Systems auf Basis der Risslumineszenz nachzuweisen. Dieser Ansatz integriert die Prinzipien von POD-Studien mit statistischen Methoden für SHM-Systeme, um eine robuste Zuverlässigkeitsbewertung zu gewährleisten. Er verdeutlicht die erheblichen Herausforderungen, die bereits bei der kontinuierlichen Überwachung einer relativ einfachen visuellen Methode wie der Risslumineszenz auftreten. T2 - DGZfP-Jahrestagung 2025 CY - Berlin, Germany DA - 25.05.2025 KW - Risslumineszenz KW - SHM KW - PoD KW - Zuverlässigkeit KW - ZfP PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-636142 SP - 1 EP - 13 PB - NDT.net AN - OPUS4-63614 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Thomas A1 - Máca, Petr A1 - Hering, Marcus A1 - Fiedler, Georg A1 - Beckmann, Birgit T1 - Impact Experiments on Reinforced Concrete Specimens - Investigation of Repeatability and Scaling N2 - Nowadays, the impact resistance of concrete structures has become a prominent concern for critical infrastructure operators, particularly amidst escalating geopolitical tensions. Regulators and design engineers know that reinforced concrete structures can only be developed with high efficiency by considering nonlinear structural and highly nonlinear material behavior. Therefore, specific guidelines on impact design provide instructions for design and analysis of structures required to resist impact loading. These instructions are usually based on published results and evaluated data of impact experiments carried out in laboratories. To widen the knowledge and increase the scientific data the Institute of Concrete Structures (IMB) at TUD Dresden University of Technology (TUD) has carried out many impact experiments on reinforced concrete specimens in recent years. A specially designed drop tower is available for this purpose on the premises of the Otto Mohr Laboratory, TUD. In the framework of the past research at TUD some important issues, such as influence of rebar arrangement, structural thickness, scalability of specimen and repeatability, with regard to experimental impact testing were investigated. This article presents the drop tower facility and research results of impact experiments on reinforced concrete slabs. First, the scalability of impact experiments will be discussed in conjunction with already known theoretical scaling parameters provided by researchers in the past, e.g. Rüdiger et al. [1]. Scalability of experimental data is of huge importance since protective structures made of reinforced concrete differ usually in size in comparison to experimental specimens. The second important research focus is on repeatably of impact experiments. Since impact experiments are usually time consuming and expensive, a certain impact scenario is mostly carried out only once. It is intended to show the range of deviation of impact tests on some already carried out experiments on reinforced concrete slabs. A possible standard deviation is estimated for the applied test setup. T2 - 15th International Conference on Shock & Impact Loads on Structures CY - Gothenburg, Sweden DA - 12.06.2025 KW - Reinforced concrete KW - Drop-weight impact KW - Scaling KW - Repeatability KW - Digital image correlation PY - 2025 SP - 80 EP - 91 AN - OPUS4-63627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit A1 - Costard, Rene A1 - Hering, Marcus A1 - Chruscicki, Sebastian A1 - Hicke, Konstantin A1 - Hüsken, Götz T1 - Assessment of the Application of Scaling Concepts for Blast Effects Analysis N2 - Blast testing finds its implementation in several applications, e.g. for the purpose of investigation into accidental or intentional explosions, or for an assessment of the level of protection provided by a certain structural configuration. Analytical and/or semi-empirical methods are generally limited to preliminary assessments prior to blast testing. Applications of numerical simulations with hydrocodes coupled with finite element methods (FEM) can only reduce the amount of blast testing required, as these necessitate fulfillment of the fundamental prerequisites of model verification and that of model validation. Field tests are implemented for contact detonations as well as near-field blast scenarios and shock tube tests for far-field blast scenarios. However, these can be extremely resource intensive. Reliable small-scale experiments are a promising alternative. The concepts of dimensional analysis and similarity based on Buckingham’s Π-theorem (1914) have been applied in different fields. For applications to the phenomenon of shock wave propagation, Hopkinson-Cranz or cube-root scaling is a well-established concept. When it comes to scaling the structural response, research has predominantly focused on structures made of metallic materials. Scaled investigations with concrete or reinforced concrete (RC) structures remain limited. The lack of even the most basic guidelines (far from any ‘standardized scaling methods’ for blast tests) show that scaling as a method is not yet established in blast effects analysis. In this preliminary study, we present a systematic approach and evaluation of scaling of blast effects analysis for RC slabs in order to develop guidelines for resource efficient testing methods. We study the blast scenario at two different scales. The focus of these investigations has been on evaluation of scaling of dynamics using pressure sensors, acceleration sensors and fiber optic sensing cables for distributed acoustic sensing (DAS). Further, the resulting plastic behavior upon blast is characterized by distributed strain sensing (DSS) along the same cables. T2 - 27th International Symposium on Military Aspects of Blast and Shock (MABS27) CY - Colmar, France DA - 06.10.2025 KW - Similarity and scaling KW - Blast KW - RC-slabs PY - 2025 SP - 1 EP - 11 AN - OPUS4-64617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Ebell, Gino A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Schneider, Ronald ED - Lienhart, Werner ED - Krüger, Markus T1 - On potentials and challenges of physics-informed SHM for civil engineering structures N2 - Physics-informed structural health monitoring, which integrates realistic physical models of material behavior, structural response, damage mechanisms, and aging processes, offers a promising approach to improve monitoring capabilities and inform operation and maintenance planning. However, the associated technical challenges and model requirements are context-specific and vary widely across applications. To illustrate the relevance and potential of the topic, two application examples are presented. The first focuses on monitoring the modal characteristics of a prestressed road bridge, where strong sensitivity to temperature variations limits the diagnostic capabilities of conventional vibration-based global monitoring. The discussion highlights how environmental influences can obscure structural changes, and emphasizes that purely data-based approaches are inherently limited to detecting anomalies and do not enable comprehensive condition diagnostics. The second example explores a physics-informed monitoring approach for prestressed concrete bridges affected by hydrogen-induced stress corrosion cracking. T2 - SHMII-13 CY - Graz, Austria DA - 01.09.2025 KW - Hydrogen Stress Corrosion Cracking KW - SHM KW - Physics informed PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643271 SN - 978-3-99161-057-1 DO - https://doi.org/10.3217/978-3-99161-057-1-039 SP - 245 EP - 251 PB - Verlag der Technischen Universität Graz CY - Graz, Austria AN - OPUS4-64327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lehmann, Frank A. A1 - Hille, Falk A1 - Glisic, Branco ED - Lienhart, Werner ED - Krüger, Markus T1 - Global Perspectives on Structural Monitoring in Civil Engineering N2 - Structural Monitoring (SM) is crucial in civil engineering for ensuring the safety, functionality, and longevity of civil infrastructure, especially bridges. As its importance grows, SM practices are guided mainly by national standards, leading to fragmented approaches and limited global integration. This paper examines SM guidelines, focusing on contributions from Germany, while exploring the broader international framework. In Germany, key guidelines such as the DGZfP Merkblatt B09 and others offer structured methods and practice examples for long-term monitoring and performance assessment. Internationally, countries have developed their own SM frameworks. Amongst others, Austria’s RVS Richtlinie 13.03.01, France’s COFREND Livre Blanc, Canada’s ISIS Guidelines, the ACI Report 444.2-21 from the USA, the TRB Circular E-C246 and the CIRIA Guideline from the UK contribute to a global understanding of SM. These guidelines address common technical, theoretical, and economic challenges across regions. This paper highlights the need for international collaboration, identifying synergies and gaps to promote a unified approach to SM. It offers insights into global standards and how successful strategies can foster innovation and cohesion in SM practices worldwide. T2 - 13th International Conference on Structural Health Monitoring of Intelligent Infrastructure CY - Graz, Austria DA - 01.09.2025 KW - Structural Health Monitoring KW - bridge structures KW - guidelines PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643859 DO - https://doi.org/10.3217/978-3-99161-057-1-063 SP - 411 EP - 419 PB - Verlag der Technischen Universität Graz AN - OPUS4-64385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Wedel, Frederik A1 - Lehmann, Frank A. A1 - Pirskawetz, Stephan ED - Lienhart, Werner ED - Krüger, Markus T1 - Structural health monitoring guidelines for bridges in Germany N2 - With the advancement of digitalization and related technological developments, Structural Health Monitoring (SHM) has become a useful and increasingly widespread tool to assist in the maintenance management of bridges and other engineering structures. The process of implementing monitoring requires expertise in many fields such as civil engineering, bridge operation and maintenance, monitoring technology, and data analysis. In recent years, monitoring has moved from method and technology development to standard practice. However, the implementation of monitoring as a standardized process can be an obstacle, especially for bridge operators, due to a lack of practical experience combined with the various expertise required. This can affect several areas, such as determining the cost-effectiveness of a monitoring measure, proper tendering and contracting, quality control, analysis and evaluation of measurement data, and last but not least, data management. In order to support the introduction of monitoring technologies into the practice of infrastructure operators, several guidelines have been developed in Germany in recent years by different interest groups, each with a different focus and essentially complementing each other. This paper aims to provide an overview of four different recently published guidelines and to highlight their strengths and advantages. T2 - 13th International Conference on Structural Health Monitoring of Intelligent Infrastructure CY - Graz, Austria DA - 01.09.2025 KW - Structural Health Monitoring KW - Bridge structures KW - Guidelines PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643809 DO - https://doi.org/10.3217/978-3-99161-057-1-064 SP - 420 EP - 427 PB - Verlag der Technischen Universität Graz AN - OPUS4-64380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Ramasetti, Eshwar Kumar A1 - Ponnam, Poojitha A1 - Degener, Sebastian ED - Briffaut, Matthieu ED - Torrenti, Jean Michel T1 - Characterization of Smart Acceleration Sensors for Traffic Recognition using AI at the Nibelungen Bridge Worms N2 - The integration of digital sensors into Structural Health Monitoring (SHM) systems presents both significant opportunities and challenges, particularly in terms of sensor data management, bandwidth optimization, and system performance enhancement. This study examines the use of smart digital acceleration sensors, specifically MEMS accelerometers with CAN bus interfaces, deployed on the Nibelungen Bridge in Worms, Germany. The research evaluates the sensors' performance and calibration through laboratory and in-situ measurements, focusing on traffic load detection for vehicle recognition using Artificial Intelligence (AI) techniques. Additionally, the potential of AI, particularly autoencoders, in mitigating measurement uncertainties for traffic load detection is explored. T2 - 2025 fib International Symposium CY - Antibes, France DA - 16.06.2025 KW - SHM KW - Transfer Learning KW - SPP100+ KW - Nibelungen Bridge KW - Calibration KW - MEMS PY - 2025 UR - https://shop.fib-international.org/publications/fib-proceedings/1046-21th-fib-Symposium-Proceedings-in-Antibes-2025-France SN - 978-2-940643-29-5 SN - 2617-4820 SP - 3207 EP - 3816 CY - Antibes AN - OPUS4-64848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kang, Chongjie A1 - Herrmann, Ralf A1 - Eisermann, Cedric A1 - Marx, Steffen ED - Chang, Fu-Kuo ED - Guemes, Alfredo T1 - Collaborative Structural Health Monitoring for Bridge Digital Twins N2 - Structural Health Monitoring (SHM) is an effective tool that not only reduces reliance on periodic inspections but also enhances them by analyzing the current state of a structure based on the latest structural data. Collaborative SHM, which integrates various SHM systems within the scope of bridge digital twins (BDTs), enhances infrastructure resilience and maintenance strategies. However, it faces challenges in integrating distributed sensor networks and requires interdisciplinary collaboration. In this work, various aspects of enhancing collaborative SHM with BDTs are presented. As a pilot project, the Nibelungen Bridge in Worms (NBW), Germany, is introduced. Based on specific stakeholder and project requirements, various SHM systems havebeen installed on this bridge. To address these challenges, goal-oriented solutions have been developed and elaborated. Finally, conclusions and future outlooks are presented. T2 - 15th International Workshop on Structural Health Monitoring CY - Stanford, CA, USA DA - 09.09.2025 KW - SHM KW - Collaborative Sensing KW - Nibelungen Bridge KW - SPP100+ PY - 2025 SN - 978-1-60595-699-2 DO - https://doi.org/10.12783/shm2025/37546 SP - 2305 EP - 2312 PB - DEStech Publications CY - Lancaster, PA, USA AN - OPUS4-64851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Joyal K. A1 - von Wangenheim, Kristian A1 - Kaplan, Felix A1 - Schneider, Ronald A1 - Hindersmann, Iris ED - Lienhart, Werner ED - Krüger, Markus T1 - Monitoring of civil engineering structures - current and future use cases N2 - Monitoring represents an effective approach for addressing the diverse challenges associated with the maintenance of civil engineering structures. It contributes to improving both the availability and safety of these structures. By increasing the amount of information available about the structure, monitoring supports better-informed decisions regarding its preservation. Due to the complexity of monitoring applications, specific use cases are outlined. A key advantage of these use cases is that new technologies can be tested within well-defined and limited scopes. The use cases monitoring of known, localized damage, monitoring of known deficits identified through reassessment or resulting from outdated design procedures and monitoring aimed at assessing traffic loads and their effects currently account for the majority of implemented monitoring measures. Their practical implementation is demonstrated through case studies from the Brandenburg State Road Authority. Additional use cases, such as monitoring to support structural inspections and monitoring of major structures, such as large viaducts, are gaining importance, with initial practical examples already present in Europe. Future applications reveal potential for expanded use, particularly in the context of monitoring to support predictive lifecycle management. This will become increasingly important in the implementation of digital twins, as announced in the national BIM master plan. Furthermore the concept of a Birth Certificate is intended to establish a reference state of the structure prior to commissioning, which can then be used for comparison with future measurements over time. The integration and interaction of these individual use cases pave the way for the implementation of digital twins. T2 - 13th International Conference on Structural Health Monitoring of Intelligent Infrastructure CY - Graz, Austria DA - 01.09.2025 KW - Structural Health Monitoring KW - Use Cases KW - Bridges KW - Digital Twin PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644422 DO - https://doi.org/10.3217/978-3-99161-057-1-033 SP - 203 EP - 208 PB - Verlag der Technischen Universität Graz CY - Graz AN - OPUS4-64442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Baeßler, Matthias ED - Döhler, Michael ED - Mélot, Adrien ED - Aenlle Lopez, Manuel T1 - System identification and model calibration of a steel road bridge N2 - The Bundesanstalt für Materialforschung und -prüfung (BAM), in cooperation with the Netherlands Organization for Applied Scientific Research (TNO), is working on a framework for integrating frequently updated structural models into an asset management process for bridge structures. A multi-span steel road bridge was selected as a test case for the development of this framework. In order for the structural model to represent the real behavior of the bridge with sufficient accuracy, model calibration is required. In this case, we have planned to calibrate the model based on the dynamic response of the bridge. To determine its dynamic properties, a multi-setup operational modal analysis was performed on one of the bridge spans. In parallel, a structural model of the span was developed based on the available design and service life information. Both eigenfrequencies and mode shapes were used as reference parameters to calibrate the model. A sensitivity analysis was performed to identify the most influential design parameters. Subsequently, a genetic algorithm was applied for minimizing the difference between measured and simulated characteristic responses. In the proposed paper, we summarize the measurements as well as the determination of the modal response of the bridge and describe the process of calibration of the structural model using the identified dynamic response. T2 - 11th International Operational Modal Analysis Conference (IOMAC 2025) CY - Rennes, France DA - 20.05.2025 KW - Bridge structure KW - Operational modal analysis KW - Model calibration PY - 2025 SN - 978-84-09-75120-4 SP - 114 EP - 121 PB - International Group of Operational Modal Analysis CY - Gijón, Spain AN - OPUS4-64416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, Rolf ED - Döhler, Michael T1 - Modal analysis of road and rail bridges for damage detection and resonance prediction N2 - In the 1980s, the Federal Institute of Material Research and Testing started with modal analysis measurements of some bridges before and after repair. For one of the bridges, a structural health monitoring was installed 1994 which is still working up to now. It has been modified and extended several times. The monitoring was extended from the critical span to three neighbouring spans. A modal analysis of the whole bridge with seven spans have been done three times, twice together with EMPA of Switzerland. Additional calibration measurements have been done and additional evaluation procedures have been implemented for the monitoring of the steadily increasing loads from the road traffic. Additional sensors were installed such as strain gauges, crack-width, and temperature sensors. The strong influence of the temperature on the natural frequencies has been studied over the years. Later, a temperature compensation has been established and a weak aging trend has been found in the monitoring data. Now, the bridge will be demolished and replaced by a new bridge. Some results of this long-term monitoring will be shown and possible damages (changes of the pre-stress or the support structure) will be discussed. A second application of modal analysis will be demonstrated: the prediction of the resonances due to passing trains. The response of a bridge to passing trains can be calculated in frequency domain as the multiplication of three spectra, the axle sequence spectrum of the train, the transfer function of the bridge, and the modal force spectrum of a single passing load. A resonance occurs if a maximum of the train spectrum coincides with the maximum of the bridge spectrum. The amplitude at this resonance is strongly influenced by the modal force spectrum which is identical to the frequency or wavenumber spectrum of the corresponding mode shape. Therefore, modal analysis from calculation, impact measurements, wind and train measurements are necessary for the prediction of the resonance occurrence and amplification. Examples of mode shape spectra for single or multi-span bridges with simply supported or continuous spans will be shown, and some relations between mode shapes and resonance amplifications will be concluded. T2 - 11th International Operational Modal Analysis Conference (IOMAC) CY - Rennes, France DA - 20.05.2025 KW - Bridge monitoring KW - Multi-span bridges KW - Damage detection KW - Resonance PY - 2025 SP - 39 EP - 46 PB - INRIA CY - Rennes AN - OPUS4-63473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Song, Jiaojiao T1 - Analysis of intact and damaged (floating) slab tracks by finite-element boundary-element models and by measurements N2 - The damage detection and repair control have become important tasks for slab tracks. Different intact and damaged slab tracks have been investigated theoretically and experimentally for train passages and hammer impacts. The following damages have been considered: The loss of contact between the sleeper and the track slab, between the track slab and the base slab, and between the base slab and the base layer. At first, a slab track with a gap between the track slab and the base layer has been calculated by the combined finite-element boundary-element method which correctly incorporates the behaviour of the infinite soil. The basic results are the track displacements of the rail, the track slab, and the base layer along the track which are caused by a single axle load. These solutions are properly superposed for to get the complete train load. The influence of track and soil parameters and of the track damage has been analysed. For the intact track, the compliance of the soil is dominant whereas the track bending stiffness becomes more important for the damaged track. By comparing the calculated results with the measurements, the length of the gap could be quantified. A slab track with a loose sleeper (without contact to the supporting track slab) was analysed by the transfer function between the displacements and the hammer force (receptance functions) where a resonance appeared in case of the damage. Differences between the different track elements confirmed the detection of the damage. A floating slab track with a thin rubber layer has been investigated for a possible gap between the base slab and the base layer. The behaviour of the intact track has been calculated by a wavenumber-domain method, and the same behaviour has been found in the measurements at several track sections, indicating that there is no damage. Finally, a floating slab track with steel springs and viscous fluid dampers has been measured in the Tongji laboratory. The modes of the floating track slab and the transfer function with corresponding resonances have been calculated and successfully compared with results from wheelset drop tests. T2 - Third International Conference on Rail Transportation (ICRT2024) CY - Shanghai, China DA - 07.08.2024 KW - Railway track KW - Damage KW - Vibration measurement KW - Finite element method KW - Boundary element method KW - Frequency response function KW - Moving load response KW - Floating slab track PY - 2025 SN - 978-0-7844-8594-1 SP - 591 EP - 600 AN - OPUS4-61267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Simon, Patrick ED - Cunha, Álvaro ED - Caetano, Elsa T1 - Review of Ballasted Track Destabilization on Shake Table Tests N2 - Shake table tests have been used for a long time to understand the densification and fluidization of granular materials. While purely vertical shaking is quite unlikely to be found in vibration analysis when it comes to granular materials as soils, it has been found that the vertical vibration of railway bridge support structures can affect the fabric of the ballasted track on top. Starting from the experience at French railway lines with destabilizing track conditions on short bridges in high speed lines in the 1990s, various shake table test configurations have been used to investigate the destabiliza-tion of ballast at high acceleration levels. This article describes the effects of the variously investigated dynamic excitations of railway bridges on the bal-lasted track itself. T2 - 11th International Conference on Experimental Vibration Analysis for Civil Engineering Structures (EVACES 2025) CY - Porto, Portugal DA - 02.07.2025 KW - Infrastructure KW - Ballasted track KW - Ballast KW - Railway bridge dynamics PY - 2025 SN - 978-3-031-96105-2 DO - https://doi.org/10.1007/978-3-031-96106-9_62 SP - 595 EP - 604 PB - Springer CY - Cham AN - OPUS4-64265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Characteristic Frequencies of Train-Induced Bridge, Track, Ground and Building Vibrations – Excitation and Mitigation N2 - The characteristic frequencies of train-induced vibrations are discussed in theory and experiment following the propagation of vibrations from the source to the receiver: 1. Out-of-roundness frequencies of the wheels, 2. sleeper-passage frequency, 3. the vehicle-track eigenfrequency, 4. band frequency of the impulses of the passing static axle loads, 5. car-length frequency and multiples, 6. axle-distance frequencies with two characteristic zeros, 7. bridge eigenfrequencies, 8. the cut-on frequency due to the layering, and 9. the cut-off frequency due to the material damping of the soil, 10. the building-soil eigenfrequency, 11. as a rigid building or flexible wall/column mode, 12. floor eigenfrequencies, 13. acoustic room resonances, 14. the „resonance“ frequency or cut-off frequency of a base isolation. Coincidences of some of these characteristic frequencies or frequency ranges can be typically problematic and mitigation measures at the track or at the building can be necessary. The bridge response to the passing static loads is deter¬mined by the axle-sequence spectrum, the eigenfrequency (transfer function) of the bridge, and the modal force or mode shape spectrum. The ground vibration has typically high frequencies for a stiff soil and low frequencies for a soft soil. The high amplitudes between the zeros of the axle-sequence spectrum are often measured in the ground vibrations, and they can be mitigated by soft support elements or a higher bending stiffness of the track. T2 - EVACES 2025 CY - Porto, Portugal DA - 02.07.2025 KW - Train-induced vibration KW - Vehicle excitation KW - Track response KW - Bridge resonance KW - Ground vibration KW - Soil-building transfer KW - Floor resonance KW - Axle-sequence spectrum KW - Vehicle-track eigenfrequency KW - Axle impulses PY - 2025 SN - 978-3-031-96113-7 DO - https://doi.org/10.1007/978-3-031-96106-9_77 VL - 2025 SP - 1 EP - 8 PB - Springer CY - Cham, Schweiz AN - OPUS4-63655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Baeßler, Matthias ED - Cunha, Álvaro ED - Caetano, Elsa T1 - On the reassessment of bridge superstructure vibrations for high-speed traffic N2 - The acceleration thresholds of bridge superstructures remain critical for designing and reassessing railway bridges on high-speed lines, with ballasted track systems historically limited to 3.5 m/s2 vertical accelerations due to destabilization risks. As part of the European InBridge4EU project, this study addresses methodological uncertainties in linking vertical bridge vibrations to lateral track creep—a key focus area for modernizing assessment protocols. A comparative analysis of two acceleration postprocessing methods (peak identification vs. fatigue-derived rainflow counting) as part of a recently proposed framework was conducted using an example bridge and train combination. Results demonstrate that rainflow counting yields more conservative creep estimates with the bulk of cumulative vibration-induced creep attributable to accelerations exceeding 3 m/s2. However, discretizing acceleration ranges into 1 m/s2 bins introduced significant errors compared to continuous cycle data, highlighting sensitivity to analysis parameters. These findings underscore the complexity of reconciling laboratory-derived harmonic vibration models with real-world bridge dynamics, where non-uniform acceleration patterns dominate. The research directly informs ongoing efforts to refine standardized criteria for ballasted track stability, particularly through the InBridge4EU project’s systematic re-evaluation of vibration limits and their engineering implications. By quantifying discrepancies between computational approaches, this work advances the development of robust protocols for predicting track degradation under high-speed operational loads. T2 - 11th International Conference on Experimental Vibration Analysis for Civil Enginering Structures (EVACES 2025) CY - Porto, Portugal DA - 02.07.2025 KW - Infrastructure KW - Railway bridges KW - Ballast destabilization KW - Acceleration limit KW - Ballasted track KW - Rainflow counting PY - 2025 SN - 978-3-031-96105-2 DO - https://doi.org/10.1007/978-3-031-96106-9_53 VL - 675 SP - 506 EP - 515 PB - Springer CY - Cham AN - OPUS4-64267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liao, Chun-Man A1 - Bernauer, F. A1 - Niederleithinger, Ernst A1 - Igel, H. A1 - Hadziioannou, C. T1 - Assessment of prestress loss in a large-scale concrete bridge model under outdoor condition N2 - Environmental conditions affect the accuracy of field measurements used to monitor civil structures. Previous studies have shown that measured dynamic responses often lack the sensitivity needed for effective localized damage detection. To address this issue, our study focuses on distinguishing environmental effects from damage related effects in measured data to enhance vibration-based damage identification methods. Experimentally, the problem of prestress loss in a prestressed concrete bridge model was examined. By adjusting the pre-stressing force in a large-scale concrete bridge model, cracking phenomena were observed. To demonstrate field monitoring of a large-scale prestressed structure, noise recording was performed and the measurement data was analyzed with operational modal analysis. Additionally, ultrasonic testing, known for its high sensitivity in damage localization, was used to cross-check the structural damage. Seismic and coda wave interferometry were also employed to estimate wave velocities, providing insights into the level of prestress loss and temperature sensitivity. Ultimately, these measurable wave properties help to overcome the uncertainties associated with traditional vibration-based damage detection methods. T2 - EVACES 2025 CY - Porto, Portugal DA - 02.07.2025 KW - Prestress Loss KW - NDT KW - Ambient Vibration KW - Ultrasonic Testing KW - Coda Wave Interferometry KW - Seismic Interferometry PY - 2025 SN - 978-3-031-96105-2 DO - https://doi.org/10.1007/978-3-031-96106-9_20 VL - 675 SP - 181 EP - 189 PB - Springer Nature CY - Cham AN - OPUS4-64212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Reduction of ground-induced building vibrations by kinematic and inertial soil-structure interac-tion and by base isolation N2 - Many buildings on the soil have been measured and the transfer function freefield-to-building is ana-lysed. In general, an amplification at low frequencies, an amplification for the floor resonances, and a reduction for higher frequencies can be observed. Most of the measurement examples show a flexible behaviour along the height of the buildings. The prediction of building vibration consists typically of three steps. At first, the dynamic stiffness of the foundation and secondly the kinematic soil-structure interaction has to be calculated for example by the combined finite-element boundary-element meth-od. The stiffness of the foundation reduces the incoming waves (the kinematic interaction). Finally, the inertial interaction of the building with the foundation soil is calculated by the conventional finite ele-ment method where the dynamic foundation stiffness from the first step is added at the bottom of the building. The building on the compliant soil has a fundamental vertical resonance usually below 10 Hz. A parametrical variation clearly shows the influence of the elasticity of the building on this reso-nance frequency and amplitude. Moreover for column-type office buildings, the low-frequency floor resonances can further reduce this fundamental frequency. A 1-dimensional model has been estab-lished which can well approximate the behaviour of the 3-dimensional building models. It is used to demonstrate the effect of a base isolation with soft elements at the foundation. A rigid building model clearly over-estimates the isolation effect, which is smaller for a model with flexible walls, columns and floors. An even simpler model of an infinitely high building is suggested for the mitigation effect, and the resonance frequency of the rigid building should be replaced by a better performance indica-tor, which is based on the impedance ratio of the isolation and the wall and which can be also ex-pressed as a characteristic frequency. T2 - 30th International Congress on Sound and Vibration CY - Amsterdam, Netherlands DA - 08.07.2024 KW - Building vibrations KW - Base isolation KW - Foundation stiffness KW - Kinematic soil-structure interaction KW - Transfer functions of flexible buildings PY - 2024 SN - 978-90-90-39058-1 SN - 2329-3675 SP - 1 EP - 8 AN - OPUS4-61245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulkarni, Kajol A1 - Kemmler, Samuel A1 - Schwartz, Anna A1 - Gedik, Gülçin A1 - Chen, Yanxiang A1 - Papageorgiou, Dimitrios A1 - Kavroulakis, Ioannis A1 - Iakymchuk, Roman T1 - Harvesting energy consumption on European HPC systems: Sharing Experience from the CEEC project N2 - Energy efficiency has emerged as a central challenge for modern high-performance computing (HPC) systems, where escalating computational demands and architectural complexity have led to significant energy footprints. This paper presents the collective experience of the EuroHPC JU Center of Excellence in Exascale CFD (CEEC) in measuring, analyzing, and optimizing energy consumption across major European HPC systems. We briefly review key methodologies and tools for energy measurement as well as define metrics for reporting results. Through case studies using representative CFD applications (waLBerla, FLEXI/GALÆXI, Neko, and NekRS), we evaluate energy-to-solution and time-to-solution on diverse architectures, including CPU- and GPU-based partitions of LUMI, MareNostrum5, MeluXina, and JUWELS Booster. Our results highlight the advantages of accelerators and mixed-precision techniques for reducing energy consumption while maintaining computational accuracy. Finally, we advocate the need to facilitate energy measurements on HPC systems in order to raise awareness, teach the community, and take actions toward more sustainable exascale computing. T2 - SCA/HPCAsiaWS 2026: SCA/HPCAsia 2026 Workshops: Supercomputing Asia and International Conference on High Performance Computing in Asia Pacific Region Workshops CY - Osaka , Japan DA - 26.01.2026 KW - Energy consumption KW - eEergy measurement KW - Energy-to-solution KW - Mixed-precision KW - HPC KW - CFD PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654175 DO - https://doi.org/10.1145/3784828.3785161 SP - 40 EP - 49 PB - ACM CY - New York, NY, USA AN - OPUS4-65417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baier, Johanna A1 - Wiehle, Philipp A1 - Thiele, Marc ED - Nille-Hauf, Konstantin T1 - Structural design of rammed earth – Influence of manufacturing parameters on the compressive strength N2 - At present, no structural design code for rammed earth exists that is based on the semiprobabilistic safety concept and adequately reflects the mechanical performance of modern rammed earth structures. This research aims to establish a scientifically grounded design framework for load-bearing rammed earth walls, incorporating the semi-probabilistic safety approach to ensure reliability and structural integrity. As a first step within the research project the influence of the manufacturing parameters of rammed earth on its mechanical properties are investigated. Compressive strength tests are carried out on cylinders produced with varying initial moisture contents and different compaction energies. Moreover, it is investigated whether the Proctor test according to DIN 18127 is suitable for determining the optimal moisture content (OMC) of rammed earth production. T2 - Earth Builder Summit EBS 2025 CY - Biberach, Germany DA - 06.03.2025 KW - Rammed earth KW - Structral design KW - Mechanical parameters PY - 2025 SP - 41 EP - 44 PB - Hochschule Biberach CY - Biberach AN - OPUS4-64343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -