TY - CONF A1 - Auersch, Lutz T1 - Zur Prognose von Erschütterungen aus Bahntunneln N2 - Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. T2 - Wiener Dynamik Tage 2021 CY - Vienna, Austria DA - 22.07.2021 KW - Erschütterungsausbreitung KW - Tunnel KW - Halbraum KW - Vollraum PY - 2021 AN - OPUS4-53254 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Aspekte der Erschütterungsprognose bei Bahnlinien: Quasi-Statik und Achsfolge, unregelmäßiger Schotter und Boden, Wellenausbreitung bei Tunneln und Besonderheiten bei Bürogebäuden N2 - Erschütterungen, die durch Eisenbahnverkehr erzeugt werden, breiten sich durch den Erdboden aus und regen benachbarte Gebäude zu Schwingungen an. Es wurde ein Prognoseverfahren für Bahnerschütterungen ent-wickelt, das mit einfachen Modellen schnell Ergebnisse liefert. Dies sind physikalische Modelle, zum Beispiel 1-dimensionale Modelle mit Übertragungsmatrizen für die Fahrzeug-Fahrweg-Boden-Wechselwirkung und für die Gebäude-Boden Wechselwirkung. Damit werden die komplexen Verhältnisse bei der Emission (dem Zusammen¬wirken von Fahrzeug und Fahrweg), bei der Transmission durch den homogenen oder geschichteten Boden und bei der Immission in Gebäuden näherungsweise erfasst. In (Auersch, 2020) wird gezeigt, dass diese einfachen Prognosemodelle die Ergebnisse von detaillierten Modellen wie der Finite-Element-Randelement-Methode für das Gleis, die Wellenzahlintegrale für den Boden und 3-dimensionale Finite-Element-Modelle für das Gebäude gut wiedergeben können. Dies entspricht auch der Absicht, die Prognosemodelle aus den Ergebnissen der Detailmodelle abzuleiten. Die drei Prognoseteile werden getrennt berechnet, aber es werden physikalisch sinn¬volle Schnittstellen verwendet. Für die Emission und Transmission sind es die auf den Untergrund wirkenden Erregerkräfte von Fahrzeug und Fahrweg, für die Transmission und Immission sind es die Freifeldamplituden des Bodens. T2 - 17. D-A-CH Tagung Erdbebeningenieurwesen und Baudynamik CY - Online meeting DA - 16.09.2021 KW - Erschütterungen KW - Emission KW - Transmission KW - Immission PY - 2021 SP - 17 EP - 18 PB - ETH Zürich CY - Zürich AN - OPUS4-53313 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Aspekte der Erschütterungsprognose bei Bahnlinien: Quasi-Statik und Achsfolge, unregelmäßiger Schotter und Boden, Wellenausbreitung bei Tunneln und Besonderheiten bei Bürogebäuden N2 - Erschütterungen, die durch Eisenbahnverkehr erzeugt werden, breiten sich durch den Erdboden aus und regen benachbarte Gebäude zu Schwingungen an. Es wurde ein Prognoseverfahren für Bahnerschütterungen ent-wickelt, das mit einfachen Modellen schnell Ergebnisse liefert. Dies sind physikalische Modelle, zum Beispiel 1-dimensionale Modelle mit Übertragungsmatrizen für die Fahrzeug-Fahrweg-Boden-Wechselwirkung und für die Gebäude-Boden Wechselwirkung. Damit werden die komplexen Verhältnisse bei der Emission (dem Zusammen¬wirken von Fahrzeug und Fahrweg), bei der Transmission durch den homogenen oder geschichteten Boden und bei der Immission in Gebäuden näherungsweise erfasst. In (Auersch, 2020) wird gezeigt, dass diese einfachen Prognosemodelle die Ergebnisse von detaillierten Modellen wie der Finite-Element-Randelement-Methode für das Gleis, die Wellenzahlintegrale für den Boden und 3-dimensionale Finite-Element-Modelle für das Gebäude gut wiedergeben können. Dies entspricht auch der Absicht, die Prognosemodelle aus den Ergebnissen der Detailmodelle abzuleiten. Die drei Prognoseteile werden getrennt berechnet, aber es werden physikalisch sinn¬volle Schnittstellen verwendet. Für die Emission und Transmission sind es die auf den Untergrund wirkenden Erregerkräfte von Fahrzeug und Fahrweg, für die Transmission und Immission sind es die Freifeldamplituden des Bodens. T2 - 17. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik CY - Online meeting DA - 16.09.2021 KW - Erschütterungen KW - Emission KW - Transmission KW - Immission PY - 2021 AN - OPUS4-53314 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Das Prognosetool der BAM zur Emission, Transmission und Immission von Bahnerschütterungen N2 - Die gesamte Prognose wurde rechnerisch erfasst. Die Rechenverfahren sind einfach und schnell. Die Emission und die Immission verwendet Übertragungsmatrizen. Die Transmissionsrechnung beruht auf der Dispersion der Rayleighwelle. Die Verknüpfung erfolgt über die Anregungskraft auf den Boden und über die Freifeldamplitude am Gebäude. Es sind viele Eingabemöglichkeiten für Messdaten vorgesehen. Messungen können von einem Ort auf einen anderen Ort übertragen werden. T2 - 98. Sitzung des Normausschusses "Schwingungsminderung in der Umgebung von Verkehrswegen" CY - Online meeting DA - 07.05.2020 KW - Bahnerschütterungen KW - Prognose KW - Übertragungsmatrizen KW - Rayleighwellendispersion PY - 2020 AN - OPUS4-50748 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Berechnung der Erschütterungsminderung von Eisenbahngleisen mit ein- und zweidimensionalen Modellen N2 - Eindimensionale Modelle des Gleises aus einem Schienenstützpunkt, zweidimensionale Modelle enthalten die Kraftverteilung der Schiene. Eindimensionale Modelle machen einen Fehler, weil sie eine zu große Fahrzeugmasse berücksichtigen. Man kann jedoch bei der Berechnung der Minderungswirkung von Gleiselementen eindimensionale Gleismodelle verwenden, um die Kraftübertragung des Gleises bzw. die Minderungswirkung des Gleises zu berechnen. Die Wechselwirkung mit dem Fahrzeug kann einfach mit der dynamischen Stützpunktsteifigkeit berechnet werden. Dabei muss die Stützpunktsteifigkeit mit einer charakteristischen Gleislänge multipliziert werden, die frequenz- und systemabhängig ist. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Munich, Germany DA - 14.01.2020 KW - Richtige Fahrzeugmasse KW - Erschütterungsminderung KW - Elastische Gleiselemente KW - Rechenverfahren PY - 2020 AN - OPUS4-50268 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - Wellenmessungen zur Identifikation der dynamischen Eigenschaften von Böden N2 - Erschütterungen durch Industrie und Verkehr, Schwingungen von Gebäuden, Fundamenten und Gleisen hängen im hohen Maße vom jeweiligen unterliegenden Boden ab. Die Eigenschaften des Bodens ermitteln wir mit Wellenmessungen vor Ort. Die Wellen werden in der Regel mit einem Impulshammer erzeugt und mit Geophonen als Schwinggeschwindigkeits-signale gemessen. Geophone sind aktive Sensoren, die eine kleine Messspannung liefern. Ein 72-kanaliges Messsystem mit entsprechenden Messverstärkern ist im Messwagen der Arbeitsgruppe eingebaut. Es werden im Vortrag fünf verschiedene Auswertemethoden vorgestellt. Im einfachsten Fall versucht man die Laufzeit von einem Geophon zum andern auszumessen und damit die vorherrschende Wellengeschwindigkeit zu ermitteln. Wir haben Wellengeschwindigkeiten von 30 m/s für Moorboden bis 1000 m/s für Felsboden gemessen. Der Boden hat aber nicht nur eine Wellengeschwindigkeit, sondern mehrere frequenzabhängige Wellen-geschwindigkeiten. Dadurch wird aus einem kurzen Hammerschlag eine längere Schwingung (Zerstreuung, Dispersion). Für die Auswertung von dispersiven Wellen nutzt man die spektrale Analyse, zunächst mit zwei Aufnehmern (SASW Spectral Analysis of Surface Waves), später mit einer ganzen Messachse (Multi-Station SASW). Schließlich kann man eine ganze Messachse auch mit verschiedenen Transformationsmethoden auswerten wie die f,v-Methode und Spatial AutoCorrelation SPAC Methode. Alle diese Methoden wurden von uns auf Messreisen in Deutschland, Österreich und der Schweiz getestet. Durch die Approximation der frequenzabhängigen Wellengeschwindigkeiten erhält man ein passendes Bodenmodell. Zu diesem Bodenmodell kann man die Übertra¬gungsfunktionen für Hammer- und Zuganregung berechnen. Bei etlichen Mess¬orten wurden deutliche Merkmale einer Bodenschichtung beobachtet. Es ergibt sich eine Reduktion der tiefen Frequenzanteile durch den steifen unterliegenden Halbraum. Die weiche Deckschicht bestimmt das hochfrequente Verhalten. T2 - Vortragsseminar der BAM-Abteilung 7 Bauwerkssicherheit CY - Berlin, Germany DA - 27.8.2019 KW - Wellenausbreitung KW - Spektralanalyse KW - Wellengeschwindigkeit PY - 2019 AN - OPUS4-48866 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Wirksamkeit und Berechenbarkeit von elastischen Gebäudelagerungen N2 - Es wird die Vorgehensweise erläutert wie die Notwendigkeit einer elastischen Gebäudelagerung geprüft wird. Es werden die Möglichkeiten und Schwächen vereinfachter Rechenverfahren dargestellt. Es folgen weitere Beispiele detaillierter Gebäudemodelle und ihres Schwingungsverhaltens. Schließlich greift eine aktuelle Bachelorarbeit die Fragestellung komplexen Gebäudeschwingungsverhaltens auf. Die letzte Folie zeigt dazu Gebäudemodelle, die an die konkreten Erschütterungsprognosen anknüpfen. T2 - Elastische Gebäudelagerungen CY - Berlin, Germany DA - 23.5.2019 KW - Gebäudemodelle KW - Gebäudeschwingungen KW - elastische Gebäudelagerungen PY - 2019 AN - OPUS4-48089 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Adam, C. T1 - Bahnerschütterungen bei verschiedenen Böden und Zuggeschwindigkeiten – Messungen in Deutschland, Österreich und der Schweiz N2 - Die Bundesanstalt für Materialforschung und -prüfung hat in den letzten 30 Jahren an vielen Orten Bahnerschütterungen gemessen. Dabei wurden immer auch Versuche zur Bestimmung der Bodeneigen-schaften durchgeführt, meist mit Hammeranregung, gelegentlich auch mit Schwingeranregung. Es werden verschiedene Auswertemethoden wie Seismogramm-Montage, Spektrale Analyse (SASW), Multistation Analysis of Surface Waves (MASW), f,v-Analyse (Dispersion aus zweifacher Fourier-Analyse), Spatial AutoCorrelation (SPAC, hier auch für deterministische Quellen) vorgestellt. Durch Approximation der frequenzabhängigen Wellengeschwindigkeiten (Dispersion) oder der gemessenen Übertragungsfunktionen erhält man ein passendes Bodenmodell. Zu diesem Bodenmodell kann man dann die Übertragungsfunktionen für Hammer- und Zuganregung berechnen. Mit allgemeinen oder spezifischen Achslastspektren werden dann die Bahnerschütterungen prognostiziert und mit den Messergebnissen verglichen. Bei etlichen Messorten, insbesondere in der Schweiz, wurden deutliche Merkmale einer Bodenschichtung beobachtet. Es ergibt sich eine deutliche Reduktion der tiefen Frequenzanteile durch den steifen unterliegenden Halbraum. Die weiche Deckschicht bestimmt das hochfrequente Verhalten. Hier bewirkt die Materialdämpfung des Bodens oft einen starken Amplitudenabfall, sowohl mit der Entfernung als auch mit der Frequenz. Für den verbleibenden mittelfrequenten Anteil wurde an mehreren Messorten die Amplituden-Fahrgeschwindigkeits-Gesetzmäßigkeiten untersucht. Es gibt konstante bis stark ansteigende Amplituden, und es zeigt sich auch hier, dass der geschichtete Boden von entscheidender Bedeutung ist. T2 - 16. D-A-CH Tagung Erdbebeningenieurwesen & Baudynamik (D-A-CH 2019) CY - Innsbruck, Austria DA - 26.09.2019 KW - Wellengeschwindigkeit KW - Dispersionsmessung KW - Bodenübertragungsfunktion KW - Bahnerschütterungen KW - Zuggeschwindigkeit PY - 2019 SP - 1 EP - 8 PB - Universität Innsbruck CY - Innsbruck AN - OPUS4-49441 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Bahnerschütterungen bei verschiedenen Böden und Zuggeschwindigkeiten – Messungen in Deutschland, Österreich und der Schweiz N2 - Die Bundesanstalt für Materialforschung und -prüfung hat in den letzten 30 Jahren an vielen Orten Bahnerschütterungen gemessen. Dabei wurden immer auch Versuche zur Bestimmung der Bodeneigen-schaften durchgeführt, meist mit Hammeranregung, gelegentlich auch mit Schwingeranregung. Es werden verschiedene Auswertemethoden wie Seismogramm-Montage, Spektrale Analyse (SASW), Multistation Analysis of Surface Waves (MASW), f,v-Analyse (Dispersion aus zweifacher Fourier-Analyse), Spatial AutoCorrelation (SPAC, hier auch für deterministische Quellen) vorgestellt. Durch Approximation der frequenzabhängigen Wellengeschwindigkeiten (Dispersion) oder der gemessenen Übertragungsfunktionen erhält man ein passendes Bodenmodell. Zu diesem Bodenmodell kann man dann die Übertragungsfunktionen für Hammer- und Zuganregung berechnen. Mit allgemeinen oder spezifischen Achslastspektren werden dann die Bahnerschütterungen prognostiziert und mit den Messergebnissen verglichen. Bei etlichen Messorten, insbesondere in der Schweiz, wurden deutliche Merkmale einer Bodenschichtung beobachtet. Es ergibt sich eine deutliche Reduktion der tiefen Frequenzanteile durch den steifen unterliegenden Halbraum. Die weiche Deckschicht bestimmt das hochfrequente Verhalten. Hier bewirkt die Materialdämpfung des Bodens oft einen starken Amplitudenabfall, sowohl mit der Entfernung als auch mit der Frequenz. Für den verbleibenden mittelfrequenten Anteil wurde an mehreren Messorten die Amplituden-Fahrgeschwindigkeits-Gesetzmäßigkeiten untersucht. Es gibt konstante bis stark ansteigende Amplituden, und es zeigt sich auch hier, dass der geschichtete Boden von entscheidender Bedeutung ist. T2 - 16. D-A-CH Tagung Erdbebeningenieurwesen & Baudynamik (D-A-CH 2019) CY - Innsbruck, Austria DA - 26.09.2019 KW - Zuggeschwindigkeit KW - Wellengeschwindigkeit KW - Dispersionsmessung KW - Bodenübertragungsfunktion KW - Bahnerschütterungen PY - 2019 AN - OPUS4-49445 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Berechnung und Beeinflussung von Deckeneigenfrequenzen N2 - Es werden Erfahrungen zur Berechnung von Deckeneigenfrequenzen aus zahlreichen Projekten zusammengetragen. T2 - Projektbesprechung zum Hotelneubau CY - Berlin, Germany DA - 10.07.2019 KW - Deckeneigenfrequenzen PY - 2019 AN - OPUS4-49448 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -