TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Natural frequencies and modes of poles, beams, floors, road and rail bridges N2 - In the last three decades, the vibrations of many floors and bridges have been measured. The contribution shows some evaluation methods, experimental results and some modelling and theoretical results. Simple evaluation methods have been developed for single and coupled floors. Two coupled beams have been measured in good agreement with the theory. A more complex coupling model has been found for a large wooden floor in a castle consisting of six floor bays which correlates well with the measurements. Damaged and intact poles have been tested by their natural frequencies and damping values, and a fair correlation between the degree of damage and the shift of the frequency. Road bridges have been analysed in detail and some examples are presented. Railway bridges and trains are studied for resonant excitation. The risk of resonance can be estimated in frequency domain by using axle-sequence spectra of the train and the natural frequencies of the bridge. A measurement example shows the amplification, but even stronger the cancellation of the subsequent axle responses. Several high-speed trains and freight trains have been analysed for their potential resonance amplification. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Modalanalyse KW - Bauwerke KW - Bauteile KW - Brücken KW - Achsfolgespektren PY - 2020 AN - OPUS4-51213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vehicle-Track-Soil Interaction of Isolated, Un-isolated and Damaged Railway Tracks N2 - This article deals with two topics of vehicle-track-soil interaction, the mitigation of railway induced ground vibration by soft track elements, and the identification of track damage. Theoretical results have been achieved by a combined finite-element boundary-element method (FEBEM). The theoretical results are confronted with measurements at four sites. Improved mitigation effects have been found for soft rail pads under heavy sleepers. The insertion loss, however, can be too optimistic if a strong vehicle track resonance occurs for the un-isolated reference track. Two measurement sites show this strong vehicle-track resonance at about 80 Hz, which has been approximated by using the results of a wide parameter study including the rail pad, ballast, and soil stiffness, as well as the ballast model and the soil layering. – The detection of slab track damage is mainly based on the differences of the receptance or compliance functions. Theoretical results have been confirmed by measurements at one site where a loss of contact between track plate and base layer was visible. Measurements at a second site with a hidden damage have been compared with the theoretical results of a loose sleeper. The differences between intact (or repaired) and damaged tracks are strong enough to encourage the further development of this method for the identification of track damages. KW - Railway track KW - Track-soil interaction KW - Ground vibration KW - Mitigation KW - Under-sleeper pads KW - Track damage monitoring PY - 2020 DO - https://doi.org/10.4203/ijrt.6.3.2 SN - 2049-5358 VL - 2 IS - 20 SP - 21 EP - 49 PB - Saxe-Coburg Publications CY - London AN - OPUS4-51257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, W.-H. A1 - Xu, Z.-M. A1 - Liu, M.-Y. A1 - Tang, D.-H. A1 - Lu, W. A1 - Li, Z.-H. A1 - Teng, J. A1 - Han, X.-H. A1 - Said, Samir A1 - Rohrmann, R. G. T1 - Estimation of the Lateral Dynamic Displacement of High-Rise Buildings underWind Load Based on Fusion of a Remote Sensing Vibrometer and an Inclinometer N2 - This paper proposes a novel method to estimate the lateral displacement of high-rise structures under wind loads. The coefficient β(x) is firstly derived, reflecting the relation between the structural lateral dynamic displacement and the inclination angle at the height x of a structure. If the angle is small, it is the ratio between the structural fundamental mode shape and its first-order derivative without influence of external loads. Several dynamic experiments of structures are performed based on a laser remote sensing vibrometer and an inclinometer, which shows that the fundamental mode is dominated in the structural displacement response under different types of excitations. Once the coefficient β(x) is curve-fitted by measuring both the structural lateral dynamic displacement and the inclination angle synchronously, the real-time structural lateral displacement under operational conditions is estimated by multiplying the coefficient β(x) with the inclination angle. The advantage of the proposed method is that the coefficient β(x) can be identified by lateral dynamic displacement measured in high resolution by the remote sensing vibrometer, which is useful to reconstruct the displacement accurately by the inclination angle under operational conditions KW - Inclination angle KW - High-rise building KW - Lateral dynamic displacement KW - Remote sensing vibrometer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506833 DO - https://doi.org/10.3390/rs12071120 VL - 12 IS - 7 SP - 1120 PB - MDPI CY - 4052 Basel, Schweiz AN - OPUS4-50683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunier-Coulin, F. A1 - Cuéllar, Pablo A1 - Philippe, P. T1 - Generalized Shields criterion for weakly cohesive granular materials N2 - The erosion of natural sediments by a superficial fluid flow is a generic situation in many usual geological or industrial contexts. However, there is still a lack of fundamental knowledge about erosional processes, especially concerning the role of internal cohesion and adhesive stresses on issues such as the critical flow conditions for the erosion onset or the kinetics of soil mass loss. This contribution investigates the influence of cohesion on the surface erosion by an impinging jet flow based on laboratory tests with artificially bonded granular materials. The model samples are made of spherical glass beads bonded either by solid bridges made of resin or by liquid bridges made of a highly viscous oil. To quantify the intergranular cohesion, the capillary forces of the liquid bridges are here estimated by measuring their main geometrical parameters with image-processing techniques and using well-known analytical expressions. For the solid bonds, the adhesive strength of the materials is estimated by direct measurement of the yield tensile forces and stresses at the particle and sample scales, respectively, with specific traction tests developed for this purpose. The proper erosion tests are then carried out in an optically adapted device that permits a direct visualization of the scouring process at the jet apex by means of the refractive index matching technique. On this basis, the article examines qualitatively the kinetics of the scour crater excavation for both scenarios, namely, for an intergranular cohesion induced by either liquid or solid bonds. From a quantitative perspective, the critical condition for the erosion onset is discussed specifically for the case of the solid bond cohesion. In this respect, we propose here a generalized form of the Shields criterion based on a common definition of a cohesion number from yield tensile values, derived at both micro- and macroscales. The article finally shows that the proposed form manages to reconcile the experimental data for cohesive and cohesionless materials, the latter in the form of the so-called Shields curve along with some previous results of the authors which have been appropriately revisited. KW - Hydraulic jet erosion KW - Cohesive granular materials KW - Jet erosion test PY - 2020 DO - https://doi.org/10.1103/PhysRevFluids.5.034308 VL - 5 IS - 3 SP - 034308 PB - American Physical Society AN - OPUS4-50613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Characteristics of train passages over slab tracks from measurements and different track-soil models - Damage detection and ground vibration reduction N2 - The train passages over intact or damaged slab tracks on different soils have been calculated by the finite-element boundary-element or the wavenumber-domain method. The influence of track and soil parameters on the distribution of the track displacements and the soil forces has been analysed. The measured and calculated displacement time histories of train passages could be used to identify track damages such as lose sleepers or a lose track plate. The time histories and spectra of the soil forces can explain the measured ground vibration reduction of slab tracks. The calculated displacement and force distributions of slab tracks on continuous soils do not fulfil the Winkler hypothesis and Winkler models should not be used for track analysis. KW - Wavenumber domain KW - Continuous soil KW - Slab track KW - Soil forces KW - Track displacements KW - Track filter KW - Vehicle–track interaction PY - 2020 DO - https://doi.org/10.1177/0954409719835036 SN - 0954-4097 VL - 234 IS - 2 SP - 142 EP - 160 PB - Sage CY - London AN - OPUS4-50266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Das Prognosetool der BAM zur Emission, Transmission und Immission von Bahnerschütterungen N2 - Die gesamte Prognose wurde rechnerisch erfasst. Die Rechenverfahren sind einfach und schnell. Die Emission und die Immission verwendet Übertragungsmatrizen. Die Transmissionsrechnung beruht auf der Dispersion der Rayleighwelle. Die Verknüpfung erfolgt über die Anregungskraft auf den Boden und über die Freifeldamplitude am Gebäude. Es sind viele Eingabemöglichkeiten für Messdaten vorgesehen. Messungen können von einem Ort auf einen anderen Ort übertragen werden. T2 - 98. Sitzung des Normausschusses "Schwingungsminderung in der Umgebung von Verkehrswegen" CY - Online meeting DA - 07.05.2020 KW - Bahnerschütterungen KW - Prognose KW - Übertragungsmatrizen KW - Rayleighwellendispersion PY - 2020 AN - OPUS4-50748 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo A1 - Benseghier, Z. A1 - Luu, L.-H. A1 - Bonelli, S. A1 - Philippe, P. T1 - An efficient GPU implementation of a micromechanical computational tool for erosion problems N2 - We present here a set of conceptual and numerical tools for a micromechanical simulation of general erosion problems involving fluid-saturated granular assemblies, whether frictional or cohesive. We propose a parallel computation using graphical processing units (GPUs) to treat large numbers of degrees of freedom with conventional desktop computers. The fluid phase is here simulated with a particle-resolved approach in the frame of the Lattice Boltzmann Method (LBM) while the granular solid phase is modelled as a collection of discrete particles from a Molecular Dynamics DEM perspective. The range of possible material behaviors for the solid granular phase is intended here to cover a broad spectrum from purely frictional to viscous cohesive materials with either brittle or transient debonding features. Specific details of the implementation and some validation cases will be put forward. To conclude we provide some exemplary applications in the field of soil erosion along with details on the parallel performance of the models. The results show that a micromechanical approach can be feasible and useful in practice, providing meaningful insights into complex phenomena like the erosion threshold and kinetics of weakly cemented soils. T2 - EWG-IE 2020 Workshop on "Innovative numerical methods for internal erosion processes" CY - Online meeting DA - 17.12.2020 KW - Erosion KW - Earthen hydraulic constructions KW - Micromechanical modelling KW - LBM-DEM coupling KW - GPU parallel computation PY - 2020 AN - OPUS4-51866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 13.11.2020 KW - Building vibration KW - Office building KW - Residential building KW - Soil-building resonance KW - Floor resonance KW - Column/wall resonance PY - 2020 SN - 978-618-85072-2-7 SP - 4560 EP - 4576 CY - Athen AN - OPUS4-51678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Building vibration PY - 2020 AN - OPUS4-51679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Benseghier, Z. A1 - Cuéllar, Pablo A1 - Luu, L.-H. A1 - Delenne, J.-Y. A1 - Bonelli, S. A1 - Philippe, P. T1 - Relevance of Free Jet Model for Soil Erosion by Impinging Jets N2 - The surface erosion of soil samples caused by an impinging jet can be analyzed using the jet erosion test (JET), a standard experimental test to characterize the erosion resistance of soils. This paper specifically addresses the flow characteristics of a laminar impinging jet over the irregular surface of granular beds to discuss the pertinence and relevance of commonly used empirical estimations based on a selfsimilar model of a free jet. The JET is here investigated at the microscale with a coupled fluid-particle flow numerical odel featuring the lattice Boltzmann method (LBM) for the fluid phase combined with the discrete element method (DEM) for the mechanical behavior of the solid particles. The hydrodynamics of a laminar plane free jet are confronted with the results from a parametric study of jet impingement, both on solid smooth and fixed granular surfaces, that take into account variations in particle size, distance from jet origin, and jet Reynolds number. The flow characteristics at the bed surface are here quantified, including the maximal values in tangential velocity and wall shear stress, which can be regarded as the major cause of particle detachments under hydrodynamic solicitation. It is shown that the maximal velocity at the impinged surface can be described by the free jet self-similar model, provided that a simple empirical coefficient is introduced. Further, an expression is proposed for the maximal shear stress in laminar conditions, including a Blasius-like friction coefficient that is inversely proportional to the square root of the jet Reynolds number. To conclude, finally, the JET erosion of different cohesionless granular samples is analyzed, confirming that the threshold condition at the onset of granular motion is consistent with the Shields diagram and in close agreement with previous experimental results. KW - Lattice Boltzmann method KW - Soil erosion KW - Discrete element method KW - Laminar flow KW - Jet impingement PY - 2020 DO - https://doi.org/10.1061/(ASCE)HY.1943-7900.0001652 VL - 146 IS - 1 SP - 04019047 PB - ASCE AN - OPUS4-49491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Berechnung der Erschütterungsminderung von Eisenbahngleisen mit ein- und zweidimensionalen Modellen N2 - Eindimensionale Modelle des Gleises aus einem Schienenstützpunkt, zweidimensionale Modelle enthalten die Kraftverteilung der Schiene. Eindimensionale Modelle machen einen Fehler, weil sie eine zu große Fahrzeugmasse berücksichtigen. Man kann jedoch bei der Berechnung der Minderungswirkung von Gleiselementen eindimensionale Gleismodelle verwenden, um die Kraftübertragung des Gleises bzw. die Minderungswirkung des Gleises zu berechnen. Die Wechselwirkung mit dem Fahrzeug kann einfach mit der dynamischen Stützpunktsteifigkeit berechnet werden. Dabei muss die Stützpunktsteifigkeit mit einer charakteristischen Gleislänge multipliziert werden, die frequenz- und systemabhängig ist. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Munich, Germany DA - 14.01.2020 KW - Richtige Fahrzeugmasse KW - Erschütterungsminderung KW - Elastische Gleiselemente KW - Rechenverfahren PY - 2020 AN - OPUS4-50268 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Benseghier, Z. A1 - Cuéllar, Pablo A1 - Luu, L.-H. A1 - Bonelli, S. A1 - Philippe, P. T1 - A parallel GPU-based computational framework for the micromechanical analysis of geotechnical and erosion problems N2 - This article deals with the relevance and practical feasibility of micromechanical simulations for their application to general geomechanical problems involving fluid-saturated granular assemblies, whether frictional or cohesive. A set of conceptual and numerical tools is here presented, advocating for a parallel computation using graphical processing units (GPUs) to treat large numbers of degrees of freedom with conventional Desktop computers. The fluid phase is here simulated with a particle-resolved approach in the frame of the Lattice Botzmann Method (LBM) while the granular solid phase is modelled as a collection of discrete particles from a Molecular Dynamics DEM perspective. The range of possible material behaviours for the solid granular phase is intended here to cover a broad spectrum from purely frictional to viscous cohesive materials with either brittle or transient debonding features. Specific details of the implementation and some validation cases are put forward. Finally, some exemplary applications in the fields of soil erosion and geotechnical profile installation are provided along with a discussion on the parallel performance of the presented models. The results show that a micromechanical approach can be feasible and useful in practice, providing meaningful insights into complex engineering problems like the erosion kinetics of a soil under an impinging jet or the penetration resistance of a deep foundation in a layered soil profile. KW - Offshore geomechanics KW - Erosion KW - Micromechanical modelling KW - LBM-DEM KW - GPU Parallel computing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502309 DO - https://doi.org/10.1016/j.compgeo.2019.103404 VL - 120 SP - Paper 103404, 1 PB - Elsevier Ltd. AN - OPUS4-50230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, W.-H A1 - Tang, D.-H. A1 - Wang, M. A1 - Liu, J.-L. A1 - Li, Z.-H. A1 - Lu, W. A1 - Teng, J. A1 - Said, Samir A1 - Rohrmann, R. G. T1 - Resonance Monitoring of a Horizontal Wind Turbine by Strain-Based Automated Operational Modal Analysis N2 - A strain-based automated operational modal analysis algorithm is proposed to track the long-term dynamic behavior of a horizontal wind turbine under operational conditions. This algorithm is firstly validated by a scaled wind turbine model, and then it is applied to the dynamic strain responses recorded from a 5 MW wind turbine system. We observed variations in the fundamental frequency and 1f, 3f excitation frequencies due to the mass imbalance of the blades and aerodynamic excitation by the tower dam or tower wake. Inspection of the Campbell diagram revealed that the adverse resonance phenomenon and Sommerfeld effect causing excessive vibrations of the wind tower. KW - Strain KW - Automated operational modal analysis KW - Resonance KW - Horizontal wind turbine PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503350 DO - https://doi.org/10.3390/en13030579 VL - 13 IS - 3 SP - 579 EP - 584 PB - MDPI CY - Schweiz, Basel AN - OPUS4-50335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - State of the art and development perspectives of deep foundations for offshore wind converters T1 - Estado del arte y perspectivas de desarrollo de las cimentaciones profundas para aerogeneradores offshore N2 - This presentation provides an overview of the main geotechnical aspects associated with deep foundations in the context of offshore wind generation. The most common deep foundation typologies (large diameter monopiles and multipile typologies) as well as new trends under development (e.g. suction buckets) and their current limits will be briefly described. The talk concludes with a brief review of advanced topics not covered in classical pile design, such as hydromechanical coupling effects (pore pressure generation), cyclic accumulation of deformations, cyclic degradation of axial capacity or pile-setup gains. T2 - Ciclo de Conferencias: Aplicaciones de la Geotecnia en la generación de Energía. Sociedad Argentina de Ingeniería Geotécnica SAIG CY - Online meeting DA - 02.12.2020 KW - Offshore wind energy KW - Deep foundations KW - Offshore geomechanics PY - 2020 AN - OPUS4-51729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hille, Falk A1 - Sowietzki, D. A1 - Makris, R. T1 - Luminescence-based early detection of fatigue cracks N2 - Classic non-destructive fatigue crack detection methods reveal the state of the fatigue damage evolution at the moment of application, generally not under operational conditions. The here introduced crack luminescence method realizes a clear visibility of the occurred and growing crack in loaded components during operation. Different established experiments show that due to the sensitive coating a crack Formation can be detected even in early stage under the premise the crack reached the surface. The coating consists of two layers with different properties and functions. The bottom layer emits light as fluorescence under UV radiation. The top layer covers the fluorescing one and prevents the emitting of light in case of no damage at the surface. In case of surface crack occurrence, the luminescent light is clearly noticeable by visual observations and also by standard camera equipment which makes automated crack detection possible as well. It is expected that crack luminescence can increase structural safety as well as reduce costs and time for inspections and preventive maintenance. KW - Coating KW - Fatigue KW - Crack damage detection KW - Luminescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510517 DO - https://doi.org/10.1016/j.matpr.2020.02.338 SN - 2214-7853 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-51051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models – each estimated from data measured in a reference state – are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - 21st IFAC World Congress CY - Online meeting DA - 13.07.2020 KW - Linear parameter varying systems KW - Fault detectionchanging KW - Process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524652 DO - https://doi.org/10.1016/j.ifacol.2020.12.868 SN - 2405-8963 VL - 53 IS - 2 SP - 13668 EP - 13673 PB - Elsevier AN - OPUS4-52465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Bayesian methods KW - Environmental effects KW - Structural health monitoring PY - 2020 AN - OPUS4-51732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schneider, Ronald T1 - Time-variant reliability of deteriorating structural systems conditional on inspection and monitoring data N2 - The current practice of operating and maintaining deteriorating structural systems ensures acceptable levels of structural reliability, but it is not clear how efficient it is. Changing the current prescriptive approach to a risk-based approach has great potential to enable a more efficient management of such systems. Risk-based optimization of operation and maintenance strategies identifies the strategy that optimally balances the cost for controlling deterioration in a structural system with the achieved risk reduction. Inspections and monitoring are essential parts of operation and maintenance strategies. They are typically performed to reduce the uncertainty in the structural condition and inform decisions on future operation and maintenance actions. In risk-based optimization of operation and maintenance strategies, Bayesian updating is used to include information contained in inspection and monitoring data in the prediction of the structural reliability. All computations need to be repeated many times for different potential inspection and monitoring outcomes. This motivates the development of robust and efficient approaches to this computationally challenging task. The reliability of deteriorating structural systems is time-variant because the loads on them and their capacities change with time. In most practical applications, the reliability analysis of deteriorating structural systems can be approached by dividing their lifetime into discrete time intervals. The time-variant reliability problem can then be represented by a series of time-invariant reliability problems. Using this methodology as a starting point, this thesis proposes a novel approach to compute the time-variant reliability of deteriorating structural systems for which inspection and monitoring data are available. The problem is formulated in a nested way in which the prediction of the structural condition is separated from the computation of the structural reliability conditional on the structural condition. Information on the structural condition provided by inspections and monitoring is included in the reliability assessment through Bayesian updating of the system deterioration model employed to predict the structural condition. The updated system reliability is obtained by coupling the updated deterioration model with a probabilistic structural model utilized to calculate the failure probability conditional on the structural condition. This approach is the first main outcome of this thesis and termed nested reliability analysis (NRA) approach. It is demonstrated in two numerical examples considering inspected and monitored steel structures subject to high-cycle fatigue. An alternative – recently developed – approach, which also follows the strategy of discretizing time, describes deteriorating structural systems with hierarchical dynamic Bayesian networks (DBN). DBN combined with approximate or exact inference algorithms also enable the computation of the time-variant reliability of deteriorating structural systems conditional on information provided by inspection and monitoring data. In this thesis – as a proof of concept – a software prototype is developed based on the DBN approach, which can be used to assess the reliability of a corroding concrete box girder for which half-cell potential measurements are available. This is the second main outcome of this thesis. Both approaches presented in this thesis enable an integral reliability analysis of inspected and monitored structures that accounts for system effects arising from (a) the correlation among deterioration states of different structural elements, (b) the interaction between element deterioration and system failure, and (c) the indirect information gained on the condition of all unobserved structural elements from inspecting or monitoring the condition of some structural elements. Thus, both approaches enable a systemwide risk-based optimization of operation and maintenance strategies for deteriorating structural systems. The NRA approach can be implemented relatively easily with subset simulation, which is a sequential Monte Carlo method suitable for estimating rare event probabilities. Subset simulation is robust and considerably more efficient than crude Monte Carlo simulation. It is, however, still sampling-based and its efficiency is thus a function of the number of inspection and monitoring outcomes, as well as the value of the simulated event probabilities. The current implementation of the NRA approach performs separate subset simulation runs to estimate the reliability at different points in time. The efficiency of the NRA approach with subset simulation can be significantly improved by exploiting the fact that failure events in different years are nested. The lifetime reliability of deteriorating structural systems can thus be computed in reverse chronological order in a single subset simulation run. The implementation of the DBN approach is much more demanding than the implementation of the NRA approach but it has two main advantages. Firstly, the graphical format of the DBN facilitates the presentation of the model and the underlying assumptions to stakeholders who are not experts in reliability analysis. Secondly, it can be combined with exact inference algorithms. In this case, its efficiency neither depends on the number of inspection and monitoring outcomes, nor on the value of the event probabilities to be calculated. However, in contrast to the NRA approach with subset simulation, the DBN approach with exact inference imposes restrictions on the number of random variables and the dependence structure that can be implemented in the model. T3 - BAM Dissertationsreihe - 168 KW - Reliability KW - Structural systems KW - Deterioration KW - Bayesian analysis KW - Inspection KW - Monitoring KW - Zuverlässigkeit KW - Tragstrukturen KW - Schädigungsprozesse KW - Bayes'sche Analyse KW - Inspektion KW - Monitoring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512977 SN - 1613-4249 VL - 168 SP - 1 EP - 188 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Herrmann, Ralf A1 - Simon, Patrick A1 - Hille, Falk A1 - Said, Samir A1 - Baeßler, Matthias T1 - Sensorbasiertes Monitoring der Maintalbrücke Gemünden N2 - Monitoringsysteme erfassen kontinuierlich Bauwerksdaten wie z.B. Bauwerksbeschleunigungen, auf deren Grundlage Bauwerksschäden mit Hilfe von SHM-Methoden quantifiziert werden können. Mit den gewonnenen Informationen über den aktuellen Bauwerkszustand können Vorhersagen des Bauwerkszustandes und der Bauwerkszuverlässigkeit aktualisiert und erforderliche Inspektionen und Instandhaltungsmaßnahmen vorausschauend geplant werden. Im BMBF-Forschungsvorhaben AISTEC entwickeln der Fachbereich 7.2 „Ingenieurbau“ innovative Monitoringverfahren zur Systemidentifikation und automatischen Detektion, Lokalisierung und Quantifizierung von Schäden an Infrastrukturbauwerken anhand von gemessenen dynamischen und statischen Bauwerksdaten. Im Rahmen dieses Projektes werden die Verfahren an der Maintalbrücke bei Gemünden angewendet, welche Teil der ICE-Strecke Hannover-Würzburg ist. In diesem Vortrag wird das für die Maintalbrücke Gemünden geplante und umgesetzte Monitoingsystem vorgestellt. T2 - 4. Verbundtreffen AISTEC CY - Weimar, Germany DA - 24.09.2020 KW - Zivile Sicherheit KW - Brücken KW - Structural Health Monitoring PY - 2020 AN - OPUS4-51333 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Deborah A1 - Moosavi, Robabeh A1 - Bracklow, F. A1 - Hering, M. A1 - Kühn, T. A1 - Curbach, M. A1 - Hille, Falk A1 - Rogge, Andreas ED - Papadrakakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Impact damage characterization at RC plates with planar tomography and FEM N2 - Prediction of dynamic effects of reinforced concrete structures under impact loading is a technical challenge. This is a consequence of the great variability of the physical properties resulting from the wide adaptability of reinforced concrete and a consequence of the wide range of impact loading. Experiments and numerical investigations are normally used on a small scale to address the problem. In this paper, impact tests on reinforced conrete plates with the lateral dimensions of 1.5 m x 1.5 m and a thickness of 30 cm are presented. In bending reinforcement, besides the velocity two properties are varied, the diameter and the spatial distribution of the rebars. Experiments are performed at the Otto-Mohr-Laboratory of the Institute of Concrete Structures of the Technische Universit¨at Dresden. Due to the accelerated fall of the impactor the velocity ranges between 20 and 70 m/s. In addition to the measured quantities such as bearing forces, accelerations are also measured at 4 different positions on and under the plate, as well as the deflection at several positions. The measured data are used for the analysis of the damage form and the numerical examinations with the program Ansys Autodyn and the material model after Drucker-Prager. Numerical investigations support the tests, with detailed analysis of individual effects. These numerical computations and the planar tomographic investigations were carried out at BAM in Berlin. With the help of planar tomographic evaluation, the damaged structure is made visible and compared with the numerical results. Influences of the bending reinforcement are explained on the basis of damage evaluation in the local area and on selected measured values. In addition to the test evaluation, the tomographic and numerical methods are presented. T2 - XI International Conference on Structural Dynamics (EURODYN 2020) CY - Online meeting DA - 23.11.2020 KW - Post-impact evaluation KW - Damage characterization KW - Planar tomography KW - Drucker-Prager KW - Ansys Autodyn PY - 2020 SN - 978-618-85072-2-7 VL - 1 SP - 2521 EP - 2543 PB - Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA), Greece CY - Athens, Greece AN - OPUS4-51769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias ED - Papadrakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Structural health monitoring KW - Bayesian methods KW - Environmental effects PY - 2020 SN - 978-618-85072-2-7 SN - 978-618-85072-0-3 SP - 1254 PB - Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA) CY - Athens, Greece AN - OPUS4-51590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Baeßler, Matthias T1 - Fatigue crack detection methods for high-cyclic loaded steel structures and challenges in mechanical testing N2 - For the generation of renewable energy offshore wind farms play an important role. The majority of these wind generators are connected to steel foundation structures. Steady increasing power output of these wind turbines leads to new challenges as well for engineers of the related support structures. Caused by the high-cyclic loading of these structures by wind and waves fatigue plays a very important role. Besides the consideration of fatigue within the design process it is additionally an important topic and challenge to monitor the existing steel structures relating to potential fatigue cracks occurring during their lifetime. This plays a role for a fundamental understanding of mechanisms as investigated in testing but also for inspection in real structures. Since the structures of the offshore wind generators are very large and in addition partially under water effective and reliable methods for fatigue crack detection are required. This contribution will present results of recent investigations on different crack detection methods applied on high-cycle fatigue tests on small welded steel samples as well as on welded steel components. The comparison of these measurements will show what are the advantages and disadvantages of the different methods and which method is potentially more suitable for the application on real offshore wind structures. It is outlined where challenges for detection methods exist. Furthermore, in this context the resulting challenges for the execution of material testing especially caused by the increasing dimensions of wind energy converters will by exemplarily presented. T2 - EERA JP Wind & SETWind Online Annual Event 2020 CY - Online meeting DA - 14.09.2020 KW - Fatigue KW - Crack detection KW - Steel structures PY - 2020 AN - OPUS4-51356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Geißler, Peter T1 - Computational Geomechanics for Offshore Wind N2 - Simulations for the Safety and Efficiency of Foundations in the Offshore Wind Energy Production. T2 - Poster Challenge - EERA JP Wind Online Annual Event 2020 CY - Online meeting DA - 14.09.2020 KW - Numerical simulations KW - Marine geomechanics KW - Offshore wind energy PY - 2020 UR - https://www.eerajpwind.eu/events/eera-jp-wind-setwind-annual-event-2020/ AN - OPUS4-51280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nerger, Deborah A1 - Hille, Falk A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Kühn, T. A1 - Hering, M. A1 - Bracklow, F. T1 - Post-impact evaluation at RC plates with planar tomography and FEM N2 - Due to the wide range of applications, the easy production and the large field of use, reinforced concrete (RC) is a widespread building material. This variety of applications is reflected in a wide range of physical material properties. Not only therefor it still is a technical challenge to provide all necessary test conditions for experimentally reproducing dynamic effects under impact loading of RC structures. In this paper we present investigations on the thicknesses of RC plates under low and medium high velocity impact loading by a flat-tipped impactor. The planar tomography setup at BAM is used to visualize the impact damage and to characterize the damage features such as cracks, scabbing and spalling. Further, the comparison of tomography results with those of an applied numeric simulation analysis is used to verify the numeric models for future damage prognosis under impact loading. Using the results of both, the tomographic as well as the FE analysis, different damage features were investigated and compared regarding their validity. Crack damage plays a leading part and the significance of summarized crack values as well as their distribution is analyzed. The total damage value but also the determined damage distribution both provide an input for describing damage as a function of the impactor velocity and plate thickness. KW - Reinforced concrete structure KW - Post-impact evaluation KW - Damage characterization KW - Ansys Autodyn KW - Drucker-Prager KW - Planar tomography PY - 2020 DO - https://doi.org/10.1016/j.matpr.2020.05.671 SP - 1 EP - 10 PB - Elsevier AN - OPUS4-51115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias ED - Papadrakakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Implementing a Structural Health Monitoring system using digital models of the BAM large drop test facility in Horstwalde N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - Drop Tests KW - System Identification KW - Digital Models KW - BIM PY - 2020 UR - https://generalconferencefiles.s3-eu-west-1.amazonaws.com/eurodyn_2020_ebook_procedings_vol1.pdf SN - 978-618-85072-0-3 VL - 1 SP - 1293 EP - 1304 PB - Institute of Structural Analysis and Antiseismic Research CY - Athen AN - OPUS4-51592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Victor, A. A1 - Lüddecke, F. ED - Triantafyllidis, T. T1 - Stability and large deformations of slender structures supported by soil materials N2 - The stability and geometric nonlinearities of slender structures are a major topic in structural design. While this topic is most relevant in the field of Structural Engineering, e.g. for steel or concrete structures, only few applications take the role of soil-structure-interaction explicitly into account. The focus of this paper is placed on the impact of soil support and its modelling for the buckling analysis based on examples both for pile foundations and for railway track stability. The general interaction between steel design and the geotechnical input will be addressed. The paper discusses and summarizes a range of subtopics based on experience and current research at the author’s institute. KW - Buckling soil-structure-interaction offshore piles track PY - 2020 SN - 978-3-030-28515-9 SN - 978-3-030-28516-6 DO - https://doi.org/10.1007/978-3-030-28516-6 SN - 1613-7736 SN - 1860-0816 VL - 91 SP - 355 EP - 369 PB - Springer CY - Cham, Switzerland AN - OPUS4-49166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Rackwitz, F. A1 - Lüddecke, F. T1 - Recap: Main Results of the BUMP Study and Relevance for VERBATIM N2 - Zusammenfassung des Forschungsprojekts BUMP hinsichtlich der Relevanz für das Projekt VERBATIM N2 - BUMP had been a theoretical prestudy on open issues for the pile tip buckling of large monopiles. The presentation summarizes the main results and considers the impact for the ongoing VERBATIM project. VERBATIM is set up as a mainly experimental verification project for pile buckling. T2 - Kick-Off Projekt VERBATIM CY - BAM, Berlin, Germany DA - 23.01.2020 KW - Buckling piles circular shells PY - 2020 AN - OPUS4-50515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Kontinuierliches Bauwerksmonitoring – Sensor-basiert (AP4) N2 - Kontinuierliche sensorbasierte Bauwerksmessungen leisten einen wichtigen Beitrag zur Sicherheit von Verkehrsbauwerken. Hierzu werden im Vorhaben AISTEC Referenzbauwerke und Referenzverfahren untersucht mit Schwerpunkt auf den Einfluss klimatischer Bedingungen. Der Vortrag stellt den aktuellen Projektstand des FB 7.2 vor. T2 - 3. Verbundtreffen AISTEC CY - Online meeting DA - 05.05.2020 KW - Zivile Sicherheit KW - Brücken KW - Structural Health Monitoring PY - 2020 AN - OPUS4-50796 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models -- each estimated from data measured in a reference state -- are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - IFAC World Congress 2020 CY - Online meeting DA - 11.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 SP - 13858 AN - OPUS4-51617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Deborah A1 - Moosavi, Robabeh A1 - Bracklow, F. A1 - Hering, M. A1 - Kühn, T. A1 - Curbach, M. A1 - Hille, Falk A1 - Rogge, Andreas T1 - Impact damage characterization at RC plates with planar tomography and FEM N2 - Prediction of dynamic effects of reinforced concrete structures under impact loading is a technical challenge. This is a consequence of the great variability of the physical properties resulting from the wide adaptability of reinforced concrete and a consequence of the wide range of impact loading. Experiments and numerical investigations are normally used on a small scale to address the problem. In this paper, impact tests on reinforced conrete plates with the lateral dimensions of 1.5 m x 1.5 m and a thickness of 30 cm are presented. In bending reinforcement, besides the velocity two properties are varied, the diameter and the spatial distribution of the rebars. Experiments are performed at the Otto-Mohr-Laboratory of the Institute of Concrete Structures of the Technische Universit¨at Dresden. Due to the accelerated fall of the impactor the velocity ranges between 20 and 70 m/s. In addition to the measured quantities such as bearing forces, accelerations are also measured at 4 different positions on and under the plate, as well as the deflection at several positions. The measured data are used for the analysis of the damage form and the numerical examinations with the program Ansys Autodyn and the material model after Drucker-Prager. Numerical investigations support the tests, with detailed analysis of individual effects. These numerical computations and the planar tomographic investigations were carried out at BAM in Berlin. With the help of planar tomographic evaluation, the damaged structure is made visible and compared with the numerical results. Influences of the bending reinforcement are explained on the basis of damage evaluation in the local area and on selected measured values. In addition to the test evaluation, the tomographic and numerical methods are presented. T2 - XI International Conference on Structural Dynamics (EURODYN 2020) CY - Online meeting DA - 23.11.2020 KW - Post-impact evaluation KW - Damage characterization KW - Planar tomography KW - Drucker-Prager KW - Ansys Autodyn PY - 2020 AN - OPUS4-51768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias T1 - Implementing a Structural Health Monitoring System using Digital Models of the BAM Large Drop Test Facility N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - System Identification KW - Digital Twin KW - Point Cloud KW - Drop Test PY - 2020 AN - OPUS4-51734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only Systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models { each estimated from data measured in a reference state { are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then con icts May arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - 21st IFAC World Congress CY - Berlin, Germany DA - 13.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 AN - OPUS4-52366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omidalizarandi, M. A1 - Herrmann, Ralf A1 - Kargoll, B. A1 - Marx, S. A1 - Paffenholz, J. A1 - Neumann, I. T1 - A validated robust and automatic procedure for vibration analysis of bridge structures using MEMS accelerometers N2 - Today, short- and long-term structural health monitoring (SHM) of bridge infrastructures and their safe, reliable and cost-effective maintenance has received considerable attention. From a surveying or civil engineer’s point of view, vibration-based SHM can be conducted by inspecting the changes in the global dynamic behaviour of a structure, such as natural frequencies (i. e. eigenfrequencies), mode shapes (i. e. eigenforms) and modal damping, which are known as modal parameters. This research work aims to propose a robust and automatic vibration analysis procedure that is so-called robust time domain modal parameter identification (RT-MPI) technique. It is novel in the sense of automatic and reliable identification of initial eigenfrequencies even closely spaced ones as well as robustly and accurately estimating the modal parameters of a bridge structure using low numbers of cost-effective micro-electro-mechanical systems (MEMS) accelerometers. To estimate amplitude, frequency, phase shift and damping ratio coefficients, an observation model consisting of: (1) a damped harmonic oscillation model, (2) an autoregressive model of coloured measurement noise and (3) a stochastic model in the form of the heavy-tailed family of scaled t-distributions is employed and jointly adjusted by means of a generalised expectation maximisation algorithm. Multiple MEMS as part of a geo-sensor network were mounted at different positions of a bridge structure which is precalculated by means of a finite element model (FEM) analysis. At the end, the estimated eigenfrequencies and eigenforms are compared and validated by the estimated parameters obtained from acceleration measurements of high-end accelerometers of type PCB ICP quartz, velocity measurements from a geophone and the FEM analysis. Additionally, the estimated eigenfrequencies and modal damping are compared with a well-known covariance driven stochastic subspace identification approach, which reveals the superiority of our proposed approach. We performed an experiment in two case studies with simulated data and real applications of a footbridge structure and a synthetic bridge. The results show that MEMS accelerometers are suitable for detecting all occurring eigenfrequencies depending on a sampling frequency specified. Moreover, the vibration analysis procedure demonstrates that amplitudes can be estimated in submillimetre range accuracy, frequencies with an accuracy better than 0.1 Hz and damping ratio coefficients with an accuracy better than 0.1 and 0.2 % for modal and system damping, respectively. KW - Vibration analysis KW - Automatic modal parameters identification KW - MEMS KW - FEM analysis KW - Bridge monitoring PY - 2020 UR - https://www.degruyter.com/view/journals/jag/14/3/article-p327.xml DO - https://doi.org/10.1515/jag-2020-0010 SN - 1862-9016 VL - 14 IS - 3 SP - 1 EP - 28 PB - De Gruyter CY - Berlin AN - OPUS4-51338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nerger, Deborah A1 - Moosavi, Robabeh A1 - Bracklow, F. A1 - Hering, M. A1 - Kühn, T. A1 - Curbach, M. A1 - Hille, Falk A1 - Rogge, Andreas T1 - Planar tomography and numerical analysis for damage characterization of impact loaded RC plates N2 - The damage analysis of reinforced concrete (RC) is of high interest for reasons of effective maintenance and structural safe-ty of buildings. The damage structures of RC plates loaded by an impact were investigated, applying X-ray planar tomogra-phy and finite element method (FEM). Planar tomography allows getting three-dimensional information of the RC elements and the damage including crack, spalling and scabbing. The FEM model validated on the tomography data justifies the appli-cation for further predictions of the damage description. In this study, we investigated concrete plates of three different thick-ness subjected to impacts at different low- and medium-velocity, whereby the used impactor had a flat tip, which resulted in small penetrations on the front side and scabbing on the rear side. In order to quantify the damage, the damage volume and its distribution through the plate were computed and the correlations between degree of damage and impact velocity were found out. KW - Impact KW - Damage characterization KW - Planar tomography KW - Numeric simulation KW - Reinforced concrete structure PY - 2020 DO - https://doi.org/10.1002/cend.202000017 VL - 8 SP - 1 EP - 19 PB - Wiley AN - OPUS4-51117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straub, D. A1 - Schneider, Ronald A1 - Bismut, E. A1 - Kim, H.-J. T1 - Reliability analysis of deteriorating structural systems N2 - Reliability analysis of deteriorating structural systems requires the solution of time-variant reliability problems. In the general case, both the capacity of and the loads on the structure vary with time. This analysis can be approached by approximation through a series of time-invariant reliability problems, which is a potentially effective strategy for cases where direct solutions of the time-variant reliability problem are challenging, e.g. for structural systems with many elements or arbitrary load processes. In this contribution, we thoroughly Review the formulation of the equivalent time-invariant reliability problems and extend this approximation to structures for which inspection and monitoring data is available. Thereafter, we present methods for efficiently evaluating the reliability over time. In particular, we propose the combination of sampling-based methods with a FORM (first-order reliability method) approximation of the series system reliability problem that arises in the computation of the lifetime reliability. The framework and algorithms are demonstrated on a set of numerical examples, which include the computation of the reliability conditional on inspection data. KW - Monitoring KW - Reliability KW - Deterioration KW - Structural systems KW - Bayesian analysis KW - Inspection PY - 2020 DO - https://doi.org/10.1016/j.strusafe.2019.101877 VL - 82 SP - Paper 101877, 1 PB - Elsevier Ltd. AN - OPUS4-48952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sanayei, Mohammad Hassan A1 - Farhat, A. A1 - Luu, L.-H. A1 - Werner, L. A1 - Rettinger, C. A1 - Philippe, P. A1 - Cuellar, Pablo T1 - Micromechanical framework for a 3d solid cohesion model - implementation, validation and perspectives N2 - This article presents a solid cohesion model for the simulation of bonded granular assemblies in the frame of 3D discrete element approaches (DEM). A simple viscoplastic cohesion model for 2D geometries is extended to 3D conditions, while its yield criterion is generalized as a hyper-surface in the space of bond solicitations to include torsional moments. The model is then calibrated using experimental results of uniaxial traction at both the microscopic and macroscopic scales with an artificial granular cohesive soil. The paper finally presents some simulated results on the macromechanical sample traction application and briefly discusses the model's current limitations and promising prospects for subsequent works. T2 - VII International Conference on Particle-Based Methods PARTICLES 2021 CY - Hamburg, Germany DA - 04.10.2021 KW - Granular Cohesive Materials KW - DEM KW - Micromechanical Tensile Failure KW - Macromechanical Sample Strength PY - 2021 SP - 1 EP - 10 AN - OPUS4-53716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sanayei, Mohammad Hassan A1 - Farhat, A. A1 - Luu, Li-Hua A1 - Werner, L. A1 - Rettinger, C. A1 - Philippe, P. A1 - Cuellar, Pablo T1 - Micromechanical framework for a 3D solid cohesion model - Implemantation, validation and perspectives N2 - This article presents a solid cohesion model for the simulation of bonded granular assemblies in the frame of 3D discrete element approaches (DEM). A simple viscoplastic cohesion model for 2D geometries is extended to 3D conditions, while its yield criterion is generalized as a hyper-surface in the space of bond solicitations to include torsional moments. The model is then calibrated using experimental results of uniaxial traction at both the microscopic and macroscopic scales with an artificial granular cohesive soil. The paper finally presents some simulated results on the macromechanical sample traction application and briefly discusses the model's current limitations and promising prospects for subsequent works. T2 - VII International Conference on Particle-Based Methods PARTICLES 2021 CY - Hamburg, Germany DA - 04.10.2021 KW - Granular Cohesive Materials, KW - DEM KW - Micromechanical Tensile Failure KW - Macromechanical Sample Strength PY - 2021 AN - OPUS4-53726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Resonances of railway bridges analysed in frequency domain by the modal-force-excitation, bridge-transfer and axle-sequence spectra N2 - In this article, the passage of different trains over different bridges will be studied for resonant excitation. The intensity of the resonance will be estimated in frequency domain by using three separated spectra. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of the train. The influences of train speed, bridge length, bridge support, track irregularities, and train type on the resonance amplitudes will be analysed for each of these spectra separately for getting a better insight. A variety of axle-sequence spectra and corresponding rules will be presented for different vehicles and trains. As examples, the passage of a slow freight train over a long-span bridge, a normal passenger train over a medium-span bridge, and a high-speed train over a short bridge will be analysed. Corresponding measurements show the amplification, but also the cancellation of the subsequent axle responses. Namely in one of the measurement examples, the first mode of the bridge was amplified and the second mode was cancelled at a low speed of the train and vice versa at a higher speed. KW - Railway bridge KW - Bridge vibration KW - Train passage KW - Axle sequence KW - Resonance KW - Cancellation KW - Fequency domain PY - 2021 DO - https://doi.org/10.1016/j.engstruct.2021.113282 SN - 0141-0296 VL - 249 SP - 1 EP - 9 PB - Elsevier Ltd. CY - London AN - OPUS4-53766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of building noise and vibration – 3D finite element and 1D wave propagation models N2 - Construction work or traffic excite nearby buildings, and the perceptible or audible vibration can be a nuisance for the inhabitants. The transfer of the vibration from the free field to the building has been calculated by the finite element method for many models in consultancy and research work. The analysis for all storeys of certain building points such as walls, columns and floors unveiled some rules, some typical modes, and some wavetype responses. A simplified building-soil model has been created, which includes well these effects of building-soil resonance, wall/column resonance, floor resonances, and the high-frequency reduction. The model consists of one wall for a wall-type apartment building or a column for each specific part (mid, side or corner) of a column-type office building. The building response in the high-frequency (acoustic) region is calculated as mean values over all storeys and over wider frequency bands, by wave-type asymptotes of an infinitely tall building, and by the soil to wall ratio of impedances. The secondary noise is predicted by Transfer values between the building vibration (center of floors, walls at a room corner) and the sound pressure. T2 - Euronoise 2021 CY - Online meeting DA - 25.10.2021 KW - Building vibration KW - Finite element models KW - Soil-wall-floor model KW - Apartment building KW - Office tower PY - 2021 SN - 978-989-53387-0-2 SP - 1792 EP - 1801 AN - OPUS4-53702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of building noise and vibration – 3D finite element and 1D wave propagation models N2 - Construction work or traffic excite nearby buildings, and the perceptible or audible vibration can be a nuisance for the inhabitants. The transfer of the vibration from the free field to the building has been calculated by the finite element method for many models in consultancy and research work. The analysis for all storeys of certain building points such as walls, columns and floors unveiled some rules, some typical modes, and some wavetype responses. A simplified building-soil model has been created, which includes well these effects of building-soil resonance, wall/column resonance, floor resonances, and the high-frequency reduction. The model consists of one wall for a wall-type apartment building or a column for each specific part (mid, side or corner) of a column-type office building. The building response in the high-frequency (acoustic) region is calculated as mean values over all storeys and over wider frequency bands, by wave-type asymptotes of an infinitely tall building, and by the soil to wall ratio of impedances. The secondary noise is predicted by Transfer values between the building vibration (center of floors, walls at a room corner) and the sound pressure. T2 - Euronoise 2021 CY - Online meeting DA - 25.10.2021 KW - Building vibration KW - Finite element models KW - Soil-wall floor model KW - Apartment building KW - Office tower PY - 2021 AN - OPUS4-53703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Die Amplitudenabnahme im Boden bei Punkt- und Zuglast N2 - Die Linienlastgesetzmäßigkeit gilt nicht für Zuganregung. Die Punktlastgesetzmäßigkeit wird bei kurzen Zügen in größeren Entfernungen erreicht. Bei langen Zügen reduziert sich die Abnahme um r-0,3 für die theoretische exponentielle Dämpfungsabnahme, um r-0,5 für die vereinfachte potentielle Dämpfungsabnahme. Die gemessenen Abnahmereduktionen liegen in diesem Bereich. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Cologne/Germany und Online meeting DA - 28.10.2021 KW - Amplituden-Abstands-Gesetze KW - Geometrie KW - Dämpfung PY - 2021 AN - OPUS4-53704 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Prognose von Erschütterungen aus Bahntunneln N2 - Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. T2 - Wiener Dynamik Tage 2021 CY - Vienna, Austria DA - 22.7.2021 KW - Erschütterungsausbreitung KW - Tunnel KW - Halbraum KW - Vollraum PY - 2021 SP - 1 EP - 11 PB - Steinhauser Consulting Engineers (STCE) CY - Wien AN - OPUS4-53253 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz ED - Degrande, G. ED - al., et T1 - Predicted and measured amplitude-speed relations of railway ground vibrations at four German sites with different test trains N2 - The present contribution evaluates four measuring series made by the Federal Institute of Material Research and Testing for the relations between train speed and ground vibration amplitudes. This experimental evaluation is supported by the simulation of the train passages at the different sites by using appropriate excitation mechanisms and forces as well as layered soil models which have been derived from impact measurements at each site. KW - Train speed KW - Ground vibration KW - Excitation forces KW - Layered soils PY - 2021 SN - 978-3-030-70288-5 DO - https://doi.org/10.1007/978-3-030-70289-2_43 SN - 1612-2909 VL - 150 SP - 411 EP - 419 PB - Springer Nature Switzerland AG CY - Cham AN - OPUS4-52611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Müller, R. A1 - Brechbühl, Y. A1 - Lutzenberger, S. A1 - Said, Samir A1 - Auersch, Lutz A1 - Guigou-Carter, C. A1 - Villot, M. A1 - Müller, R. ED - Degrande, G. ED - al., et T1 - Vibration Excitation at Turnouts, Mechanism, Measurements and Mitigation Measures N2 - There is a strong need for cost-effective mitigation measures for turnouts. SBB has initiated a series of examinations using different methodologies to gain a deeper understanding of the excitation mechanisms at low frequencies, in addition to that obtained in the RIVAS project. To date it is not yet clear what constitutes a complete measurement data set that would enable understanding most of the vibration excitation mechanisms in turnouts. Increasing vibration at turnouts in comparison to normal track is observed for all measured frequencies. The different methodologies are presented in the paper. Under-sleeper pads (USP) are a cost-effective method to reduce vibration at frequencies above 63 Hz (1/3 octave), but there is probably no improvement for frequencies below 63 Hz. A first test of new frog geometry did not show relevant improvements in Vibration emission in comparison to a reference frog geometry. Axle box acceleration measurements are an interesting method to identify defects in a turnout. A specialized measurement system of rail roughness could identify certain geometry Problem areas for some frogs. Noise increases also are observed at turnouts for frequencies ranging between 80 to 1000 Hz. The use of railway source models to calculate contact forces for ballasted track and turnouts seems promising, in particular for understanding the influence of ground. KW - Turnout KW - Switch KW - Vibration excitation KW - Vibration measurements PY - 2021 SN - 978-3-030-70288-5 DO - https://doi.org/10.1007/978-3-030-70289-2_42 SN - 1612-2909 VL - 150 SP - 403 EP - 410 PB - Springer Nature Switzerland AG CY - Cham AN - OPUS4-52612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Prognose von Erschütterungen aus Bahntunneln N2 - Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. T2 - Wiener Dynamik Tage 2021 CY - Vienna, Austria DA - 22.07.2021 KW - Erschütterungsausbreitung KW - Tunnel KW - Halbraum KW - Vollraum PY - 2021 AN - OPUS4-53254 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Carletti, E. ED - Crocker, M. ED - Pawelczyk, M. ED - Tuma, J. T1 - Dynamic measurements during drop tests on stiff foundations N2 - Measurements at the foundation, the surrounding soil and nearby buildings have been done during several drop tests of different containers on different foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. It was controlled that the foundation does not absorb more than 2 percent of the energy of the container. Most of the drop energy is lost in shock absorbers. Later on, a smaller drop test facility has been built on the ground but inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which occur during the drop tests. On the other hand, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Different sensors, accelerometers, accelerometers with mechanical filters, geophones (velocity transducers), strain gauges, and pressure cells have been applied for these tasks. The signals have been transformed to displacements which proved to be best suited for the interpretation of the impact mechanism. Modell calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple estimation. The amplitudes of the foundation could also be estimated from the ground vibrations and their amplitude-distance law. T2 - 27th International Congress on Sound and Vibration (ICSV27) CY - Online meeting DA - 11.07.2021 KW - Drop test KW - Vibration measurement KW - Container loading KW - Foundation load PY - 2021 SN - 978-83-7880-799-5 SN - 2329-3675 SP - 1 EP - 8 PB - Silesian University Press CY - Gliwice, Poland AN - OPUS4-53255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Dynamic measurements during drop tests on stiff foundations N2 - Measurements at the foundation, the surrounding soil and nearby buildings have been done during several drop tests of different containers on different foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. It was controlled that the foundation does not absorb more than 2 percent of the energy of the container. Most of the drop energy is lost in shock absorbers. Later on, a smaller drop test facility has been built on the ground but inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which occur during the drop tests. On the other hand, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Different sensors, accelerometers, accelerometers with mechanical filters, geophones (velocity transducers), strain gauges, and pressure cells have been applied for these tasks. The signals have been transformed to displacements which proved to be best suited for the interpretation of the impact mechanism. Modell calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple estimation. The amplitudes of the foundation could also be estimated from the ground vibrations and their amplitude-distance law. T2 - 27th international Congress on Sound and Vibration (ICSV27) CY - Online meeting DA - 11.07.2021 KW - Drop test KW - Vibration measurement KW - Container loading KW - Foundation load PY - 2021 AN - OPUS4-53256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Aspekte der Erschütterungsprognose bei Bahnlinien: Quasi-Statik und Achsfolge, unregelmäßiger Schotter und Boden, Wellenausbreitung bei Tunneln und Besonderheiten bei Bürogebäuden N2 - Erschütterungen, die durch Eisenbahnverkehr erzeugt werden, breiten sich durch den Erdboden aus und regen benachbarte Gebäude zu Schwingungen an. Es wurde ein Prognoseverfahren für Bahnerschütterungen ent-wickelt, das mit einfachen Modellen schnell Ergebnisse liefert. Dies sind physikalische Modelle, zum Beispiel 1-dimensionale Modelle mit Übertragungsmatrizen für die Fahrzeug-Fahrweg-Boden-Wechselwirkung und für die Gebäude-Boden Wechselwirkung. Damit werden die komplexen Verhältnisse bei der Emission (dem Zusammen¬wirken von Fahrzeug und Fahrweg), bei der Transmission durch den homogenen oder geschichteten Boden und bei der Immission in Gebäuden näherungsweise erfasst. In (Auersch, 2020) wird gezeigt, dass diese einfachen Prognosemodelle die Ergebnisse von detaillierten Modellen wie der Finite-Element-Randelement-Methode für das Gleis, die Wellenzahlintegrale für den Boden und 3-dimensionale Finite-Element-Modelle für das Gebäude gut wiedergeben können. Dies entspricht auch der Absicht, die Prognosemodelle aus den Ergebnissen der Detailmodelle abzuleiten. Die drei Prognoseteile werden getrennt berechnet, aber es werden physikalisch sinn¬volle Schnittstellen verwendet. Für die Emission und Transmission sind es die auf den Untergrund wirkenden Erregerkräfte von Fahrzeug und Fahrweg, für die Transmission und Immission sind es die Freifeldamplituden des Bodens. T2 - 17. D-A-CH Tagung Erdbebeningenieurwesen und Baudynamik CY - Online meeting DA - 16.09.2021 KW - Erschütterungen KW - Emission KW - Transmission KW - Immission PY - 2021 SP - 17 EP - 18 PB - ETH Zürich CY - Zürich AN - OPUS4-53313 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Aspekte der Erschütterungsprognose bei Bahnlinien: Quasi-Statik und Achsfolge, unregelmäßiger Schotter und Boden, Wellenausbreitung bei Tunneln und Besonderheiten bei Bürogebäuden N2 - Erschütterungen, die durch Eisenbahnverkehr erzeugt werden, breiten sich durch den Erdboden aus und regen benachbarte Gebäude zu Schwingungen an. Es wurde ein Prognoseverfahren für Bahnerschütterungen ent-wickelt, das mit einfachen Modellen schnell Ergebnisse liefert. Dies sind physikalische Modelle, zum Beispiel 1-dimensionale Modelle mit Übertragungsmatrizen für die Fahrzeug-Fahrweg-Boden-Wechselwirkung und für die Gebäude-Boden Wechselwirkung. Damit werden die komplexen Verhältnisse bei der Emission (dem Zusammen¬wirken von Fahrzeug und Fahrweg), bei der Transmission durch den homogenen oder geschichteten Boden und bei der Immission in Gebäuden näherungsweise erfasst. In (Auersch, 2020) wird gezeigt, dass diese einfachen Prognosemodelle die Ergebnisse von detaillierten Modellen wie der Finite-Element-Randelement-Methode für das Gleis, die Wellenzahlintegrale für den Boden und 3-dimensionale Finite-Element-Modelle für das Gebäude gut wiedergeben können. Dies entspricht auch der Absicht, die Prognosemodelle aus den Ergebnissen der Detailmodelle abzuleiten. Die drei Prognoseteile werden getrennt berechnet, aber es werden physikalisch sinn¬volle Schnittstellen verwendet. Für die Emission und Transmission sind es die auf den Untergrund wirkenden Erregerkräfte von Fahrzeug und Fahrweg, für die Transmission und Immission sind es die Freifeldamplituden des Bodens. T2 - 17. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik CY - Online meeting DA - 16.09.2021 KW - Erschütterungen KW - Emission KW - Transmission KW - Immission PY - 2021 AN - OPUS4-53314 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Viefhues, Eva T1 - Subspace-based damage detection in engineering structures considering reference uncertainties and temperature effects N2 - Automated vibration-based damage detection is of increasing interest for structural health monitoring of engineering structures. In this context, stochastic subspace-based damage detection (SSDD) compares measurements from a testing state to a data-driven reference model in a statistical framework. In this thesis theoretical developments have been proposed to improve the robustness of SSDD for realistic applications conditions. First, a statistical test has been proposed considering the statistical uncertainties about the model obtained from the reference data. This leads to a precise description of the test’s distribution properties and damage detection thresholds. Second, an approach has been developed to account for environmental effects in SSDD. Based on reference measurements at few different environmental conditions, a test is derived with respect to an adequate interpolated reference. The proposed methods are validated in numerical simulations and applied to experimental data from the laboratory and outdoor structures. KW - Damage detection KW - Subspace methods KW - Vibrations KW - Uncertainty quantification KW - Environmental effects KW - Civil structures PY - 2021 SP - 1 EP - 191 CY - Universite de Rennes AN - OPUS4-55774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Dynamic track-soil interaction – calculations and measurements about slab and ballast tracks N2 - The dynamic behaviour of slab and ballast tracks has been investigated by measurements and calculations. Hammer impacts and train passages have been analysed. Measurements have been performed by geophones (velocity transducers) which have been time-integrated to displacements. The calculations are done in frequency-wavenumber domain for multi-beam-on-continuous soil models. The characteristics of the different tracks and track elements have been established in theory and experiment. The frequency-dependent compliances (displacement transfer functions) show clear rail-on-rail-pad resonances or highly damped track-soil resonances. Compared to the rail and sleeper, the track plate has much lower amplitudes. The slab track has usually the highest rail amplitudes due to soft rail pads. The train passage yields track displacements which are a superposition of the axle loads from the two neighbouring axles of a bogie and from the two bogies of two neighbouring carriages. This global behaviour is characteristic for the track plate of the slab track whereas the rails of the slab and the ballast track behave more local with only one bogie of influence. The measurements agree very well with the theory of the continuous soil in case of the six measured slab tracks and acceptably well for the six measured ballast tracks. The measurements allow to find appropriate model parameters and to check the models, for example the Winkler model of the soil has been found less appropriate as it reacts more locally. KW - Slab track KW - Ballast track KW - Train passage KW - Hammer impact KW - Track-soil interaction PY - 2021 DO - https://doi.org/10.1631/jzus.A1900651 SN - 1673-565X VL - 22 IS - 1 SP - 21 EP - 36 PB - Zhejiang University Press CY - Hangzhou AN - OPUS4-52107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - Design challenges for Offshore wind-farms. From foundation mechanics to wind-farm aerodynamics N2 - This talk provides a brief introduction on general engineering design challenges for the offshore wind energy production. Some general features of the offshore wind-energy field from a civil engineering perspective are firstly presented, followed by a brief discussion of some of the main geomechanical issues for the foundation of the offshore turbines into the seabed. In the following part, an overview of relevant fluid-structure interactions and some options for an efficient numerical analysis are provided, where the hydromechanical Wave–Tower interaction is firstly discussed. Then, some general aspects of the windfarm aerodynamics are introduced. On the one hand, some modelling possibilities for the wake analysis of single turbines and turbine groups are discussed. And on the other hand the relevance of such analyses for a proper windfarm layout optimization is pointed out. In particular, this talk shows that: i) The bearing capacity of turbine multi-pile foundations can degrade under cyclic loading (waves, wind, …), while for monopile foundations cyclic hydromechanical coupling effects may take place, which may lead to a foundation softening; ii) Numerical analysis of a turbine’s interaction with wind/waves is useful and affordable, while simplified models can already provide a useful insight into the windfarm aerodynamics. iii) Turbulent wake analysis is very relevant for the windfarm layout. T2 - Colloquium "Energy systems compared", Winter semester 20/21, Faculty of Physics CY - Online meeting DA - 21.01.2021 KW - Offshore wind energy KW - Marine geotechnics KW - Fluid-structure interaction KW - Numerical modelling PY - 2021 AN - OPUS4-52038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Train-induced ground vibration due to the irregularities of the soil N2 - Many measurements of train induced ground vibrations show high amplitudes for a certain mid-frequency range. This ground vibration component cannot be well explained by dynamic loads of the train. Many characteristics indicate that the axle impulses, which are scattered by an irregular soil, are the excitation. This new understanding of railway-induced ground vibration is verified by numerical analysis. The response of the regular homogeneous and irregular inhomogeneous soils has been calculated by the finite-element method in frequency domain. A specific superposition of the impulse responses has been invented including time shift, axle sequence, track filter and hanning filter. The superposition yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil of which the stiffness varies randomly in space, the superposition yields a mid-frequency ground vibration component from the scattering of the axle impulses. The existence and the importance of this component can thus be demonstrated by the calculations. Some rules of the influence of distance, train speed, soil stiffness, strength and width of the stiffness variation have been derived from the calculations. Many measurements show the unique explanation of the mid-frequency ground vibration component by the scattered axle impulses. KW - Train-induced ground vibration KW - Static axle loads KW - Quasi-static response; KW - Axle impulses KW - Irregular soil KW - Random stiffness variation KW - Scattered axle impulses PY - 2021 DO - https://doi.org/10.1016/j.soildyn.2020.106438 SN - 0267-7261 VL - 140 SP - 106438 PB - Elsevier Ltd. CY - London AN - OPUS4-52006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - Deep foundations for offshore wind turbines. Part 1: Axial behaviour T1 - Cimentaciones profundas para aerogeneradores marinos. Parte 1: Comportamiento axial N2 - This presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided into two lectures. The first lecture presents a brief introduction to the context and peculiarities of such foundations, and then focuses on the particular case of axially loaded piles. This part is most relevant for the relatively slender piles of the multi-pile substructures (i.e. jackets and tripods). A clear distinction between physical phenomenology and practical design is drawn here. T2 - CEDEX-UNED 2021 Master course on Soil Mechanics and Geotechnical Engineering CY - Online meeting DA - 24.03.2021 KW - Offshore wind energy KW - Deep foundations KW - Offshore geomechanics KW - Axial load bearing KW - Design models PY - 2021 AN - OPUS4-52341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - Deep foundations for offshore wind turbines. Part 2: Lateral behaviour and Advanced topics T1 - Cimentaciones profundas para aerogeneradores marinos. Parte 2: Comportamiento lateral y temas avanzados N2 - his presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided into two lectures. The second lecture continues with the case of laterally loaded offshore piles, which bears most relevance for the case of the monopile foundations. Here again, a clear separation between physical reality and design methods is intended. Finally, the last part of the second lecture introduces several advanced topics which lie outside the classical design approaches, namely the hydromechanical coupling effects (i.e. the excess pore-pressure generation around the monopiles), the cyclic pile fatigue and the so-called pile setup (i.e. the time effects on the axial pile capacity). The relevance of the latter two topics is illustrated with experimental results from a field testing campaign on real large-scale piles. T2 - CEDEX-UNED 2021 Master course on Soil Mechanics and Geotechnical Engineering CY - Online meeting DA - 24.03.2021 KW - Offshore wind energy KW - Deep foundations KW - Offshore geomechanics KW - Lateral load bearing KW - Cyclic degradation KW - Pile ageing PY - 2021 AN - OPUS4-52342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Thiele, Marc A1 - Makris, Ralf T1 - Specification for high-speed tensile tests on reinforcement bar coupler systems N2 - This document presents the specification for the execution and evaluation of high-speed tensile tests on reinforcement bar coupler systems. This specification was developed at BAM - Bundesanstalt für Materialforschung und -prüfung (Federal Institute for Materials Research and Testing, Germany) - following test principles from related international standards. The present document represents the latest status of the test specification. It is noted that until 2010 the test procedure was characterised on a test velocity based on L0. In an improved test conception and after intensive investigations in cooperation with industry partners, this procedure has been updated to consider instead a test velocity based on Lr, since this warrants more comparable and meaningful results. KW - Test specification KW - Coupler systems KW - High-speed KW - Tensile test KW - Reinforcement PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525075 DO - https://doi.org/10.26272/opus4-52507 SP - 1 EP - 29 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin ET - V01 AN - OPUS4-52507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias T1 - Bayesian system identification of a reinforced concrete beam subject to temperature variations based on static response data N2 - Changes in the measured response of structural systems can be an indication of structural damages. However, such changes can also be caused by the effect of varying environmental conditions. To detect, localize and quantify changes or damages in structural systems subject to varying environmental conditions, physics-based models of the structural systems have to be applied which explicitly account for the influence of ambient conditions on the structural behavior. Data obtained from the structural systems should be used to calibrate the models and update predictions. Bayesian system identification is an effective framework for this task. In this paper, we apply this framework to learn the parameters of two competing structural models of a reinforced concrete beam subject to varying temperatures based on static response data. The models describe the behavior of the beam in the uncracked and cracked condition. The data is collected in a series of load tests in a climate chamber. Bayesian model class selection is then applied to infer the most plausible condition of the beam conditional on the available data. T2 - Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) CY - Online meeting DA - 11.04.2021 KW - Bayesian system identification KW - Reinforced concrete KW - Damage identification KW - Environmental effects KW - Structural health monitoring KW - Structural systems PY - 2021 AN - OPUS4-52812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Mevel, L. T1 - Stochastic subspace-based damage detection of a temperature affected beam structure N2 - Structural health monitoring (SHM) of civil structures often is limited due to changing environmental conditions, as those changes affect the structural dynamical properties in a similar way like damages can do. In this article, an approach for damage detection under changing temperatures is presentedand applied to a beam structure. The used stochastic subspace-based algorithm relies on a reference null space estimate, which is confronted to data from the testing state in a residual function. For damage detection the residual is evaluated by means of statistical hypothesis tests. Changes of the system due to temperature effects are handled with a model interpolation approach from linear parameter varying system theory. From vibration data measured in the undamaged state at some few reference temperatures, a model of the dynamic system valid for the current testing temperature is interpolated. The reference null space and the covariance matrix for the hypothesis test is computed from this interpolated model. This approach has been developed recently and was validated in an academic test case on simulations of a mass-spring-damper. In this paper, the approach is validated experimentally on a beam structure under varying temperature conditions in a climate chamber. Compared to other approaches, the interpolation approach leads to significantly less false positive alarms in the reference state when the structure is exposed to different temperatures, while faults can still be detected reliably T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 CY - Online meeting DA - 30.06.2021 KW - Damage detection KW - Subspace methods KW - Temperature effects KW - Model interpolation KW - Climate chamber KW - Laboratory beam structure PY - 2021 AN - OPUS4-53000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Sensorbasiertes Monitoring (AP4 + AP7): Ein Überblick N2 - Im AISTEC Projekt erforscht der FB 7.2 Verfahren zur Bewertung von Verkehrsbrücken auf der Gruandlage von sensorbasierten Bauwerksmessungen. In diesem Vortrag wird ein Überlick über die Forschungsarbeiten des FB 7.2 präsentiert. Des Weiteren wird ein Ausblick zur quantitativen Integration von sensorbasierten Bauwerksmessungen in die risiko-basierte prädiktive Planung von Inspektionen und Reparaturen von Ingenieurbauwerken gegeben. T2 - AISTEC 5. Verbundtreffen CY - Online meeting DA - 24.06.2021 KW - AISTEC KW - Structural Health Monitoring KW - Brücken PY - 2021 AN - OPUS4-52982 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias ED - Yokota, H. ED - Frangopol, D. M. T1 - Bayesian system identification of a reinforced concrete beam subject to temperature variations based on static response data N2 - Changes in the measured response of structural systems can be an indication of structural damages. However, such changes can also be caused by the effect of varying environmental conditions. To detect, localize and quantify changes or damages in structural systems subject to varying environmental conditions, physics-based models of the structural systems have to be applied which explicitly account for the influence of ambient conditions on the structural behavior. Data obtained from the structural systems should be used to calibrate the models and update predictions. Bayesian system identification is an effective framework for this task. In this paper, we apply this framework to learn the parameters of two competing structural models of a reinforced concrete beam subject to varying temperatures based on static response data. The models describe the behavior of the beam in the uncracked and cracked condition. The data is collected in a series of load tests in a climate chamber. Bayesian model class selection is then applied to infer the most plausible condition of the beam conditional on the available data. T2 - Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) CY - Online meeting DA - 11.04.2021 KW - Structural systems KW - Bayesian system identification KW - Damage identification KW - Environmental effects KW - Structural health monitoring PY - 2021 DO - https://doi.org/10.1201/9780429279119-125 SP - 934 EP - 941 PB - CRC Press AN - OPUS4-52809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Straub, D. T1 - Cumulative failure probability of deteriorating structures: Can it drop? N2 - The reliability of deteriorating structures at time t is quantified by the probability that failure occurs within the period leading up to time t. This probability is often referred to as cumulative failure probability and is equal to the cumulative distribution function of the time to failure. In structural reliability, an estimate of the cumulative failure probability is obtained based on probabilistic engineering models of the deterioration processes and structural performance. Information on the condition and the loading contained in inspection and monitoring data can be included in the probability estimate through Bayesian updating. Conditioning the probability of failure on the inspection or monitoring outcomes available at time t (e.g. detections or no detection of damages) can lead to a reduction in that probability. Such a drop in the cumulative failure probability might seem counterintuitive since the cumulative failure probability is a non-decreasing function of time. In this paper, we illustrate—with the help of a numerical example—that such a drop is possible because the cumulative probability before and after the updating is not based on the same information, hence not on the same probabilistic model. T2 - 18th Internatinoal Probabilistic Workshop (IPW 2020) CY - Online Meeting DA - 12.05.2021 KW - Deterioration KW - Structural systems KW - Time-variant reliability KW - Bayesian updating KW - Inspection KW - Monitoring PY - 2021 AN - OPUS4-52770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Said, Samir A1 - Baeßler, Matthias ED - Curbach, M. ED - Marx, S. ED - Scheerer, S. ED - Hampel, T. T1 - Structural Health Monitoring der Maintalbrücke Gemünden zur Unterstützung einer prädiktiven Instandhaltung N2 - Nach den bisherigen Regeln werden Bauwerksprüfungen von Brücken in starr definierten Intervallen durchgeführt. Diese starre, periodische, zustandsbasierte Instandhaltungsstrategie soll zukünftig durch eine flexible und prädiktive Instandhaltung ersetzt werden. Hierbei sollen Inspektionen und Instandhaltungsmaßnahmen unterstützt durch autonome Systeme auf der Grundlage von Monitoringdaten geplant und zusätzlich bei unvorhergesehenen Ereignissen ausgelöst werden. Im Rahmen des Verbundforschungsvorhabens AISTEC wird ein Vorgehen für Großbauwerke und kleinere Regelbauwerke zur Umsetzung eines kombinierten globalen, schwingungsbasierten und quasistatischen Monitorings entworfen. An der Maintalbrücke Gemünden – einer semiintegralen Rahmenbrücke aus Spannbeton auf der Schnellfahrstrecke Hannover–Würzburg – wurde als Demonstrator ein Dauermonitoring realisiert. T2 - 11. Symposium Experimentelle Untersuchungen von Baukonstruktionen (SEUB) CY - Online meeting DA - 08.03.2021 KW - Structural Health Monitoring KW - Umwelteinflüsse KW - Prädiktive Instandhaltung PY - 2021 UR - https://tu-dresden.de/bu/bauingenieurwesen/imb/ressourcen/dateien/veranstaltungen/seub/11-seub-2021/2021_SEUB11_06_Herrmann_et_al.pdf?lang=de VL - 55 SP - 66 EP - 76 PB - Technische Universität Dresden CY - Dresden AN - OPUS4-52810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Thöns, S. A1 - Rogge, Andreas T1 - SysPark: a software tool for system-wide adaptive planning of inspections of turbine support structures in offshore wind farms N2 - Fatigue is one of the main deterioration processes affecting the performance of welded steel support structures of wind turbines in offshore wind farms. In this contribution, we present a probabilistic physics-based fatigue deterioration model of a wind farm that accounts for the stochastic dependence among the fatigue behavior of different hotspots at turbine and wind farm level. The dependence exists because of uncertain common influencing factors such as similar material properties, fabrication qualities and load conditions. These system effects signify that an inspection of one hotspot provides indirect information of the condition of the remaining hotspots and thus enable an optimization of the inspection effort for a wind farm. The wind farm model consists of two levels: A turbine support structure (level 1 system model) is represented by its fatigue hotspots and their stochastic dependence. The fatigue performance of a hotspot is described by a probabilistic fracture mechanics (FM) fatigue model. The probabilistic model of the parameters of the FM fatigue model is calibrated based on design data and is thus directly linked to the design of the turbine support structures. Dependence among the fatigue performances of different hotspots in a turbine support structure is modeled by introducing correlations between the stochastic parameters of the FM fatigue models. A wind farm (level 2 system model) consists of different turbine support structures (level 1 system models). Additional correlations are introduced at wind farm level to account for the dependence among the fatigue behavior of hotspots belonging to different turbine support structures. The wind farm model enables the computation of (marginal) hotspot fatigue reliabilities, system fatigue reliabilities of individual turbine support structures and the system fatigue reliability of an entire wind farm. The probabilistic model of the parameters of the two-level system model can be consistently updated with inspection outcomes using Bayesian methods. The updated probabilistic model of the model parameters then forms the basis for updating the estimates of the fatigue reliabilities. We implement the wind farm model in a software tool named SysPark. The tool provides the means for planning inspections at wind farm level using an adaptive reliability-based threshold approach. In this approach, the first inspection campaign is planned in the year before the fatigue failure rates of the hotspots with the lowest fatigue reliabilities exceed a threshold failure rate. Once inspection results become available, the probabilistic model of the parameters of the wind farm model is updated. If repairs are performed, the wind farm model is additionally modified to describe the behavior of the repaired hotspots. The updated and modified model then enables the planning of the next inspection campaign and so on. The software tool is demonstrated in a case study considering a generic wind farm consisting of turbines with jacket support structures. T2 - Wind Energy Science Conference (WESC 2021) CY - Online Meeting DA - 25.05.2021 KW - Fatigue deterioration KW - Offshore wind farm KW - Inspection planning PY - 2021 AN - OPUS4-52767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Straub, D. ED - Matos, J.C. ED - Lourenço, P.B. ED - Oliveira, D.V. ED - Branco, J. ED - Proske, D. ED - Silva, R.A. ED - Sousa, H.S. T1 - Cumulative Failure Probability of Deteriorating Structures: Can It Drop? N2 - The reliability of deteriorating structures at time t is quantified by the probability that failure occurs within the period leading up to time t. This probability is often referred to as cumulative failure probability and is equal to the cumulative distribution function of the time to failure. In structural reliability, an estimate of the cumulative failure probability is obtained based on probabilistic Engineering models of the deterioration processes and structural performance. Information on the condition and the loading contained in inspection and monitoring data can be included in the probability estimate through Bayesian updating. Conditioning the probability of failure on the inspection or monitoring outcomes available at time t (e.g. detections or no detection of damages) can lead to a reduction in that probability. Such a drop in the cumulative failure probability might seem counterintuitive since the cumulative failure probability is a non-decreasing function of time. In this paper, we illustrate—with the help of a numerical example—that such a drop is possible because the cumulative probability before and after the updating is not based on the same information, hence not on the same probabilistic model. T2 - 18th International Probabilistic Workshop (IPW 2020) CY - Online meeting DA - 12.05.2021 KW - Deterioration KW - Structural systems KW - Time-variant reliability KW - Bayesian updating KW - Inspection KW - Monitoring PY - 2021 DO - https://doi.org/10.1007/978-3-030-73616-3_18 VL - 153 SP - 253 EP - 264 PB - Springer CY - Cham, Switzerland AN - OPUS4-52769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Baeßler, Matthias T1 - Integrating vibration monitoring into risk-based inspection and maintenance planning for deteriorating structural systems N2 - A reliability and risk-based framework for integrating vibration monitoring data in the planning of inspection and maintenance of deteriorating structural systems is discussed and demonstrated in a numerical example. T2 - Wind Energy Science Conference (WESC 2021) CY - Online Meeting DA - 25.05.2021 KW - Deterioration KW - Structural systems KW - Inspection KW - Vibration monitoring KW - Maintenance PY - 2021 AN - OPUS4-52766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Mevel, L. ED - Cunha, A. ED - Caetano, E. T1 - Stochastic subspace-based damage detection of a temperature affected beam structure N2 - Structural health monitoring (SHM) of civil structures often is limited due to changing environmental conditions, as those changes affect the structural dynamical properties in a similar way like damages can do. In this article, an approach for damage detection under changing temperatures is presentedand applied to a beam structure. The used stochastic subspace-based algorithm relies on a reference null space estimate, which is confronted to data from the testing state in a residual function. For damage detection the residual is evaluated by means of statistical hypothesis tests. Changes of the system due to temperature effects are handled with a model interpolation approach from linear parameter varying system theory. From vibration data measured in the undamaged state at some few reference temperatures, a model of the dynamic system valid for the current testing temperature is interpolated. The reference null space and the covariance matrix for the hypothesis test is computed from this interpolated model. This approach has been developed recently and was validated in an academic test case on simulations of a mass-spring-damper. In this paper, the approach is validated experimentally on a beam structure under varying temperature conditions in a climate chamber. Compared to other approaches, the interpolation approach leads to significantly less false positive alarms in the reference state when the structure is exposed to different temperatures, while faults can still be detected reliably. T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 CY - Online meeting DA - 30.06.2021 KW - Damage detection KW - Subspace methods KW - Temperature effects KW - Model interpolation KW - Climate chamber KW - Laboratory beam structure PY - 2021 SP - 1 EP - 6 AN - OPUS4-52999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Kannengießer, Thomas T1 - Aktivitäten in Forschung und Zulassung im Bereich Windenergie N2 - Die vielfältigen Tätigkeiten der BAM im Bereich technischer Sicherheit von Windenergieanlagen werden vorgestellt und im Bereich aktueller Entwicklungen in der Fügetechnik detailliert. T2 - Arbeitskreis Gründungsstrukturen und Stahlbau der WAB CY - Online meeting DA - 13.04.2021 KW - BAM Windenergie Fügetechnik PY - 2021 AN - OPUS4-53026 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Herrmann, Ralf A1 - Viefhues, Eva A1 - Baeßler, Matthias T1 - Experimente in der Klimakammer N2 - Im Rahmen des Verbundtreffens des Vorhabens AISTEC werden akutelle Versuche aus der Großklimakammer des FB 7.2 präsentiert. T2 - 5. Verbundtreffen AISTEC CY - Online meeting DA - 24.06.2021 KW - Klimakammer KW - Stochastic Subspace Damage Detection KW - Model Update KW - Asphalt PY - 2021 AN - OPUS4-52869 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Balscheit, Hagen A1 - Cuéllar, Pablo A1 - Nerger, Deborah A1 - Thiele, Marc A1 - Lüddecke, F. A1 - Victor, A. T1 - Numerical Modelling of Local Pile Deformations and Buckling incorporating the Pile-Soil-Interaction N2 - Pile Tip Buckling and Buckling of embedded piles both depend very much on the pile-soil-interaction and its modelling. The presentation gives an overview about current problems and research activities in the light of the development of numerical models. T2 - WESC Wind Energy Science Conference CY - Hannover, Germany DA - 25.05.2021 KW - Offshore Wind Energy Converter KW - Pile Foundation KW - Monopile Buckling KW - Pile Tip Buckling PY - 2021 AN - OPUS4-53033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - Probabilistic approaches to the design and assessment of offshore foundations considering spatially varying site conditions N2 - In this presentation, we discuss the potential of probabilistic approaches to the design and assessment of offshore foundations. The potential is demonstrated in a numerical example considering a laterally loaded monopile. As an outlook, we present a concept for managing the risk associated with installing large monopiles. T2 - 3rd International Conference on Structural Integrity for Offshore Energy Industry (SI 2021) CY - Online meeting DA - 15.11.2021 KW - Offhore KW - Foundations KW - Probabilistic KW - Design KW - Assessment PY - 2021 AN - OPUS4-53748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Baeßler, Matthias T1 - AISTEC 5. Verbundtreffen - Messfahrt auf der Maintalbrücke Gemünden N2 - Der Vortrag stellt die Durchführung und die ersten Ergebnisse der Belastungsfahrten der BAM im Rahmen des AISTEC Projekts an der Maintalbrücke am 19.05. und 20.05.2021 vor. Es wurden Tragwerksreaktionen des Bauwerks mit dem installierten Dauermonitoringsystem und insbesondere dem Betongelenk mit zusätzlich installierter Sensorik aufgezeichnet. Für die Ermittlung der Lastposition wurden mehrere Verfahren eingesetzt und verglichen. T2 - AISTEC 5. Verbundtreffen CY - Online meeting DA - 24.06.2021 KW - AISTEC KW - Structural Health Monitoring KW - Einflusslinie KW - Messfahrt KW - Belastungszug PY - 2021 AN - OPUS4-52927 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Towards predictive maintenance of bridges N2 - Key features of predictive maintenance of structural systems are discussed and demonstrated in two examples. Challenges and needs for further research are discussed. T2 - Workshop Bridge Maintenance CY - Online Meeting DA - 09.04.2021 KW - Predictive maintenance KW - Deterioration KW - Structural systems PY - 2021 AN - OPUS4-52768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hüsken, Götz A1 - Shamsuddoha, Md A1 - Pirskawetz, Stephan A1 - Hofmann, Detlef A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten T1 - Potential of a Repair System for Grouted Connections in Offshore Structures: Development and Experimental Verification N2 - Grouted connections are intensively used in offshore rigs, platforms as well as jacket and monopile offshore wind turbine structures. Being located in remote offshore conditions, these connections can experience considerable adverse loading during their lifetimes. Degradation was reported inside similar connections, which were installed in the last three decades. Grouting in the offshore sites may often be proven difficult, which eventually leads to reduced load-bearing capacity of connections in the long run. Thus, repair and rehabilitation of such connections should be planned ahead to minimize operational delays and costs. In this study, scaled grouted connections were manufactured using a novel mould, whose integrity were monitored using digital image correlation (DIC). The connections were loaded under static load to visualize the main failure pattern using distributed fibre optic sensors and acoustic emission (AE) analysis. Grouted connections were then repaired using a cementitious injectable grout. The effectiveness of the grout injection was monitored using dye penetration technique. Finally, specimens are reloaded to identify the potential of such repair for grouted connections. KW - Offshore KW - Grouted connection KW - Fibre optic sensors KW - Acoustic emission analysis KW - Cracks KW - Repair KW - Rehabilitation KW - Static loading PY - 2021 DO - https://doi.org/10.1016/j.marstruc.2021.102934 VL - 77 SP - 102934 PB - Elsevier Ltd. AN - OPUS4-52059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Said, Samir A1 - Hille, Falk A1 - Baeßler, Matthias T1 - Vorstellung des Bauwerksmonitoring der Maintalbrücke Gemünden im Vorhaben AISTEC N2 - Im Abteilungsseminar wird der aktuelle Umsetzungsstand des Bauwerksmonitorings an der Maintalbrücke Gemünden vorgestellt, sowie die nächsten Schritte zur Systemintegration von Konzepten an Realbauwerken. T2 - Abteilungs-Vortragsseminar Abteilung 7. Bauwerkssicherheit CY - Online meeting DA - 03.03.2021 KW - Structural Health Monitoring KW - Maintalbrücke Gemünden KW - Bauwerksüberwachung KW - Datenmanagement PY - 2021 AN - OPUS4-52221 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Recknagel, Christoph ED - Cunha, Á. ED - Caetano, E. T1 - Enhancing structural models with material tests and static response data - a case study considering a steel beam with asphalt layer subject to temperature variations N2 - Gradual or sudden changes in the state of structural systems caused, for example, by deterioration or accidental load events can influence their load-bearing capacity. Structural changes can be inferred from static and/or dynamic response data measured by structural health monitoring systems. However, they may be masked by variations in the structural response due to varying environmental conditions. Particularly, the interaction of nominally load-bearing components with nominally non-load bearing components exhibiting characteristics that vary as a function of the environmental conditions can significantly affect the monitored structural response. Ignoring these effects may hamper an inference of structural changes from the monitoring data. To address this issue, we adopt a probabilistic model-based framework as a basis for developing digital twins of structural systems that enable a prediction of the structural behavior under varying ambient condition. Within this framework, different types of data obtained from real the structural system can be applied to update the digital twin of the structural system using Bayesian methods and thus enhance predictions of the structural behavior. In this contribution, we implement the framework to develop a digital twin of a simply supported steel beam with an asphalt layer. It is formulated such that it can predict the static response of the beam in function of its temperature. In a climate chamber, the beam was subject to varying temperatures and its static response wass monitored. In addition, tests are performed to determine the temperature-dependent properties of the asphalt material. Bayesian system identification is applied to enhance the predictive capabilities of the digital twin based on the observed data. T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-10) CY - Online meeting DA - 30.06.2021 KW - Digital twin KW - Structural health monitoring KW - Material tests KW - Bayesian updating PY - 2021 SN - 2564-3738 SP - 1537 EP - 1544 AN - OPUS4-54126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Recknagel, Christoph T1 - Enhancing structural models with material tests and static response data - a case study considering a steel beam with asphalt layer subject to temperature variations N2 - Gradual or sudden changes in the state of structural systems caused, for example, by deterioration or accidental load events can influence their load-bearing capacity. Structural changes can be inferred from static and/or dynamic response data measured by structural health monitoring systems. However, they may be masked by variations in the structural response due to varying environmental conditions. Particularly, the interaction of nominally load-bearing components with nominally non-load bearing components exhibiting characteristics that vary as a function of the environmental conditions can significantly affect the monitored structural response. Ignoring these effects may hamper an inference of structural changes from the monitoring data. To address this issue, we adopt a probabilistic model-based framework as a basis for developing digital twins of structural systems that enable a prediction of the structural behavior under varying ambient condition. Within this framework, different types of data obtained from real the structural system can be applied to update the digital twin of the structural system using Bayesian methods and thus enhance predictions of the structural behavior. In this contribution, we implement the framework to develop a digital twin of a simply supported steel beam with an asphalt layer. It is formulated such that it can predict the static response of the beam in function of its temperature. In a climate chamber, the beam was subject to varying temperatures and its static response wass monitored. In addition, tests are performed to determine the temperature-dependent properties of the asphalt material. Bayesian system identification is applied to enhance the predictive capabilities of the digital twin based on the observed data. T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-10) CY - Online meeting DA - 30.06.2021 KW - Digital twin KW - Structural health monitoring KW - Material tests KW - Bayesian updating PY - 2021 AN - OPUS4-54130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - A risk-based framework for optimizing inspection and maintenance of deteriorating structures monitored by vibration-based monitoring systems N2 - In this presentation, a framework for integrating vibration-based structural health monitoring data into the optimization of inspection and maintenance of deteriorating structural systems is presented. The framework is demonstrated in an illustrative example considering a steel frame subject to fatigue. T2 - EERA JP Wind WORKSHOP on Ongoing research in offshore wind structures CY - Online meeting DA - 16.09.2021 KW - Structural Health Monitoring KW - Inspection KW - Maintenance KW - Deterioration KW - Vibration KW - Structural Systems PY - 2021 AN - OPUS4-53749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Savidis, S. A1 - Bergmann, M. A1 - Schepers, Winfried A1 - Fontara, I.-K. T1 - Wave propagation in inhomogeneous media via FE/PML method N2 - The Perfectly Matched Layer (PML) method is an efficient approach to imposing radiation conditions at the bounded region of interest in case of wave propagation in unbounded domains. This paper presents and validates 3D FE/PML numerical schemes based on two different PML formulations for homogeneous and inhomogeneous geological media exhibiting discrete or continuous inhomogeneity. In the equation of motion for the PML domain the applied stretching behavior is expressed either as complex material properties or as complex coordinates. Both PML formulations are implemented in the FEM and verified against analytical solutions. Three different types of material inhomogeneity are considered: layered half-space, continuously inhomogeneous half-space with linear velocity profile and continuously inhomogeneous half-space with nonlinear velocity profile. Sensitivity analyses are conducted, and the performance of the developed numerical schemes is investigated taking into account a broad variation of the PML parameters. Recommendations are given for the optimal values of the PML parameters for the case of homogeneous and inhomogeneous geological media. KW - Perfectly Matched Layer (PML) KW - Unbounded domain KW - Finite elements KW - Continuously inhomogeneous geological media PY - 2022 DO - https://doi.org/10.1002/gete.202100028 VL - 45 IS - 2 SP - 98 EP - 107 PB - Ernst & Sohn CY - Berlin AN - OPUS4-54969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wave propagation from hammer, vibrator and railway excitation – theoretical and measured attenuation in space and frequency domain N2 - The attenuation of wave amplitudes is ruled by the planar, cylindrical or spher-ical geometry of the wave front (the geometric or power-law attenuation) but also by the damping of the soil (an exponential attenuation). Several low- and high-frequency filter effects are derived for the layering and the damping of the soil, for the moving static and the distributed train loads and for a homoge-neous or randomly heterogeneous soil. Measurements of hammer- and train-induced vibrations at five sites have been analysed for these attenuation and filter effects. The measured attenuation with distance can be discribed by gen-eralised power laws and some reasons will be discussed. The theoretical filter effects can well be found in the measurements. T2 - 10th Wave Mechanics and Vibration Conference (WMVC)nce CY - Lisbon, Potugal DA - 04.07.2022 KW - Hammer impact KW - Train passage KW - Layered soil KW - Attenuation KW - Filter effects KW - Randomly heterogeneous soil KW - Scattering PY - 2022 AN - OPUS4-55246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiehle, Philipp A1 - Simon, Sebastian A1 - Baier, J. A1 - Dennin, L. ED - Forde, M. T1 - Influence of relative humidity on the strength and stiffness of unstabilised earth blocks and earth masonry mortar N2 - Aim of this study is to provide information about moisture dependent material behaviour of unstabilised loadbearing earth blocks and mortars. Compressive strength and Young’s modulus were investigated after conditioning in varying relative humidity reaching from 40 % up to 95 %. The material composition and physical properties were investigated to understand the influence of relative humidity onto the mechanical properties. A normalisation of strength and stiffness by the values obtained at 23 ◦C and 50 % relative humidity reveals a linear dependence of compressive strength and Young’s modulus that is regardless of the material composition. Thus, it is possible to describe the influence of relative humidity onto the load-bearing behaviour of unstabilised earth masonry materials in a generally valid formulation. KW - Earth block masonry KW - Load-bearing behaviour KW - Compressive strength KW - Moisture content KW - Sorption isotherm PY - 2022 DO - https://doi.org/10.1016/j.conbuildmat.2022.128026 SN - 0950-0618 VL - 342 IS - Part A SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-54949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The role of vehicle dynamics in train-induced ground vibrations and the detection of irregular axle-pulse responses due to a varying track support stiffness N2 - Train-induced ground vibrations are all generated by the vehicle, by static or dynamic vehicle loads. The most important and most accepted excitation are the dynamic wheel loads from the passage over track irregularities. Dynamic wheel loads will be compared from parallel axle-box and ground vibration measurements at more than seven sites. Some low-frequency excitation of ground vibrations, typically between 10 and 30 Hz, cannot be found in the axle-box measurements. Therefore, other vehicle modes, such as rigid bogie modes, flexible carriage modes, rigid and flexible wheelset modes, have been analysed for additional excitation forces. These vehicle dynamics analyses give an explanation for higher axle-box results at high frequencies, but not for the excitation of the higher low-frequency ground-vibration component. Finally, the effect of the moving static train loads will be analysed. For a regular track and soil, the moving static train loads yield the quasi-static response which exists only in the low-frequency nearfield of the track. If the support stiffness is randomly varying along the track, the pulses on the track generate an additional low-frequency component which is called the irregular pulse responses. This component will be demonstrated by numerical analysis where all axle pulses are superposed in frequency domain. KW - Wheelset KW - Vehicle-track interaction KW - Rail roughness KW - Random dynamics and vibrations KW - Modal analysis PY - 2022 DO - https://doi.org/10.1177/09544097221086064 SN - 0954-4097 VL - 236 IS - 10 SP - 1218 EP - 1233 PB - Sage CY - London AN - OPUS4-55000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Song, Jiaojiao T1 - Dynamic damage detection of slab tracks – finite element models on Winkler soil and finite-element boundary-element models on continuous soil N2 - The train passages over intact or damaged slab tracks on different soils have been calculated by two methods. The finite element method (FEM) uses a Winkler soil under the track model by adding a thin “soil layer”. The combined finite element boundary element method has a continuous soil model which is included by the boundary element method. The basic results are the distributions of the track (rail, track plate, and base layer) displacements along the track for a single axle laod. These solutions are superposed to a complete train load and transformed to time histories. The influence of track and soil parameters has been analysed. The main interest is the influence of the track damage. A gap between track plate and base layer of different lengths has been studied for changes in amplitudes and widths of deflection. A best fit to measured track displacements has been found so that the track damage can be identified and quantified. The FEM model with Winkler soil cannot be fitted to the amplitude and width with the same soil parameters. Therefore, the FEBEM model is preferable for these railway track problems. KW - Track damage quantification KW - Finite element method KW - Combined finite-element boundary-element method PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562207 DO - https://doi.org/10.3390/civileng3040055 SN - 2673-4109 VL - 3 IS - 4 SP - 979 EP - 997 PB - MDPI CY - Basel AN - OPUS4-56220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiehle, Philipp A1 - Brinkmann, M. T1 - Material behaviour of unstabilised earth block masonry and its components under compression at varying relative humidity N2 - block and mortar types is analysed with particular regard to the influence of varying relative humidity. The uniaxial compressive strength and deformation characteristics of unstabilised earth blocks and mortars as well as of unstabilised earth block masonry are studied in detail and compared to conventional masonry to evaluate whether the structural design can be made accordingly. An increase of 30 % points in relative humidity leads to a reduction of the masonry´s compressive strength between 33 % and 35 % whereas the Young´s modulus is reduced by 24–29 %. However, the ratio between the Young´s modulus and the characteristic compressive strength of earth block masonry ranges between E33/fk = 283–583 but is largely independent of the relative humidity. The results show that the mechanical properties of the investigated unstabilised earth block masonry are sufficient for load-bearing structures, yielding a masonry compressive strength between 2.3 MPa and 3.7 MPa throughout the range of moisture contents investigated. In general, the design concept of conventional masonry can be adapted for unstabilised earth masonry provided that the rather low Young´s modulus as well as the moisture dependence of both, compressive strength and Young´s modulus, are sufficiently taken into account. KW - Compressive strength KW - Earth block masonry KW - Compression tests KW - Stress-strain relation KW - Relative humidity KW - Moisture content PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562417 DO - https://doi.org/10.1016/j.cscm.2022.e01663 SN - 2214-5095 VL - 17 SP - 1 EP - 15 PB - Elsevier B.V. CY - Netherlands AN - OPUS4-56241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, Rolf T1 - Measurement and evaluation tools for ground and building vibrations from industrial process-es, construction work, traffic and other sources N2 - Vibration measurements have many causes and many technical and natural sources. Problems can sometimes be solved by short-term measurements, but in many cases, a long-term measurement is necessary. In long-term measurements of days, weeks, months and even years, it is easy to collect a huge quantity of raw data, but at the end, the post-processing of these data can be exhausting (for example one-year vibration data of a wind energy tower). A software has been developed which con-sists of measuring and evaluation routines where the measuring routines can operate different meas-uring systems and different measuring cards. The main advantage of this software is the fact that the interesting evaluations can be integrated in the measuring process so that the characteristics of the vibration can be extracted without storing all the raw data. Only important time segments are stored, for example train passages. The overall concept of the software and the main evaluation routines will be described in some details. Examples of our measurement experience will illustrate the capabilities of the software. 1) Surveying construction work in nearby sensitive buildings (for example an old wind tunnel), including a stable alarm system and meaningful vibration limits. 2) Prediction of train-induced vibration for a planned building to prevent annoyance and to improve the building design. 3) Modal analysis and long term measurements of several single- or multi-span, concrete or steel bridges 4) Modal and wave analysis of coupled floors in a historical building (“Neues Palais” at Potsdam). 5) Soil properties of various measurement sites (different routines to evaluate the dispersion). Moreover, from many projects, amplitudes, frequencies, and attenuation laws have been collected and analysed for the different sources such as vibratory or impact pile driving and ground compaction, demolition work with different machines, blasting in quarries and in tunnel works, bomb and mine clearing. T2 - 28th International Congress on Sound and Vibration (ICSV28) CY - Online meeting DA - 25.07.2022 KW - Ground vibration KW - Building vibration KW - Measurement KW - Evaluation KW - Modes and waves PY - 2022 AN - OPUS4-56035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Effects of a varying track and soil stiffness on ground vibrations near railway lines N2 - Usually, geometric irregularities are considered as the main cause of ground vibrations from trains. A varying stiffness of the track, the track support and the soil can also generate ground vibrations. The regular stiffness variation of the track on and between the sleepers results in a deterministic dynamic axle load. The random stiffness variation of the track support yields also dynamic axle loads. The dynamic axle loads are generated by the varying wheel displacements under the static axle load by the acceleration of the unsprung mass of the rail vehicle. The random stiffness variation has a second effect. The pulses from the passage of the static axle loads are superposed regularly to the quasi-static response, but also irregularly to yield a “scattered” part of the axle pulses. The same holds for a random variation of the soil stiffness. All these effects of stiffness variations have been calculated by wavenumber-domain multi-beam track models, a random finite-element soil model and the superposition of axle impulses in a stochastic simulation. The results are confronted with many measurements at different sites. It is concluded that the stiffness variation of the track and the soil generate an important ground vibration component near railway lines. T2 - Railways 2022 CY - Montpellier, France DA - 22.08.2022 KW - Ground vibration KW - Railways KW - Varying track stiffness KW - Varying soil stiffness PY - 2022 AN - OPUS4-56036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Building vibration KW - Railways KW - Simple and fast prediction PY - 2022 AN - OPUS4-56038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schepers, Winfried A1 - Kulke, D. T1 - Ermittlung dynamischer Bodensteifigkeit aus konventionellen geotechnischen Berichten N2 - Am Beispiel von mehreren Bauvorhaben wird untersucht, mit welchen Unsicherheiten bei der Anwendung von Korrelationen zwischen Sondierergebnissen und Scherwellengeschwindigkeit zur Beschreibung der dynamischen Bodeneigenschaften gerechnet werden muss. Die Auswertung von Korrelationen aus der Literatur zur Abschätzung der Scherwellengeschwindigkeit aus Drucksondierdaten zeigt, dass bei homogenen Sandböden die Verteilung der Scherwellengeschwindigkeit über die Tiefe sehr gut wiedergegeben werden kann. Die Korrelationen haben dabei die Tendenz, den tatsächlichen Wert zu überschätzen. In den vorliegenden Fällen haben sich Überschätzungen zwischen 20 % und 50 % ergeben. Mit zunehmendem Feinkornanteil werden die Unsicherheiten aus den Korrelationen jedoch größer. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.04.2022 KW - Dynamische Bodensteifigkeit PY - 2022 SN - 978-3-18-092379-6 SN - 0083-5560 VL - 2379 SP - 347 EP - 359 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-54762 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wellenausbreitung und Pfähle im inhomogenen Boden – Gesetzmäßigkeiten für die Gründung von Windenergieanlagen und für die Prognose von Bahnerschütterungen aus Tunneln N2 - Es wird eine gekoppelte Finite-Element-Randelementmethode zur Berechnung von Pfahlgrün-dungen in inhomogenen (geschichteten) Böden vorgestellt. Sie beruht auf den Greenschen Funktionen (Punktlastlösungen) für inhomogene Böden. Diese Lösungen können auch für die Wellenausbreitung in der Tiefe, zum Beispiel von einem Bahntunnel zu einem eingebetteten Gebäude, dem Kellergeschoss benutzt werden. Die Punktlastlösungen in der Tiefe werden mit der Halbraumlösung an der Bodenoberfläche und mit der Vollraumlösung verglichen und Gesetzmäßigkeiten für geschichtete Böden abgeleitet. Zu den Pfahlgründungen werden die Horizontalnachgiebigkeiten von Pfählen in geschichteten Böden dargestellt. Für den homogenen und den kontinuierlich steifer werdenden Boden werden Potenzgesetze für den Boden- und Pfahleinfluss aufgestellt. Der Vergleich mit dem Winkler-Modell der rein lokalen Bodenreaktion zeigt, dass die Winkler-Bettung in allen Fällen einen zu kleinen Bodeneinfluss ergibt. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.04.2022 KW - Wellenausbreitung in der Tiefe KW - Nachgiebigkeiten KW - Windenergieanlagen PY - 2022 SN - 978-1-18-092379-6 SN - 0083-5560 VL - 2379 SP - 697 EP - 706 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-54768 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wellenausbreitung und Pfähle im inhomogenen Boden – Gesetzmäßigkeiten für die Gründung von Windenergieanlagen und für die Prognose von Bahnerschütterungen aus Tunneln N2 - Es wird eine gekoppelte Finite-Element-Randelementmethode zur Berechnung von Pfahlgrün-dungen in inhomogenen (geschichteten) Böden vorgestellt. Sie beruht auf den Greenschen Funktionen (Punktlastlösungen) für inhomogene Böden. Diese Lösungen können auch für die Wellenausbreitung in der Tiefe, zum Beispiel von einem Bahntunnel zu einem eingebetteten Gebäude, dem Kellergeschoss benutzt werden. Die Punktlastlösungen in der Tiefe werden mit der Halbraumlösung an der Bodenoberfläche und mit der Vollraumlösung verglichen und Gesetzmäßigkeiten für geschichtete Böden abgeleitet. Zu den Pfahlgründungen werden die Horizontalnachgiebigkeiten von Pfählen in geschichteten Böden dargestellt. Für den homoge-nen und den kontinuierlich steifer werdenden Boden werden Potenzgesetze für den Boden- und Pfahleinfluss aufgestellt. Der Vergleich mit dem Winkler-Modell der rein lokalen Boden-reaktion zeigt, dass die Winkler-Bettung in allen Fällen einen zu kleinen Bodeneinfluss ergibt. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.4.2022 KW - Wellenausbreitung in der Tiefe KW - Pfahlnachgiebigkeiten KW - Erschütterungen KW - Tunnel PY - 2022 AN - OPUS4-54769 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Die Einfügedämmung bei Schienenfahrwegen Definition, Messung und Berechnung N2 - Die Definition und Beschreibung der Einfügedämmung im Normentwurf DIN 45673-4 ist noch nicht richtig. Es wird die Beschreibung aus DIN 45673-3 herangezogen, die für Messungen gilt. Für die drei Rechenverfahren gibt es jeweils eine passende Beschreibung. Mit diesen Vorlagen ist eine vernünftige Definition der Einfügungsdämmung zu finden. Es bedarf einer Abgrenzung gegenüber anderen (falschen) Möglichkeiten. Des Weiteren ist der Anhang 2 erweitert und der Parametersatz im Anhang 1 auf das Wesentliche reduziert worden. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Online meeting DA - 14.12.2022 KW - Einfügungsdämmung KW - Schienenfahrwege KW - Kraft auf den Boden KW - Erschütterungen im Fernfeld PY - 2022 AN - OPUS4-56601 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Measurement and evaluation tools for ground and building vibrations from industrial pro-cesses, construction work, traffic and other sources N2 - Vibration measurements have many causes and many technical and natural sources. Problems can sometimes be solved by short-term measurements, but in many cases, a long-term measurement is necessary. In long-term measurements of days, weeks, months and even years, it is easy to collect a huge quantity of raw data, but at the end, the post-processing of these data can be exhausting (for example one-year vibration data of a wind energy tower). A software has been developed which con-sists of measuring and evaluation routines where the measuring routines can operate different meas-uring systems and different measuring cards. The main advantage of this software is the fact that the interesting evaluations can be integrated in the measuring process so that the characteristics of the vibration can be extracted without storing all the raw data. Only important time segments are stored, for example train passages. The overall concept of the software and the main evaluation routines will be described in some details. Examples of our measurement experience will illustrate the capabilities of the software. 1) Surveying construction work in nearby sensitive buildings (for example an old wind tunnel), including a stable alarm system and meaningful vibration limits. 2) Prediction of train-induced vibration for a planned building to prevent annoyance and to improve the building design. 3) Modal analysis and long term measurements of several single- or multi-span, concrete or steel bridges 4) Modal and wave analysis of coupled floors in a historical building (“Neues Palais” at Potsdam). 5) Soil properties of various measurement sites (different routines to evaluate the dispersion). Moreover, from many projects, amplitudes, frequencies, and attenuation laws have been collected and analysed for the different sources such as vibratory or impact pile driving and ground compaction, demolition work with different machines, blasting in quarries and in tunnel works, bomb and mine clearing. T2 - 28th International Congress on Sound and Vibration CY - Online meeting DA - 24.07.2022 KW - Ground vibration KW - Building vibration KW - Measurement KW - Evaluation KW - Modes KW - Waves PY - 2022 SP - 1 EP - 8 AN - OPUS4-56602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference 2022 CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Simple prediction KW - Vehicle-track interaction KW - Layered soil KW - Soil-building interaction KW - Soil-wall-floor model KW - Propagation from a tunnel KW - Tunnel-pile transfer PY - 2022 SP - 1 EP - 13 PB - KU Leuven CY - Leuven AN - OPUS4-56603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Effects of a varying track and soil stiffness on ground vibrations near railway lines N2 - Usually, geometric irregularities are considered as the main cause of ground vibrations from trains. A varying stiffness of the track, the track support and the soil can also generate ground vibrations. The regular stiffness variation of the track on and between the sleepers results in a deterministic dynamic axle load. The random stiffness variation of the track support yields also dynamic axle loads which are generated by the acceleration of the unsprung mass (from the varying wheel displacements under the static axle load). The random stiffness variation has a second effect. The pulses from the passage of the static axle loads are superposed regularly to the quasi-static response, but also irregularly to yield a “scattered” part of the axle pulses. The same holds for a random variation of the soil stiffness. All these effects of stiffness variations have been calculated by wavenumber-domain multi-beam track models, a random finite-element soil model and the superposition of axle impulses in a stochastic simulation. The results are confronted with many measurements at different sites. It is concluded that the stiffness variation of the track and the soil generate an important ground vibration component near railway lines. T2 - International Conference Railways 2022 CY - Montpellier, France DA - 22.08.2022 KW - Ground vibration KW - Axle loads KW - Irregularities KW - Varying stiffness PY - 2022 SP - 1 EP - 11 AN - OPUS4-56605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Different types of continuous track irregularities as sources of train-induced ground vibration and the importance of the random variation of the track support N2 - Irregularities of the track are a main cause of train-induced ground vibration, and track maintenance is of great importance. Although geometric irregularities at the wheel-rail contact are widely used, other types of irregularities, such as stiffness irregularities, irregularities from different track positions and irregularities in the wave propagation, were analysed in the present study. The track behaviour was investigated by a multi-beam-on-soil model. This track model is coupled with a vehicle model to calculate the vehicle–track interaction. The track model was also used for the track filtering, which transfers a track support error to the equivalent rail irregularity or, conversely, the sharp axle pulse on the rail to a smoother pulse on the soil. In the case in which this filtering varies randomly along the track, the pulses of the moving static load induce a certain ground Vibration component (“the scatter of axle pulses”). This effect was calculated by the superposition of axle pulses in the frequency domain and by a stochastic simulation. Simultaneous vehicle, track and soil measurements at a certain site were used to evaluate the different excitation and ground Vibration components. The agreement between calculations and axle-box and soil measurements is good. The ground vibrations calculated from rail irregularities and corresponding dynamic loads, however, clearly underestimate the measured ground vibration amplitudes. Only the static load that is moving over a varying track support stiffness can produce the important mid-frequency ground Vibration component by the scatter of axle pulses. KW - Train-induced ground vibration KW - Geometric vehicle and track irregularities KW - Stiffness variation KW - Multi-beam track model KW - Track filtering KW - Dynamic axle loads KW - Static axle loads KW - layered soil PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543846 DO - https://doi.org/10.3390/app12031463 SN - 2076-3417 VL - 12 IS - 3 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-54384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiele, Marc A1 - Pirskawetz, Stephan T1 - Analysis of damage evolution in concrete under fatigue loading by acoustic emission and ultrasonic testing N2 - The fatigue process of concrete under compressive cyclic loading is still not completely explored. The corresponding damage processes within the material structure are especially not entirely investigated. The application of acoustic measurement methods enables a better insight into the processes of the fatigue in concrete. Normal strength concrete was investigated under compressive cyclic loading with regard to the fatigue process by using acoustic methods in combination with other nondestructive measurement methods. Acoustic emission and ultrasonic signal measurements were applied together with measurements of strains, elastic modulus, and static strength. It was possible to determine the anisotropic character of the fatigue damage caused by uniaxial loading based on the ultrasonic measurements. Furthermore, it was observed that the fatigue damage seems to consist not exclusively of load parallel oriented crack structures. Rather, crack structures perpendicular to the load as well as local compacting are likely components of the fatigue damage. Additionally, the ultrasonic velocity appears to be a good indicator for fatigue damage beside the elastic modulus. It can be concluded that acoustic methods allow an observation of the fatigue process in concrete and a better understanding, especially in combination with further measurement methods. KW - Concrete KW - Fatigue KW - Damage evolution KW - Ultrasonic testing KW - Acoustic emission PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541891 DO - https://doi.org/10.3390/ma15010341 SN - 1996-1944 VL - 15 IS - 1 SP - 341 EP - 355 PB - MDPI CY - Basel AN - OPUS4-54189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Die Berechnung der Einfügedämmung bei Schienenfahrwegen – die Impedanzmethode mit einem Freiheitsgrad N2 - Mit dieser Methode kann man die Einfügedämmung eines Schienenstützpunkts/einer Schwelle korrekt berechnen. Sie gilt in ihrer ursprünglichen Form für eine Unterschottermatte in einem Tunnel T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Online meeting DA - 20.1.2022 KW - Impedanzmethode KW - Elastische Elemente KW - Schienenfahrweg PY - 2022 AN - OPUS4-54243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Elastische Elemente in der Emission, Transmission und Immission von Bahnerschütterungen N2 - Dieser Vortrag präsentiert einige Prinzipien und einige Beispiele zur Minderung von Eisenbahnerschütterungen. Die Prinzipien unterscheiden sich für die Minderungsmaßnahmen im Gleis, im Boden und bei Gebäuden. Kraftübertragungsfunktionen isolierter und nicht isolierter Gleissysteme, reflektierte und durchgelassene Wellenamplituden bei gefüllten Bodenschlitzen und die Übertragung der Freifeldschwingungen ins Gebäude werden analysiert. Bei den einfachen Gleismodellen muss der richtige Anteil der unabgefederte Fahrzeugmasse zum eindimensionalen Gleismodell hinzugefügt werden. Der Minderungseffekt eines gefüllten Bodenschlitzes ist von der Steifigkeit und nicht von der Impedanz des Schichtmaterials bestimmt. Bei einer elastischen Gebäudelagerung muss die Minderungswirkung mit der richtigen Boden- (Fundament-) Steifigkeit berechnet werden, und das abgeminderte Gebäudeverhalten hängt wesentlich von der effektiven Gebäudemasse ab, die mit zunehmender Frequenz deutlich kleiner als die starre Gebäudemasse ist. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Bludenz, Austria DA - 17.5.2022 KW - Erschütterungsminderung KW - Bahngleis KW - Bodenschlitz KW - Gebäudelagerung KW - Elastische Elemente PY - 2022 AN - OPUS4-54916 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Balscheit, Hagen T1 - Buckling Behavior of embedded Shells N2 - Presentation on ongoing test campaign on buckling of embedded piles, which is part of the VERBATIM-Project. T2 - Phd Seminar LFU-Innsbruck CY - Innsbruck, Austria DA - 24.06.2022 KW - Buckling KW - Monopiles KW - Windenergy KW - Foundations KW - Offshore PY - 2022 AN - OPUS4-55458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Makris, Ralf ED - Aign, J. T1 - Reinforcement bar and reinforcement bar splicing systems under impact loading – Experimental tests and test specification N2 - Reinforced concrete is a widely used material for power generation structures, where load scenarios like impact loadings need to be considered. In this context mechanical splicing systems for the connection of reinforcement bars are of specific interest and impact resistance for the splicing systems has to be verified. High speed tensile tests need to be performed on splicing systems for reinforcement bars to confirm the capability of the coupler to resist impact loading. Furthermore, the ability of the reinforcement steel to dissipate energy by ductile behaviour with pronounced plastic strains should be confirmed by these tests. During the last decades comprehensive experiences were developed at BAM performing high speed tensile tests on reinforcement bars as well as on several splicing systems. For the lack of available standards defining these tests in detail an appropriate test procedure was developed and continuously optimized during this period at BAM. The test procedure is partially based on testing principles adapted from available standards. The main intention behind this test procedure is to perform high-speed tensile tests with a specific constant strain rate generated at the specimen. Furthermore, main objective was to establish a procedure to guarantee the comparability of test results for different diameter of reinforcement as well as for different types of couplers. Besides the pure execution of the high-speed tensile tests, the test specification also declares how to evaluate the measurements and the test results. Finally, some typical results will be presented in this contribution. T2 - SMIRT 26 CY - Potsdam, Germany DA - 10.07.2022 KW - Impact KW - Coupler systems KW - High-speed KW - Reinforcement PY - 2022 SP - 1 EP - 10 AN - OPUS4-55422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerards-Wünsche, Paul T1 - Der Weg vom Labor zur industriellen Einsetzbarkeit der Risslumineszenz N2 - Der Vortrag beschreibt die Relevanz der Zuverlässigkeitsbewertung von klassischen ZfP- und SHM-Verfahren. Diese Zuverlässigkeitsbewertung soll auch für das an der BAM entwickelte Risslumineszenzverfahren durchgeführt werden. Die Risslumineszenz wird zunächst vorgestellt und es wird beschrieben welchen Weg man beschreiten muss, um eine Zuverlässigkeitsbewertung für eine Technik durchzuführen, die nicht nur als ZfP-Verfahren genutzt werden soll, sondern auch für die Dauerüberwachung unter der Einbindung einer KI-basierten automatisierten Risserkennung. Die mit dieser Erweiterung des Einsatzspektrums einhergehenden Faktoren für Messunsicherheit und -variabilität wird als Problematik erkannt und als zukünftige Aufgabe, die es zu lösen gilt, definiert. T2 - ZfP-Seminar Prof. Große TU München WS22 CY - Online meeting DA - 15.12.2022 KW - Rissprozes KW - Structural Health Monitoring KW - Risslumineszenz KW - Ermüdungsprüfung KW - Rissprozess PY - 2022 AN - OPUS4-56643 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -