TY - CONF A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Said, Samir A1 - Baeßler, Matthias ED - Curbach, M. ED - Marx, S. ED - Scheerer, S. ED - Hampel, T. T1 - Structural Health Monitoring der Maintalbrücke Gemünden zur Unterstützung einer prädiktiven Instandhaltung N2 - Nach den bisherigen Regeln werden Bauwerksprüfungen von Brücken in starr definierten Intervallen durchgeführt. Diese starre, periodische, zustandsbasierte Instandhaltungsstrategie soll zukünftig durch eine flexible und prädiktive Instandhaltung ersetzt werden. Hierbei sollen Inspektionen und Instandhaltungsmaßnahmen unterstützt durch autonome Systeme auf der Grundlage von Monitoringdaten geplant und zusätzlich bei unvorhergesehenen Ereignissen ausgelöst werden. Im Rahmen des Verbundforschungsvorhabens AISTEC wird ein Vorgehen für Großbauwerke und kleinere Regelbauwerke zur Umsetzung eines kombinierten globalen, schwingungsbasierten und quasistatischen Monitorings entworfen. An der Maintalbrücke Gemünden – einer semiintegralen Rahmenbrücke aus Spannbeton auf der Schnellfahrstrecke Hannover–Würzburg – wurde als Demonstrator ein Dauermonitoring realisiert. T2 - 11. Symposium Experimentelle Untersuchungen von Baukonstruktionen (SEUB) CY - Online meeting DA - 08.03.2021 KW - Structural Health Monitoring KW - Umwelteinflüsse KW - Prädiktive Instandhaltung PY - 2021 UR - https://tu-dresden.de/bu/bauingenieurwesen/imb/ressourcen/dateien/veranstaltungen/seub/11-seub-2021/2021_SEUB11_06_Herrmann_et_al.pdf?lang=de VL - 55 SP - 66 EP - 76 PB - Technische Universität Dresden CY - Dresden AN - OPUS4-52810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - Strukturschwingungen und Schwingungsminderung - Bauwerksmodelle, Messungen vor Ort und auf dem Versuchsgelände der BAM T1 - Structural Vibrations and Vibration Reduction Building Models, On-site Measurements and Test Site of the BAM N2 - Die Grundidee einer Schwingungsminderung ist es eine tiefe Eigenfrequenz der Struktur zu erreichen, so dass höhere Frequenzen abgemindert werden. Das gilt für die Minderung an der Quelle, zum Beispiel einem Eisenbahngleis, und für die Minderung am Empfänger, dem Gebäude. Die Eigenfrequenz ermittelt man aus dem Verhältnis der Auflagersteifigkeit und der Masse. Wie ist die Masse bei einem Gebäude zu wählen? Und wie ist die Untergrundsteifigkeit zu berücksichtigen? Als Referenzsituation ohne Minderungsmaßnahme? Der Beitrag bringt Rechenergebnisse zu abgefederten Gebäuden mit einfachen und komplexen (FE-) Modellen, Mess- und Rechenergebnisse zur Schwingungsübertragung von unabgefederten Gebäuden. Es wird der Einfluss der Abstimmfrequenz, der Bodensteifigkeit und der „starren“ Gebäudemasse untersucht. Die komplexen Gebäudemodelle erlauben, neben der Berechnung einer elastischen Gebäudelagerung, auch die Variation von Gebäudeparametern zur Reduktion der Deckenschwingungen. Den Ergebnissen bei der Erschütterungs-übertragung in Gebäude werden zwei ähnliche Beispiele zur elastischen Maschinenlagerung und zur elastischen Gleislagerung gegenübergestellt. T2 - 6. VDI Fachtagung Baudynamik CY - Würzburg, Germany DA - 17.04.2018 KW - Rechenmodelle KW - Elastische Gebäudelagerung PY - 2018 SN - 978-3-18-092321-5 SN - 0083-5560 VL - 2321 SP - 421 EP - 434 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-45471 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -