TY - JOUR A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Baeßler, Matthias T1 - Optimal vibration sensor placement for jacket support structures of offshore wind turbines based on value of information analysis N2 - Information on the condition and reliability of an offshore jacket structure provided by a vibration-based structural health monitoring system can guide decisions on inspection and maintenance. When selecting the sensor setup, the designer of the monitoring system must assess its overall benefit compared to its costs before installation. The potential benefit of continuously monitoring the dynamic response of a jacket structure can be formally quantified through a value of information analysis from Bayesian decision theory. In this contribution, we present a framework for optimizing the placement of vibration sensors on offshore jacket structures by maximizing the value of information of the monitoring system. To solve the resulting discrete optimization problem, we adapt a genetic algorithm. The framework is demonstrated in a numerical example considering a redundant jacket-type steel frame. The numerical study shows that monitoring the vibration response of the frame is beneficial. Good sensor setups consist of relatively few sensors located towards the upper part of the frame. The adapted genetic algorithm performs similarly well as established sequential sensor placement algorithms and holds substantial promise for application to real jacket structures. KW - Optimal sensor placement KW - Value of information KW - Jacket support structure KW - Offshore wind turbine KW - Monitoring-informed inspection and maintenance planning PY - 2023 U6 - https://doi.org/10.1016/j.oceaneng.2023.115407 SN - 0029-8018 VL - 288 IS - 2 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-58725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -