TY - CONF A1 - Schneider, Ronald T1 - Belastungsversuch und Methodenvalidierung an der Maintalbrücke Gemünden N2 - Im Projekt AISTEC wurden Methoden entwickelt, die der prädiktiven Instandhaltung von Ingenieurbauwerken dienen. Zur Validierung dieser Methoden wurden an einem Referenzbauwerk - der Maintalbrücke Gemünden - Belastungstests durchgeführt. T2 - Abschlussveranstaltung AISTEC CY - Berlin, Germany DA - 02.05.2022 KW - Belastungsfahrt KW - GNSS KW - Einflusslinien PY - 2022 AN - OPUS4-55496 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick T1 - Bayesian system identification of a reinforced concrete beam subject to temperature variations based on static response data N2 - Changes in the measured response of structural systems can be an indication of structural damages. However, such changes can also be caused by the effect of varying environmental conditions. To detect, localize and quantify changes or damages in structural systems subject to varying environmental conditions, physics-based models of the structural systems have to be applied which explicitly account for the influence of ambient conditions on the structural behavior. Data obtained from the structural systems should be used to calibrate the models and update predictions. Bayesian system identification is an effective framework for this task. In this paper, we apply this framework to learn the parameters of two competing structural models of a reinforced concrete beam subject to varying temperatures based on static response data. The models describe the behavior of the beam in the uncracked and cracked condition. The data is collected in a series of load tests in a climate chamber. Bayesian model class selection is then applied to infer the most plausible condition of the beam conditional on the available data. T2 - Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) CY - Online meeting DA - 11.04.2021 KW - Bayesian system identification KW - Reinforced concrete KW - Damage identification KW - Environmental effects KW - Structural health monitoring KW - Structural systems PY - 2021 AN - OPUS4-52812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias ED - Yokota, H. ED - Frangopol, D. M. T1 - Bayesian system identification of a reinforced concrete beam subject to temperature variations based on static response data N2 - Changes in the measured response of structural systems can be an indication of structural damages. However, such changes can also be caused by the effect of varying environmental conditions. To detect, localize and quantify changes or damages in structural systems subject to varying environmental conditions, physics-based models of the structural systems have to be applied which explicitly account for the influence of ambient conditions on the structural behavior. Data obtained from the structural systems should be used to calibrate the models and update predictions. Bayesian system identification is an effective framework for this task. In this paper, we apply this framework to learn the parameters of two competing structural models of a reinforced concrete beam subject to varying temperatures based on static response data. The models describe the behavior of the beam in the uncracked and cracked condition. The data is collected in a series of load tests in a climate chamber. Bayesian model class selection is then applied to infer the most plausible condition of the beam conditional on the available data. T2 - Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) CY - Online meeting DA - 11.04.2021 KW - Structural systems KW - Bayesian system identification KW - Damage identification KW - Environmental effects KW - Structural health monitoring PY - 2021 DO - https://doi.org/10.1201/9780429279119-125 SP - 934 EP - 941 PB - CRC Press AN - OPUS4-52809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titscher, Thomas A1 - van Dijk, T. A1 - Kadoke, Daniel A1 - Robens-Radermacher, Annika A1 - Herrmann, Ralf A1 - Unger, Jörg F. T1 - Bayesian model calibration and damage detection for a digital twin of a bridge demonstrator N2 - Using digital twins for decision making is a very promising concept which combines simulation models with corresponding experimental sensor data in order to support maintenance decisions or to investigate the reliability. The quality of the prognosis strongly depends on both the data quality and the quality of the digital twin. The latter comprises both the modeling assumptions as well as the correct parameters of these models. This article discusses the challenges when applying this concept to realmeasurement data for a demonstrator bridge in the lab, including the data management, the iterative development of the simulation model as well as the identification/updating procedure using Bayesian inference with a potentially large number of parameters. The investigated scenarios include both the iterative identification of the structural model parameters as well as scenarios related to a damage identification. In addition, the article aims at providing all models and data in a reproducibleway such that other researcher can use this setup to validate their methodologies. KW - Damage detection KW - Finite element analysis KW - Load identification KW - Model updating KW - Estimation KW - System identification KW - Variational Bayesian statistics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574496 DO - https://doi.org/10.1002/eng2.12669 SN - 2577-8196 SP - 1 EP - 27 PB - Wiley CY - Hoboken, NJ AN - OPUS4-57449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Signorini, C. A1 - Bracklow, F. A1 - Hering, Marcus A1 - Butler, M. A1 - Leicht, L. A1 - Schubert, T. A1 - Beigh, M. A. B. A1 - Beckmann, B. A1 - Curbach, M. A1 - Mechtcherine, V. T1 - Ballistic limit and damage assessment of hybrid fibre-reinforced cementitious thin composite plates under impact loading N2 - Impact resistance of reinforced concrete (RC) structures can be significantly improved by strengthening RC members with thin composite layers featuring high damage tolerance. Indeed, to limit the well-known vulnerability of cement-based materials against impact loading, the synergistic effects of short fibres and continuous textile meshes as hybrid reinforcement has been proved to be highly beneficial. This paper addresses the characterisation of novel cement-based hybrid composites through accelerated drop-weight impact tests conducted on rectangular plates at different impact energies. Two distinct matrices are assessed, with particular interest in a newly developed limestone calcined clay cement (LC3)-based formulation. Important parameters quantifying energy dissipation capability, load bearing capacity and damage are cross-checked to compute the ballistic limit and estimate the safety-relevant characteristics of the different composites at hand. Although textiles alone can improve the damage tolerance of fine concrete to some extent, the crack-bridging attitude of short, well-dispersed fibres in hybrid composites imparts a certain ductility to the cement-based matrices, allowing a greater portion of the textile to be activated and significantly reducing the amount of matrix spalling under impact. KW - Impact loading KW - Cement-based composites KW - SHCC KW - TRC KW - Sustainable binders PY - 2023 DO - https://doi.org/10.1016/j.jobe.2023.108037 VL - 80 SP - 1 EP - 21 PB - Elsevier Ltd. AN - OPUS4-58793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baeßler, Matthias A1 - Simon, Patrick T1 - Ballasted track on vibrating bridge decks: physical mechanisms, empirical findings, and a proposal for assessment N2 - This paper summarizes the key findings and physical mechanisms and provides information on open questions and the assessment of railway bridge superstructure vibrations. Bridges are classic disruption points on a railway track. If bridge superstructures are dynamically excited by train traffic, the vertical accelerations of the track must be considered. For a ballasted track, this can lead to the destabilization of the ballast track, as the bridge superstructure acts like a vibrating table. In this respect, the paper explains in more detail what is meant by destabilization, when this destabilization occurs and how various influencing parameters such as acceleration amplitude, the vibration sequence and frequency affect its occurrence. In the InBridge4EU project, gaps in knowledge such as the effect of single impulse loads are being investigated experimentally. A new test facility has been set up for this purpose, the initial results of which are presented here. An essential element in the assessment of this scenario is the stability of the track under high compression forces with simultaneous dynamic excitation of the superstructure. A new approach for the assessment of bridge vibrations with respect to lateral stability is presented. KW - Railway bridge dynamics KW - Bridge deck acceleration KW - Ballast destabilization KW - Lateral track stability KW - Track buckling PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630972 DO - https://doi.org/10.1142/S0219455425400243 SN - 0219-4554 SN - 1793-6764 IS - 2540024 SP - 1 EP - 27 PB - World Scientific CY - Singapore AN - OPUS4-63097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit T1 - Assessment of the Application of Scaling Concepts for Blast Effects Analysis N2 - Blast testing finds its implementation in several applications, e.g. for the purpose of investigation into accidental or intentional explosions, or for an assessment of the level of protection provided by a certain structural configuration. Analytical and/or semi-empirical methods are generally limited to preliminary assessments prior to blast testing. Applications of numerical simulations with hydrocodes coupled with finite element methods (FEM) can only reduce the amount of blast testing required, as these necessitate fulfillment of the fundamental prerequisites of model verification and that of model validation. Field tests are implemented for contact detonations as well as near-field blast scenarios and shock tube tests for far-field blast scenarios. However, these can be extremely resource intensive. Reliable small-scale experiments are a promising alternative. The concepts of dimensional analysis and similarity based on Buckingham’s Π-theorem (1914) have been applied in different fields. For applications to the phenomenon of shock wave propagation, Hopkinson-Cranz or cube-root scaling is a well-established concept. When it comes to scaling the structural response, research has predominantly focused on structures made of metallic materials. Scaled investigations with concrete or reinforced concrete (RC) structures remain limited. The lack of even the most basic guidelines (far from any ‘standardized scaling methods’ for blast tests) show that scaling as a method is not yet established in blast effects analysis. In this preliminary study, we present a systematic approach and evaluation of scaling of blast effects analysis for RC slabs in order to develop guidelines for resource efficient testing methods. We study the blast scenario at two different scales. The focus of these investigations has been on evaluation of scaling of dynamics using pressure sensors, acceleration sensors and fiber optic sensing cables for distributed acoustic sensing (DAS). Further, the resulting plastic behavior upon blast is characterized by distributed strain sensing (DSS) along the same cables. T2 - 27th International Symposium on Military Aspects of Blast and Shock (MABS27) CY - Colmar, France DA - 06.10.2025 KW - Blast KW - RC-slabs KW - Similarity and scaling PY - 2025 AN - OPUS4-64616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit A1 - Costard, Rene A1 - Hering, Marcus A1 - Chruscicki, Sebastian A1 - Hicke, Konstantin A1 - Hüsken, Götz T1 - Assessment of the Application of Scaling Concepts for Blast Effects Analysis N2 - Blast testing finds its implementation in several applications, e.g. for the purpose of investigation into accidental or intentional explosions, or for an assessment of the level of protection provided by a certain structural configuration. Analytical and/or semi-empirical methods are generally limited to preliminary assessments prior to blast testing. Applications of numerical simulations with hydrocodes coupled with finite element methods (FEM) can only reduce the amount of blast testing required, as these necessitate fulfillment of the fundamental prerequisites of model verification and that of model validation. Field tests are implemented for contact detonations as well as near-field blast scenarios and shock tube tests for far-field blast scenarios. However, these can be extremely resource intensive. Reliable small-scale experiments are a promising alternative. The concepts of dimensional analysis and similarity based on Buckingham’s Π-theorem (1914) have been applied in different fields. For applications to the phenomenon of shock wave propagation, Hopkinson-Cranz or cube-root scaling is a well-established concept. When it comes to scaling the structural response, research has predominantly focused on structures made of metallic materials. Scaled investigations with concrete or reinforced concrete (RC) structures remain limited. The lack of even the most basic guidelines (far from any ‘standardized scaling methods’ for blast tests) show that scaling as a method is not yet established in blast effects analysis. In this preliminary study, we present a systematic approach and evaluation of scaling of blast effects analysis for RC slabs in order to develop guidelines for resource efficient testing methods. We study the blast scenario at two different scales. The focus of these investigations has been on evaluation of scaling of dynamics using pressure sensors, acceleration sensors and fiber optic sensing cables for distributed acoustic sensing (DAS). Further, the resulting plastic behavior upon blast is characterized by distributed strain sensing (DSS) along the same cables. T2 - 27th International Symposium on Military Aspects of Blast and Shock (MABS27) CY - Colmar, France DA - 06.10.2025 KW - Similarity and scaling KW - Blast KW - RC-slabs PY - 2025 SP - 1 EP - 11 AN - OPUS4-64617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liao, Chun-Man T1 - Assessment of prestress loss in a large-scale concrete bridge model under outdoor condition N2 - The presentation shows that subtle variations in coda wave velocity can capture minor temperature effects, offering a good understanding of how a outdoor prestressed concrete structure responds to environmental conditions over time. Ultimately, this work contributes to development of more comprehensive and resilient structural health monitoring strategies for prestressed concrete infrastructure. T2 - EVACES 2025 CY - Porto, Portugal DA - 02.07.2025 KW - Coda wave interferometry KW - Damage detection KW - Prestress loss KW - Seismic interferometry KW - Structural health monitoring PY - 2025 AN - OPUS4-64211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liao, Chun-Man A1 - Bernauer, F. A1 - Niederleithinger, Ernst A1 - Igel, H. A1 - Hadziioannou, C. T1 - Assessment of prestress loss in a large-scale concrete bridge model under outdoor condition N2 - Environmental conditions affect the accuracy of field measurements used to monitor civil structures. Previous studies have shown that measured dynamic responses often lack the sensitivity needed for effective localized damage detection. To address this issue, our study focuses on distinguishing environmental effects from damage related effects in measured data to enhance vibration-based damage identification methods. Experimentally, the problem of prestress loss in a prestressed concrete bridge model was examined. By adjusting the pre-stressing force in a large-scale concrete bridge model, cracking phenomena were observed. To demonstrate field monitoring of a large-scale prestressed structure, noise recording was performed and the measurement data was analyzed with operational modal analysis. Additionally, ultrasonic testing, known for its high sensitivity in damage localization, was used to cross-check the structural damage. Seismic and coda wave interferometry were also employed to estimate wave velocities, providing insights into the level of prestress loss and temperature sensitivity. Ultimately, these measurable wave properties help to overcome the uncertainties associated with traditional vibration-based damage detection methods. T2 - EVACES 2025 CY - Porto, Portugal DA - 02.07.2025 KW - Prestress Loss KW - NDT KW - Ambient Vibration KW - Ultrasonic Testing KW - Coda Wave Interferometry KW - Seismic Interferometry PY - 2025 SN - 978-3-031-96105-2 DO - https://doi.org/10.1007/978-3-031-96106-9_20 VL - 675 SP - 181 EP - 189 PB - Springer Nature CY - Cham AN - OPUS4-64212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -