TY - CONF A1 - Spitzer, Stefan A1 - Said, Samir A1 - Ziegler, Fred A1 - Recknagel, Christoph T1 - BAM-Monitoringkompetenz am Beispiel des Projekts INFUSE - SensoJoint N2 - BAM-Monitoringkompetenz mit Fokus auf das Datenmanagement der realen Beanspruchungen von Betonautobahnen von der definierten Datenerfassung über Datenverwaltung, Datenübertragung bis zur Datenauswertung am Beispiel des Projekts 7183-Infuse. T2 - Workshop Digitaler Zwilling CY - BAM Berlin, Germany DA - 04.06.2018 KW - Monitoring KW - Bitumen KW - Betonautobahnen PY - 2018 AN - OPUS4-45124 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Döhler, Michael A1 - Hille, Falk A1 - Mevel, Laurent ED - Ottaviano, Erika ED - Pelliccio, Assunta ED - Gattulli, Vincenzo T1 - Vibration-based monitoring of civil structures with subspace-based damage detection N2 - Automatic vibration-based structural health monitoring has been recognized as a useful alternative or addition to visual inspections or local non-destructive testing performed manually. It is, in particular, suitable for mechanical and aeronautical structures as well as on civil structures, including cultural heritage sites. The main challenge is to provide a robust damage diagnosis from the recorded vibration measurements, for which statistical signal processing methods are required. In this chapter, a damage detection method is presented that compares vibration measurements from the current system to a reference state in a hypothesis test, where data9 related uncertainties are taken into account. The computation of the test statistic on new measurements is straightforward and does not require a separate modal identification. The performance of the method is firstly shown on a steel frame structure in a laboratory experiment. Secondly, the application on real measurements on S101 Bridge is shown during a progressive damage test, where damage was successfully detected for different damage scenarios. KW - Structural health monitoring KW - Subspace methods KW - Damage detection KW - Statistical tests KW - Vibrations PY - 2018 SN - 978-3-319-68645-5 DO - https://doi.org/10.1007/978-3-319-68646-2 SP - 307 EP - 326 PB - Springer International Publishing CY - Cham ET - 1. AN - OPUS4-45127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Stutz, H. H. A1 - Cuellar, Pablo A1 - Baeßler, Matthias A1 - Rackwitz, F. ED - Cardoso, A. S. ED - Borges, J. L. ED - Costa, P. A. ED - Gomes, A. T. ED - Marques, J. C. ED - Vieira, C. S. T1 - A generalized plasticity model adapted for shearing interface problems N2 - The response of many geotechnical systems, whose structural behavior depends on shearing effect, is closely related to soil structure interaction phenomenon. Experimentally it is found that the localisation of these effect happens at a narrow soil layer next to the structure. Numerically, this behavior can be modelled through inter-face elements and adequate constitutive models. In this work, a constitutive model in the framework of Gen-eralized Plasticity for sandy soils has been chosen to be adapted for the interface zone. From the direct shear experiments a sandy soil at loose and dense states under different normal pressures is considered. The adapted constitutive model is able to reproduce contraction and dilatation of the soil according to its relative density and it shows a good agreement with the experimental data. T2 - Conference CY - Porto, Portugal DA - 25.06.2018 KW - Numerical modelling KW - Soil-pile interaction KW - Interface KW - Shearing PY - 2018 SN - 978-1-138-33198-3 VL - 1 SP - 97 EP - 102 PB - NUMGE CY - Porto, Portugal AN - OPUS4-45721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Simple and fast prediction of train-induced track forces, ground and building vibrations N2 - A simple and fast prediction scheme is presented for train induced ground and building vibrations. Simple models such as (1-dimensional) transfer matrices are used for the vehicle-track-soil interaction and for the building-soil interaction. The wave propagation through layered soils is approximated by a frequency-dependent homogeneous half-space. The prediction is divided into the parts “emission” (excitation by railway traffic), “transmission” (wave propagation through the soil) and “immission” (transfer into a building). The link between the modules is made by the excitation force between emission and transmission, and by the free-field vibration between transmission and immission. All formula for the simple vehicle-track, soil and building models are given in this article. The behaviour of the models is demonstrated by typical examples, that is the mitigation of train vibrations by elastic track elements, the low- and high-frequency cut-offs characteristic for layered soils, and the interacting soil, wall and floor resonances of multi-storey buildings. It is shown that the results of the simple prediction models can well represent the behaviour of the more time-consuming detailed models, the finite-element boundary-element models of the track, the wavenumber integrals for the soil, and the three-dimensional finite-element models of the building. In addition, measurement examples are given for each part of the prediction confirming that the methods provide reasonable results. As the prediction models are fast in calculation, many predictions can be done, for example to assess the environmental effect along a new railway line. The simple models have the additional advantage that the user needs to know only a minimum of parameters. So, the prediction is fast and user-friendly, but also theoretically and experimentally well-founded. KW - Railway induced vibration KW - Ground vibration KW - Layered soil KW - Building response KW - Excitation forces KW - Track and vehicle irregularities PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513340 DO - https://doi.org/10.1007/s40534-020-00218-7 SN - 2662-4745 VL - 28 IS - 3 SP - 232 EP - 250 PB - Springer AN - OPUS4-51334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Geißler, Peter T1 - Computational Geomechanics for Offshore Wind N2 - Simulations for the Safety and Efficiency of Foundations in the Offshore Wind Energy Production. T2 - Poster Challenge - EERA JP Wind Online Annual Event 2020 CY - Online meeting DA - 14.09.2020 KW - Numerical simulations KW - Marine geomechanics KW - Offshore wind energy PY - 2020 UR - https://www.eerajpwind.eu/events/eera-jp-wind-setwind-annual-event-2020/ AN - OPUS4-51280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omidalizarandi, M. A1 - Herrmann, Ralf A1 - Kargoll, B. A1 - Marx, S. A1 - Paffenholz, J. A1 - Neumann, I. T1 - A validated robust and automatic procedure for vibration analysis of bridge structures using MEMS accelerometers N2 - Today, short- and long-term structural health monitoring (SHM) of bridge infrastructures and their safe, reliable and cost-effective maintenance has received considerable attention. From a surveying or civil engineer’s point of view, vibration-based SHM can be conducted by inspecting the changes in the global dynamic behaviour of a structure, such as natural frequencies (i. e. eigenfrequencies), mode shapes (i. e. eigenforms) and modal damping, which are known as modal parameters. This research work aims to propose a robust and automatic vibration analysis procedure that is so-called robust time domain modal parameter identification (RT-MPI) technique. It is novel in the sense of automatic and reliable identification of initial eigenfrequencies even closely spaced ones as well as robustly and accurately estimating the modal parameters of a bridge structure using low numbers of cost-effective micro-electro-mechanical systems (MEMS) accelerometers. To estimate amplitude, frequency, phase shift and damping ratio coefficients, an observation model consisting of: (1) a damped harmonic oscillation model, (2) an autoregressive model of coloured measurement noise and (3) a stochastic model in the form of the heavy-tailed family of scaled t-distributions is employed and jointly adjusted by means of a generalised expectation maximisation algorithm. Multiple MEMS as part of a geo-sensor network were mounted at different positions of a bridge structure which is precalculated by means of a finite element model (FEM) analysis. At the end, the estimated eigenfrequencies and eigenforms are compared and validated by the estimated parameters obtained from acceleration measurements of high-end accelerometers of type PCB ICP quartz, velocity measurements from a geophone and the FEM analysis. Additionally, the estimated eigenfrequencies and modal damping are compared with a well-known covariance driven stochastic subspace identification approach, which reveals the superiority of our proposed approach. We performed an experiment in two case studies with simulated data and real applications of a footbridge structure and a synthetic bridge. The results show that MEMS accelerometers are suitable for detecting all occurring eigenfrequencies depending on a sampling frequency specified. Moreover, the vibration analysis procedure demonstrates that amplitudes can be estimated in submillimetre range accuracy, frequencies with an accuracy better than 0.1 Hz and damping ratio coefficients with an accuracy better than 0.1 and 0.2 % for modal and system damping, respectively. KW - Vibration analysis KW - Automatic modal parameters identification KW - MEMS KW - FEM analysis KW - Bridge monitoring PY - 2020 UR - https://www.degruyter.com/view/journals/jag/14/3/article-p327.xml DO - https://doi.org/10.1515/jag-2020-0010 SN - 1862-9016 VL - 14 IS - 3 SP - 1 EP - 28 PB - De Gruyter CY - Berlin AN - OPUS4-51338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Slab track behaviour under train passage and hammer impact – Measurements at different sites and calculated track interaction with continuous soils N2 - This contribution intends to give an overview on the vibration behaviour of slab tracks in comparison of measurements and calculations and also by comparison of different track types at more than ten different measuring sites. In theory, tracks on continuous soil are calculated by the frequency-wavenumber domain method. In experiment, geophone measurements are transformed to displacement results. Two aspects of track behaviour are considered, the frequency-dependant compliance of the track, measured by hammer impact, and the deflection under a passing axle load. In theory, the response to a single axle can be calculated, whereas in experiment, only the passage of the whole train can be measured. For comparison of theory and experiment, the calculated deflection under a single axle is superposed to get the response of the whole train. As a result, the slab track characteristics are completely different from the ballast track characteristics where each axle can be seen in the time histories. The slab track has a more global behaviour where only a whole bogie can be found in the track response and moreover, the two neighbouring bogies are not completely separated. The measurement of the different track elements (rail, sleeper, track plate, base layer) and the frequency-dependant compliances with possible resonances yield further information About the properties of the track elements. The calculations show that the soil has the dominant influence on the amplitudes and the width of the track-plate displacements. In the measurement results, the following parameters are analysed: slab track vs. ballast track, different types of slab tracks, damaged slab tracks, different trains, switches at different measuring points, voided sleepers, an elastic layer, the mortar layer, and different soils at different places. Finally, a good agreement between measured and calculated results is found for the normal and some special (damaged, floating) slab tracks. KW - Slab track KW - Train passage KW - Hammer impact KW - Compliance function KW - Track deflection PY - 2020 UR - https://iiav.org/ijav/index.php?va=viewpage&vaid=177&id_number=95 DO - https://doi.org/10.20855/ijav.2020.25.31622 SN - 1027-5851 VL - 25 IS - 3 SP - 341 EP - 354 PB - International Institute of Acoustics and Vibration CY - Gliwice AN - OPUS4-51346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Baeßler, Matthias T1 - Fatigue crack detection methods for high-cyclic loaded steel structures and challenges in mechanical testing N2 - For the generation of renewable energy offshore wind farms play an important role. The majority of these wind generators are connected to steel foundation structures. Steady increasing power output of these wind turbines leads to new challenges as well for engineers of the related support structures. Caused by the high-cyclic loading of these structures by wind and waves fatigue plays a very important role. Besides the consideration of fatigue within the design process it is additionally an important topic and challenge to monitor the existing steel structures relating to potential fatigue cracks occurring during their lifetime. This plays a role for a fundamental understanding of mechanisms as investigated in testing but also for inspection in real structures. Since the structures of the offshore wind generators are very large and in addition partially under water effective and reliable methods for fatigue crack detection are required. This contribution will present results of recent investigations on different crack detection methods applied on high-cycle fatigue tests on small welded steel samples as well as on welded steel components. The comparison of these measurements will show what are the advantages and disadvantages of the different methods and which method is potentially more suitable for the application on real offshore wind structures. It is outlined where challenges for detection methods exist. Furthermore, in this context the resulting challenges for the execution of material testing especially caused by the increasing dimensions of wind energy converters will by exemplarily presented. T2 - EERA JP Wind & SETWind Online Annual Event 2020 CY - Online meeting DA - 14.09.2020 KW - Fatigue KW - Crack detection KW - Steel structures PY - 2020 AN - OPUS4-51356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowitz, Astrid A1 - Wu, Cheng-Chieh A1 - Helmerich, Rosemarie A1 - Hille, Falk A1 - Kadoke, Daniel A1 - Gründer, Klaus-Peter A1 - Hauser, S. A1 - Schwarzinger, H. ED - Bland, S. T1 - Impact on a micro-reinforced UHPC: Experimental studies versus numerical modeling N2 - Within the presented research project, experimental and numerical investigations were performed to develop a thin-shelled, modular, mobile element system made of a micro-reinforced ultra-high-performance ductile concrete (DUCON®). Material parameters were experimentally determined to adapt the material model within the numerical analysis applying the Drucker-Prager relationship. Afterwards, for validation of the numerical models, quasi-static and high-velocity impact tests were performed on plate-like structures. Finally, a suitable geometry of transportable barrier elements will be designed, which provides a maximum of resistance against impact by a minimum of weight and a maximum of mobility. KW - UHPC KW - Impact KW - DUCON® KW - Quasi-static and dynamic tests KW - Micro-reinforcement KW - Ductility KW - Mobile elements KW - Numerical modeling KW - Stereo photogrammetry KW - Compressive strength KW - E-modulus PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S2214785319305115?dgcid=author DO - https://doi.org/10.1016/j.matpr.2019.03.152 SN - 2214-7853 VL - 12 IS - 2 SP - 474 EP - 483 PB - Elsevier Ltd CY - Amsterdam AN - OPUS4-48181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhuyan, Md Delwar Hossain A1 - Le Touz, N. A1 - Gautier, G. A1 - Döhler, M. A1 - Hille, Falk A1 - Dumoulin, J. A1 - Mevel, L. T1 - Load vector based damage localization with rejection of the temperature effect N2 - The Stochastic Dynamic Damage Locating Vector (SDDLV) approach is a vibration-based damage localization method based on both a finite element model of a structure and modal parameters estimated from output-only measurements in the damage and reference states. A statistical version of the Approach takes into account the inherent uncertainty due to noisy measurement data. In this paper, the effect of temperature fluctuations on the performance of the method is analyzed in a model-based approach using a finite element model with temperature dependent parameters. Robust damage localization is carried out by rejecting the temperature influence on the identified modal parameters in the damaged state. The algorithm is illustrated on a simulated structure. T2 - 8. International Operational Modal Analysis Conference CY - Kopenhagen, Denmark DA - 12. Mai 2019 KW - SDDLV KW - Load vector KW - Temperature rejection KW - Statistical evaluation PY - 2019 SP - 1 EP - 10 AN - OPUS4-48182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -