TY - CONF A1 - Agasty, Amit A1 - Costard, René A1 - Hering, Marcus A1 - Hüsken, Götz A1 - Chruscick, Sebastian A1 - Hicke, Konstantin T1 - Dynamic response of reinforced concrete (RC) components in scaled-down blast tests N2 - Current capabilities for full-scale field testing are highly resource intensive. Reliable small-scale experiments are an effective alternative. Characterization of the dynamic response and damage of RC elements to scaled blast loads was investigated in scaled-down field experiments. Spatially resolved information on the dynamic structural response using distributed fiber optic acoustic sensing (DAS) and acceleration as well as blast loading by piezoelectric pressure sensors. T2 - 45. Informationstagung Sprengtechnik CY - Siegen, Germany DA - 05.04.2024 KW - Blast tests KW - Reinforced concrete KW - Acceleration sensors PY - 2024 AN - OPUS4-59808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glienke, R. A1 - Kalkowsky, F. A1 - Hobbacher, A. F. A1 - Holch, A. A1 - Thiele, Marc A1 - Marten, F. A1 - Kersten, R. A1 - Henkel, K.-M. T1 - Evaluation of the fatigue resistance of butt‑welded joints in towers of wind turbines - A comparison of experimental studies with small scale and component tests as well as numerical based approaches with local concepts N2 - Wind turbines are exposed to a high number of load cycles during their service lifetime. Therefore, the fatigue strength verification plays an important role in their design. In general, the nominal stress method is used for the fatigue verification of the most common used butt-welded joints. The Eurocode 3 part 1–9 is the current design standard for this field of application. This paper presents recent results of fatigue tests on small-scaled specimens and large components with transverse butt welds to discuss the validity of the FAT-class. Furthermore, results from numerical simulations for the verification with the effective notch stress and the crack propagation approach are used for comparison. Based on the consistency between the numerical results and the fatigue tests, the influence of the seam geometry on the fatigue resistance was investigated. Finally, a prediction of the fatigue strength of butt-welded joints with plate thicknesses up to 80 mm was carried out. KW - Transverse butt weld KW - Weld imperfections KW - Wind turbine tower KW - Fatigue strength KW - Local approaches KW - Large components KW - Wind energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596648 DO - https://doi.org/10.1007/s40194-023-01630-3 SN - 1878-6669 SP - 1 EP - 26 PB - Springer CY - Berlin AN - OPUS4-59664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ratkovac, Mirjana A1 - Gerards-Wünsche, Paul A1 - Thiele, Marc A1 - Brackrock, Daniel A1 - Stamm, Michael T1 - Detection and monitoring of the fatigue crack growth on welds – Application-oriented use of NDT methods N2 - Early detection of fatigue cracks and accurate measurements of the crack growth play an important role in the maintenance and repair strategies of steel structures exposed to cyclic loads during their service life. Observation of welded connections is especially of high relevance due to their higher susceptibility to fatigue damage. The aim of this contribution was to monitor fatigue crack growth in thick welded specimens during fatigue tests as holistically as possible, by implementing multiple NDT methods simultaneously in order to record the crack initiation and propagation until the final fracture. In addition to well-known methods such as strain gauges, thermography, and ultrasound, the crack luminescence method developed at the Bundesanstalt für Materialforschung und -prüfung (BAM), which makes cracks on the surface particularly visible, was also used. For data acquisition, a first data fusion concept was developed and applied in order to synchronize the data of the different methods and to evaluate them to a large extent automatically. The resulting database can ultimately also be used to access, view, and analyze the experimental data for various NDT methods. During the conducted fatigue tests, the simultaneous measurements of the same cracking process enabled a comprehensive comparison of the methods, highlighting their individual strengths and limitations. More importantly, they showed how a synergetic combination of different NDT methods can be beneficial for implementation in large-scale fatigue testing but also in monitoring and inspection programs of in-service structures - such as the support structures of offshore wind turbines. T2 - Fatigue Design 2023 (FatDes 2023) CY - Senlis, France DA - 29.11.2023 KW - Fatigue KW - Welded KW - NDT KW - Crack growth PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600238 DO - https://doi.org/10.1016/j.prostr.2024.03.062 VL - 57 SP - 560 EP - 568 PB - Elsevier B.V. AN - OPUS4-60023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Balscheit, Hagen T1 - Soil Embedded Piles - Reference Tests for Model Validation N2 - This presentation shows buckling tests on embedded piles conducted within the VERBATIM project. The generated data may serve as a valuable validation basis for numerical buckling design verification of Windenergy foundations in terms of the GMNIA concept. T2 - Buckling of Offshore Wind Energy Structures : 2-Day Buckling Colloquium CY - Berlin, Germany DA - 14.02.2024 KW - Wind Energy KW - Shell Buckling KW - Offshore Structures KW - GMNIA PY - 2024 AN - OPUS4-59536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Costard, René A1 - Agasty, Amit A1 - Hering, Marcus A1 - Hüsken, Götz A1 - Hicke, Konstantin T1 - Auswirkungsbetrachtungen auf Strukturen T1 - Scaling of Blast Effects on Reinforced Concrete Structures N2 - Protection against terroristic or accidental scenarios in industrial settings requires suitable designs of structures to resist blast loads. Field testing as well as finite element simulations are among the techniques available to engineers in the understanding of the structural behavior against blast loading. As blast testing of complex scenarios can be very resource intensive, tests are generally performed for simplified scenarios. Numerical tools can be used to model these scenarios to get better insight into blast loading, structural response, and the resulting damage to the structure. During the next steps, the simplified scenario is successively modified in numerical simulations to incorporate complexities that cannot be covered in blast testing experiments. One of the conditions for this approach to work is that the original simplified numerical simulation is valid. The scopes and challenges encountered in such a validation are the focus of this presentation/article. A relatively ‘simple’ field test of a horizontal reinforced concrete (RC) slab subjected to blast loading is taken as an example for validation of the performance of numerical tools. The blast test incorporated various measurement techniques to quantify the blast load as well as the behavior of the RC slab. Blast load was measured using flush mounted piezoelectric pressure gauges, whereas acceleration sensors and fiber-optic sensor cables were used to characterize the dynamic behavior of the slab under blast loading. Additionally, damage characteristics were ascertained also using fiber optic sensing. The application of such measurement techniques, along with different numerical software available for the analysis of the scenario in question, demonstrate the scope of our contribution. When it comes to the challenges, it begins with proper instrumentation of the test specimen followed by the data processing. For numerical modelling, geometric conditions with appropriate boundary constraints, physical conditions such as the configuration of the rebars, as well as material parameters add to this challenge. The issues of choosing appropriate material models and comparison of results with multiple software tools will be discussed. This discussion forms the basis for a coherent approach to technical-safety assessment of blast effects on structures in its broader sense. T2 - Beiratssitzung Infrastruktur CY - Berlin, Germany DA - 11.04.2024 KW - Blast KW - Scaling KW - Fiber optic sensing KW - CFD KW - FEM PY - 2024 AN - OPUS4-59849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kemmler, Samuel T1 - Simulating Piping Erosion in Suction Buckets N2 - This presentation gives an overview of the recent achievements in simulating piping erosion during the installation process of suction bucket foundations for offshore wind turbines. The physical correctness of the code is validated, and the simulation code's performance on the LUMI supercomputer is presented. The simulation results are compared to experimental data. T2 - Forschungsbesuch CY - Aix-en-Provence, France DA - 14.05.2024 KW - Offshore wind turbine KW - Suction bucket KW - Coupled fluid-particle simulation KW - High-performance computing PY - 2024 AN - OPUS4-60136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kemmler, Samuel A1 - Cuéllar, Pablo A1 - Köstler, Harald T1 - A Fluid Solid Coupled Micromechanical Simulation of Piping Erosion During the Installation of a Suction Bucket for the Foundation of an Offshore Wind Turbine N2 - We present our approach and methodology for simulating piping erosion, which occurs during the installation process of suction bucket foundations for offshore wind turbines. We show several simulations and analyze the hydrodynamic and contact forces acting on the granular fabric and the differential pressure of the fluid phase. We demonstrate weak scaling performance on the LUMI supercomputer with a parallel efficiency of up to 90% for 4096 Graphics Compute Dies. T2 - 9th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) CY - Lisbon, Potugal DA - 03.06.2024 KW - Offshore wind turbine KW - Suction bucket KW - Coupled fluid-particle simulation KW - High-performance computing PY - 2024 AN - OPUS4-60207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pirskawetz, Stephan A1 - Bösche, Thomas A1 - Carstens, Ole A1 - Hille, Falk A1 - Holst, Ralph A1 - Käding, Max A1 - Kaplan, Felix A1 - Löhr, Manuel A1 - Richter, Walter A1 - Saloga, Katrin A1 - Schmidt, Sebastian A1 - Sodeikat, Christian A1 - Thenikl, Thomas T1 - Richtlinie SE 05 Detektion von Spanndrahtbrüchen mit Schallemissionsanalyse N2 - Dieses Dokument beschreibt das Verfahren Schallemissionsanalyse zur Detektion von Spanndrahtbrüchen in Spannbetonbrücken im Rahmen einer kontinuierlichen Überwachung. Die Überwachung mit Schallemission liefert eine Aussage über die Anzahl von Spanndrahtbrüchen innerhalb des Überwachungszeitraumes und innerhalb der Reichweite der installierten Sensoren. Mit dem Verfahren können die Spanndrahtbrüche lokalisiert werden. Auf Basis einer weitgehend automatisierten Datenanalyse stehen Informationen über Drahtbrüche kurzfristig nach dem Ereignis zur Verfügung. Der Anwendungsbereich des Dokuments umfasst Brücken- und Ingenieurbauwerke mit Spanndrähten mit sofortigem oder nachträglichem Verbund. Spannsysteme ohne Verbund fallen nicht in den Anwendungsbereich. Die beschriebenen Verfahren können auf Spannsysteme ohne Verbund übertragen werden. Mit dem Verfahren Schallemissionsanalyse ist es nicht möglich, Spanndrahtbrüche zu finden, die vor dem Beginn der Überwachung entstanden sind. Das Dokument richtet sich an Baulastträger, Anbieter und Betreiber von Monitoringsystemen auf Basis der Schallemissionsanalyse sowie Ingenieurbüros, welche die Ergebnisse der Überwachung bewerten und Maßnahmen daraus ableiten. Es gibt Hinweise zur Planung, Ausschreibung, Installation und zum Betrieb von Monitoringsystemen zur Detektion von Spanndrahtbrüchen mit Schallemission sowie zur Überprüfung der Funktion installierter Systeme. Zur Funktionskontrolle werden Signale mit der Referenzquelle am Bauwerk ausgelöst. Diese Signale sind zu detektieren, innerhalb der vorgegebenen Genauigkeit zu lokalisieren und die vorgegebene Alarmkette muss angestoßen werden. KW - Schallemission KW - Brücke KW - Spannbeton KW - Spannstahlbruch PY - 2024 SN - 978-3-947971-34-3 SP - 1 EP - 33 PB - DGZfP CY - Berlin AN - OPUS4-60679 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Morgenthal, Guido ED - Cha, Young-Jin T1 - A Bayesian Probabilistic Framework for Building Models for Structural Health Monitoring of Structures Subject to Environmental Variability N2 - Managing aging engineering structures requires damage identification, capacity reassessment, and prediction of remaining service life. Data from structural health monitoring (SHM) systems can be utilized to detect and characterize potential damage. However, environmental and operational variations impair the identification of damages from SHM data. Motivated by this, we introduce a Bayesian probabilistic framework for building models and identifying damage in monitored structures subject to environmental variability. The novelty of our work lies (a) in explicitly considering the effect of environmental influences and potential structural damages in the modeling to enable more accurate damage identification and (b) in proposing a methodological workflow for model‐based structural health monitoring that leverages model class selection for model building and damage identification. The framework is applied to a progressively damaged reinforced concrete beam subject to temperature variations in a climate chamber. Based on deflections and inclinations measured during diagnostic load tests of the undamaged structure, the most appropriate modeling approach for describing the temperature‐dependent behavior of the undamaged beam is identified. In the damaged state, damage is characterized based on the identified model parameters. The location and extent of the identified damage are consistent with the cracks observed in the laboratory. A numerical study with synthetic data is used to validate the parameter identification. The known true parameters lie within the 90% highest density intervals of the posterior distributions of the model parameters, suggesting that this approach is reliable for parameter identification. Our results indicate that the proposed framework can answer the question of damage identification under environmental variations. These findings show a way forward in integrating SHM data into the management of infrastructures. KW - Verkehrsinfrastukturen KW - SHM KW - Model Updating KW - Environmental and Operational Variability KW - Damage Identification KW - Model Building PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605027 DO - https://doi.org/10.1155/2024/4204316 SN - 1545-2255 VL - 2024 IS - 1 SP - 1 EP - 23 PB - Wiley AN - OPUS4-60502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schepers, Winfried A1 - Brinkgreve, RBJ A1 - Appel, S. T1 - Recommendations on finite element modelling of non-seismic excitation in soil-structure interaction problems N2 - Nowadays geotechnical engineering firms have powerful software tools to extent their consult-ing business also into dynamic soil-structure interaction, which before has been restricted to a rather small community of specialized experts in this field, and they certainly do. This is par-ticularly true with respect to non-seismic sources, that is all kinds of human induced vibrations. Hence, there is a demand from clients as well as from contractors to have guidance on the re-quirements as well as the limits of numerical modelling of soil-structure interaction. From the literature as well as from relevant standards, recommendations for the numerical modelling of soil-structure interaction problems involving seismic actions are well known, e. g. ASCE/SEI 4-16. There are, however, some particularities when dealing with human-induced vibrations, which are absent in seismic analyses. For human-induced excitations very little specific guid-ance has been published in the past. A machine foundation on a homogeneous half space ex-cited by harmonic loads with excitation frequency between 4 Hz and 64 Hz has been ana-lysed by means of several commercially available software packages. Parametric studies have been performed to verify if recommendations for seismic soil-structure analyses are valid for non-seismic analyses as well. This paper provides details on the benchmark example and the most important conclusions from the undertaken parametric studies. T2 - XII International Conference on Structural Dynamics CY - Delft, Netherlands DA - 02.07.2023 KW - Numerische Analysen KW - Referenzbeispiel KW - Maschinenfundament KW - Wellenausbreitung PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604931 DO - https://doi.org/10.1088/1742-6596/2647/8/082014 SN - 1742-6596 VL - 2647 IS - 25 SP - 1 EP - 13 PB - IOP Publishing AN - OPUS4-60493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -