TY - CONF A1 - Agasty, Amit T1 - Replica scaling of RC slabs under blast loading: a preliminary assessment N2 - Blast testing is undoubtedly the most straightforward and direct method of evaluating the blast resistance of a structure. For the calibration and validation of numerical models as well, blast tests must be carried out. However, true-scale prototype testing under different blast loading scenarios is not always feasible. Reliable small-scale experiments are a promising alternative. Application of dimensional analysis and similarity principals can be found in different engineering fields. For applications to the phenomenon of shock wave propagation, Hopkinson-Cranz or cube-root scaling is a well-established concept. When it comes to the scaling the structural response, research has predominantly focused on structures made of metallic materials. Scaled investigations with concrete or reinforced concrete (RC) structures remain limited, specifically under blast loading. In a preliminary study, we tested RC slabs at two different scales under near-field blast loading. Replica scaling, which is geometrical scaling while using the same materials at different scales, was implemented in the construction of the test specimens. The assessment of scaling and the discrepancy in its application was investigated by characterizing the blast loads, dynamic response, and damage. The experiments were supplemented by numerical simulations of these scenarios. The quantification of scenario-and-response-specific discrepancy can be used to modify the scaling laws, so that a blast assessment can be performed based on resource efficient small-scale tests. T2 - 25th International Physical Security Forum CY - Schwarzenburg, Switzerland DA - 11.05.2025 KW - Blast KW - RC slabs KW - Scaling PY - 2025 AN - OPUS4-63184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit T1 - A Preliminary Study on the Scaling of RC Structures under Blasting Loading N2 - Current capabilities for full-scale field blast testing are highly resource intensive. Reliable small-scale experiments are an effective alternative. Characterization of the dynamic response and damage of RC elements to scaled blast loads was investigated in scaled-down field experiments. Spatially resolved information on the dynamic structural response to blast loading was obtained using distributed fiber optic acoustic sensing (DAS), acceleration sensors as well as piezoelectric pressure sensors. T2 - 46. Informationstagung Sprengtechnik CY - Siegen, Germany DA - 25.04.2025 KW - Explosives KW - Blast and scaling effects KW - Concrete PY - 2025 AN - OPUS4-62994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit T1 - Assessment of the Application of Scaling Concepts for Blast Effects Analysis N2 - Blast testing finds its implementation in several applications, e.g. for the purpose of investigation into accidental or intentional explosions, or for an assessment of the level of protection provided by a certain structural configuration. Analytical and/or semi-empirical methods are generally limited to preliminary assessments prior to blast testing. Applications of numerical simulations with hydrocodes coupled with finite element methods (FEM) can only reduce the amount of blast testing required, as these necessitate fulfillment of the fundamental prerequisites of model verification and that of model validation. Field tests are implemented for contact detonations as well as near-field blast scenarios and shock tube tests for far-field blast scenarios. However, these can be extremely resource intensive. Reliable small-scale experiments are a promising alternative. The concepts of dimensional analysis and similarity based on Buckingham’s Π-theorem (1914) have been applied in different fields. For applications to the phenomenon of shock wave propagation, Hopkinson-Cranz or cube-root scaling is a well-established concept. When it comes to scaling the structural response, research has predominantly focused on structures made of metallic materials. Scaled investigations with concrete or reinforced concrete (RC) structures remain limited. The lack of even the most basic guidelines (far from any ‘standardized scaling methods’ for blast tests) show that scaling as a method is not yet established in blast effects analysis. In this preliminary study, we present a systematic approach and evaluation of scaling of blast effects analysis for RC slabs in order to develop guidelines for resource efficient testing methods. We study the blast scenario at two different scales. The focus of these investigations has been on evaluation of scaling of dynamics using pressure sensors, acceleration sensors and fiber optic sensing cables for distributed acoustic sensing (DAS). Further, the resulting plastic behavior upon blast is characterized by distributed strain sensing (DSS) along the same cables. T2 - 27th International Symposium on Military Aspects of Blast and Shock (MABS27) CY - Colmar, France DA - 06.10.2025 KW - Blast KW - RC-slabs KW - Similarity and scaling PY - 2025 AN - OPUS4-64616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit T1 - Skalierung von Sprengversuchen N2 - Eine Machbarkeitsstudie zur ressourceneffizienten sicherheitstechnischen Bewertung. T2 - 25. Internationalen Symposium des Bundeskriminalamtes für Sprengstoffermittelnde und Entschärfende unkonventioneller Spreng- und Brandvorrichtungen CY - Magdeburg, Germany DA - 01.12.2025 KW - Sicherheitstechnische Bewertung KW - Sprengversuche KW - Skalierung KW - Numerische Simulationen PY - 2025 AN - OPUS4-65019 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit A1 - Costard, Rene A1 - Hering, Marcus A1 - Chruscicki, Sebastian A1 - Hicke, Konstantin A1 - Hüsken, Götz T1 - Assessment of the Application of Scaling Concepts for Blast Effects Analysis N2 - Blast testing finds its implementation in several applications, e.g. for the purpose of investigation into accidental or intentional explosions, or for an assessment of the level of protection provided by a certain structural configuration. Analytical and/or semi-empirical methods are generally limited to preliminary assessments prior to blast testing. Applications of numerical simulations with hydrocodes coupled with finite element methods (FEM) can only reduce the amount of blast testing required, as these necessitate fulfillment of the fundamental prerequisites of model verification and that of model validation. Field tests are implemented for contact detonations as well as near-field blast scenarios and shock tube tests for far-field blast scenarios. However, these can be extremely resource intensive. Reliable small-scale experiments are a promising alternative. The concepts of dimensional analysis and similarity based on Buckingham’s Π-theorem (1914) have been applied in different fields. For applications to the phenomenon of shock wave propagation, Hopkinson-Cranz or cube-root scaling is a well-established concept. When it comes to scaling the structural response, research has predominantly focused on structures made of metallic materials. Scaled investigations with concrete or reinforced concrete (RC) structures remain limited. The lack of even the most basic guidelines (far from any ‘standardized scaling methods’ for blast tests) show that scaling as a method is not yet established in blast effects analysis. In this preliminary study, we present a systematic approach and evaluation of scaling of blast effects analysis for RC slabs in order to develop guidelines for resource efficient testing methods. We study the blast scenario at two different scales. The focus of these investigations has been on evaluation of scaling of dynamics using pressure sensors, acceleration sensors and fiber optic sensing cables for distributed acoustic sensing (DAS). Further, the resulting plastic behavior upon blast is characterized by distributed strain sensing (DSS) along the same cables. T2 - 27th International Symposium on Military Aspects of Blast and Shock (MABS27) CY - Colmar, France DA - 06.10.2025 KW - Similarity and scaling KW - Blast KW - RC-slabs PY - 2025 SP - 1 EP - 11 AN - OPUS4-64617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit A1 - Costard, René T1 - Dynamic response of reinforced concrete (RC) components in scaled-down blast tests N2 - Current capabilities for full-scale field testing are highly resource intensive. Reliable small-scale experiments are an effective alternative. Characterization of the dynamic response and damage of RC elements to scaled blast loads was investigated in scaled-down field experiments. Spatially resolved information on the dynamic structural response using distributed fiber optic acoustic sensing (DAS) and acceleration as well as blast loading by piezoelectric pressure sensors. T2 - 45. Informationstagung Sprengtechnik CY - Siegen, Germany DA - 05.04.2024 KW - Blast tests KW - Reinforced concrete KW - Acceleration sensors PY - 2024 AN - OPUS4-59808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit A1 - Hering, Marcus T1 - Eine Machbarkeitsstudie zur Skalierung von Sprengversuchen an Stahlbetonbauteilen N2 - Sprengversuche sind erforderlich, um Explosionsereignisse auf Grund von Unfällen oder Anschlägen zu untersuchen und um das Schutzniveau für Menschen und Anlagen in kritischen Infrastrukturen zu bewerten. Die Durchführung von Feldversuchen in großem Maßstab für komplexe Szenarien ist sehr ressourcenintensiv. Verlässliche Experimente im kleinen Maßstab sind eine vielversprechende Alternative. Die Skalierungsgesetze für die Bemessung von Stahlbetonkonstruktionen unter Explosionsbelastung sind jedoch nicht hinreichend etabliert. Die Forschungsarbeit fokussiert sich auf Stahlbetonstrukturen, die für die Standardisierung von skalierten Sprengversuchen in Frage kommen. Im Rahmen der Machbarkeitsstudie wurden auf dem TTS-Gelände Sprengversuche an Probekörpern unterschiedlicher Größe durchgeführt. Dabei wurden verschiedene horizontal gelagerte Stahlbetonplatten getestet und unterschiedlichen Explosionsbelastungen ausgesetzt. Die Sprengversuche umfassten verschiedene Messtechniken zur Quantifizierung der Explosionslast sowie des Verhaltens der Stahlbetonplatten. Die Explosionslast wurde mit bündig eingebauten piezoelektrischen Druckmessern gemessen, während Beschleunigungssensoren und flächig applizierte verteilte faseroptische Sensorik verwendet wurden, um das dynamische Verhalten der Platte unter Explosionsbelastung zu charakterisieren. Darüber hinaus wurden Schädigungsmerkmale ebenfalls mit verteilter faseroptischer Sensorik ermittelt. Die Anwendung solcher Messtechniken sowie die Nutzung verschiedener numerischer Softwaretools bieten die Möglichkeit die Skalierungsgesetze zu verifizieren bzw. anzupassen. T2 - BBK - Fachkongress Forschung für den Bevölkerungsschutz 2025 CY - Bonn, Germany DA - 05.02.2025 KW - Sprengversuch KW - Skalierung KW - Faseroptik PY - 2025 AN - OPUS4-62509 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit A1 - Hering, Marcus T1 - Experimental and Numerical Analysis of Reinforced Concrete Structures Under Blast Loading: Scopes and Challenges N2 - Protection against terrorist or accidental scenarios in industrial settings requires suitable designs of structures to resist blast loads. Field testing as well as finite element simulations are among the techniques available to engineers in the understanding of the structural behavior against blast loading. As blast testing of complex scenarios can be very resource intensive, tests are generally performed for simplified scenarios. Numerical tools can be used to model these scenarios in order to get a better insight into blast loading, structural response and the resulting damage to the structure. In the next steps, the simplified scenario is successively modified in numerical simulations to incorporate complexities that cannot be covered in blast testing experiments. One of the conditions for this approach to work is that the original simplified numerical simulation is valid. The scopes and challenges encountered in such a validation are the focus of this presentation. A relatively ‘simple’ field test of a horizontal reinforced concrete (RC) slab subjected to blast loading is taken as an example for validation of the performance of numerical tools. The blast test incorporated various measurement techniques to quantify the blast load as well as the behavior of the RC slab. Blast load was measured using flush-mounted piezoelectric pressure gauges, whereas acceleration sensors and fiber-optic sensor cables were used to characterize the dynamic behavior of the slab under blast loading. Additionally, damage characteristics were ascertained also using fiber-optic sensing. The application of such measurement techniques, along with different numerical software available for the analysis of the scenario in question, demonstrate the scope of our contribution. T2 - 24th International Physical Security Forum Brussels CY - Brussels, Belgium DA - 15.04.2024 KW - Blast KW - Reinforced Concrete Structures KW - Numerical simulations PY - 2024 AN - OPUS4-60880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Appel, S. A1 - Schepers, Winfried T1 - Tieffrequente Schwingungsimmissionen durch den Betrieb einer Rohzementmühle N2 - Der Beitrag berichtet von einer aufwändigen Messkampagne vor Ort, mit der die Emissionen direkt an einer Rohzementmühle, die Transmissionen im Baugrund und die Immissionen in benachbarten Bebauungen genauer untersucht wurden. Im Ergebnis der ausgewerteten Messungen sowie strukturdynamischer Berechnungen zeigte sich, dass der Baugrund zwar aus statischer Sicht sehr gut tragfähig, aber dynamisch als eher ungünstig zu beurteilen ist. Weiterhin wurde festgestellt, dass in dynamischer Hinsicht ein vorgenommener Bodenaustausch tendenziell eine Verschlechterung der Aufstellbedingungen darstellte. Für das betroffene Bürogebäude konnte nachgewiesen werden, dass durch den Betrieb der Zementmühle die Anregung der Deckeneigenfrequenzen zu deutlich spürbaren Resonanzschwingungen führte. Aufgrund der tieffrequenten Anregung durch den Mühlenbetrieb sind Maßnahmen zur Minderung der Schwingungsemissionen generell und insbesondere nach erfolgter Aufstellung der Mühle schwer bzw. gar nicht zu realisieren. Im Beitrag wird daher darauf eingegangen, auf welche Aspekte bei der Planung zur Aufstellung derart großer Mühlen zwingend zu achten ist. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.04.2022 KW - Erschütterungen KW - Maschinenbetrieb KW - Minderungsmaßnahmen PY - 2022 SN - 978-3-18-092379-6 SP - 385 EP - 397 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-58584 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni T1 - Modeling the Relationship between Weld Pool Dynamics and Centerline Solidification Cracking in High Power Laser Beam Welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and two thermal imaging cameras is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs above 10 mm penetration depth. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root. T2 - Gastvortrag an der Universität Innsbruck, Institut für Konstruktion und Materialwissenschaften CY - Innsbruck, Austria DA - 18.06.2023 KW - Laser beam welding KW - Centerline solidification cracking KW - Bulging KW - Numerical simulation PY - 2024 AN - OPUS4-60333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -