TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Cagtay A1 - Rethmeier, Michael A1 - Ratkovac, Mirjana A1 - Thiele, Marc A1 - Baeßler, Matthias T1 - Innovative Design- und Fertigungsstrategien zur Steigerung der Leichtbaupotenziale im Stahlbau N2 - Offshore wind energy plays an important role for the desired transition towards a carbon dioxide free industry within the next decades. However, the grounding of the offshore wind plants governs the overall installation process besides bureaucratic bottlenecks. The application of lightweight principles in steel construction, e.g. the usage dissolved load-bearing structures, so called Jackets foundations, offer great potential in reducing the resource consumption, especially with respect to the needed amount of steel. In this context this presentation focuses on a fully digitalization of the welding manufacturing and as well as testing chain to enable a fully automated manufacturing as well as quality assessment of tubular nodes as key element of Jackets foundation structures. Furthermore, the relationship between the seam shape geometry and resulting fatigue strength is evaluated by numerical methods incorporating bionic principles. It is shown that tubular nodes can be welded fully automatically taking geometry tolerances into account. Moreover, the seam shape could be manufactured as requested by the numerical models which offers great potential for an extended lifetime. Subsequently, the improvements in resource efficiency and reduction of carbon dioxide emissions are evaluated by a life-cycle-assessment. T2 - Leichtbau in der Hauptstadtregion - Rohstoffe - Recycling - Rohstoffe: Kreislaufwirtschaft im Leichtbau CY - Berlin, Germany DA - 28.11.2022 KW - Offshore Windenergie KW - Gründungsstrukturen KW - Leichtbau KW - Automatisierte schweißtechnische Fertigung PY - 2022 AN - OPUS4-56657 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -