TY - CONF A1 - Strangfeld, Christoph A1 - Stolpe, Heiko A1 - Wiehle, Philipp T1 - Moisture diffusion affected by the Knudsen effect in temporal changing pore networks N2 - Almost all building materials in civil engineering have an open porosity and interact with or are affected by the environmental conditions. Structures might suffer from effects such as moisture adsorption, carbonation, corrosion, penetration of salt ions and chemical substances, etc. In the hygroscopic range, these processes are mostly driven by diffusion. Due to the confinement of small pores (< 1 µm), the Knudsen effect reduces the molecular diffusion. This reduction can become more significant in case of temporal changing pore systems because of physisorption of water vapor, carbonation, or chemisorption. In this study, unstabilised earth blocks and earth masonry are investigated. In a first step, the pore size distribution of the blocks is measured and sorption isotherms are recorded in experiments. Besides the ordinary physisorption, the involved clay minerals undergo swelling or shrinking due to chemisorption. The following two effects must be considered: first, the reduction of the available pore space by the adsorbed water layer. For this, the Hillerborg sorption theory is used, which is a combination of the well-known Brunauer-Emmett-Teller sorption theory and the Kelvin equation. This allows the computation of adsorbed water layers even in curved pore geometries. Second, the variation of the initial pore size distribution due to chemisorption needs to be modelled. Based on these two models, the effective diffusion coefficient can be predicted. For validation, arrays of relative humidity sensors were embedded into a free-standing earth masonry wall. This monitoring was carried out over more than a year to have a broad variety of environmental conditions and was located in Berlin, Germany. The prediction of the effective diffusion coefficient can also be transferred to other processes and allows the investigation of materials having temporarily changing pore systems. Examples are the carbonation of cementitious materials, alkali silica reaction, calcium leaching of long-lasting structures, etc. This effect becomes most prominent in the meso-pore range and might alter the effective diffusion coefficient by more than 100 %. T2 - 4th International Congress on Materials & Structural Stability CY - Rabat, Morocco DA - 08.03.2023 KW - Earth masonry KW - Material moisture KW - Molecular diffusion KW - Chemisoprtion KW - Knudsen effect KW - Physisorption PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571391 SP - 1 EP - 8 PB - RILEM CY - Champs-sur-Marne AN - OPUS4-57139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Stolpe, Heiko A1 - Wiehle, Philipp T1 - Moisture diffusion affected by the Knudsen effect in temporal changing pore networks N2 - Almost all building materials in civil engineering have an open porosity and interact with or are affected by the environmental conditions. Structures might suffer from effects such as moisture adsorption, carbonation, corrosion, penetration of salt ions and chemical substances, etc. In the hygroscopic range, these processes are mostly driven by diffusion. Due to the confinement of small pores ( 1 m), the Knudsen effect reduces the molecular diffusion. This reduction can become more significant in case of temporal changing pore systems because of physisorption of water vapor, carbonation, or chemisorption. In this study, unstabilised earth blocks and earth masonry are investigated. In a first step, the pore size distribution of the blocks is measured and sorption isotherms are recorded in experiments. Besides the ordinary physisorption, the involved clay minerals undergo swelling or shrinking due to chemisorption. The following two effects must be considered: first, the reduction of the available pore space by the adsorbed water layer. For this, the Hillerborg sorption theory is used, which is a combination of the well-known Brunauer-Emmett-Teller sorption theory and the Kelvin equation. This allows the computation of adsorbed water layers even in curved pore geometries. Second, the variation of the initial pore size distribution due to chemisorption needs to be modelled. Based on these two models, the effective diffusion coefficient can be predicted. For validation, arrays of relative humidity sensors were embedded into a free-standing earth masonry wall. This monitoring was carried out over more than a year to have a broad variety of environmental conditions and was located in Berlin, Germany. The prediction of the effective diffusion coefficient can also be transferred to other processes and allows the investigation of materials having temporarily changing pore systems. Examples are the carbonation of cementitious materials, alkali silica reaction, calcium leaching of long-lasting structures, etc. This effect becomes most prominent in the meso-pore range and might alter the effective diffusion coefficient by more than 100 %. T2 - 4th International Congress on Materials & Structural Stability CY - Rabat, Morocco DA - 08.03.2023 KW - Earth masonry KW - Material moisture KW - Molecular diffusion KW - Chemisoprtion KW - Knudsen effect KW - Physisorption PY - 2023 AN - OPUS4-57140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas T1 - Design of offshore jacket support structure for experimental fatigue life evaluation N2 - One crucial metric of interest to wind farm operators is the remaining useful life (RUL) of single components, wind turbines, or even entire wind farms. Occasionally, questions arise regarding how to operate a turbine, even in the presence of manufacturing or design errors, which from a computational design standpoint reduce the remaining lifetime below the intended service life. A typical measure involves adapting the monitoring and inspection plan. Using such a maintenance plan, the author intends to simulate the lifetime of jacket-type structure in a fatigue test. The objective of the experiment is to demostrate that systems like three-dimensional jackets possess redundancies that enable reliable continued operation, despite the reduced fatigue life of individual components due to technical flaws, if an appropriate maintenance concept is in place. This presentation discusses the steps leading to the procedure of the experiment including the design process and the maintenance planning. T2 - 19th eawe PhD Seminar CY - Hannover, Germany DA - 06.09.2023 KW - Offshore wind energy KW - Jacket support structure KW - Simulation and experiment KW - Structural integrity management KW - Risk-based maintenance planning PY - 2023 AN - OPUS4-58240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Costard, René A1 - Agasty, Amit A1 - Hering, Marcus A1 - Hüsken, Götz A1 - Hicke, Konstantin T1 - Auswirkungsbetrachtungen auf Strukturen T1 - Scaling of Blast Effects on Reinforced Concrete Structures N2 - Protection against terroristic or accidental scenarios in industrial settings requires suitable designs of structures to resist blast loads. Field testing as well as finite element simulations are among the techniques available to engineers in the understanding of the structural behavior against blast loading. As blast testing of complex scenarios can be very resource intensive, tests are generally performed for simplified scenarios. Numerical tools can be used to model these scenarios to get better insight into blast loading, structural response, and the resulting damage to the structure. During the next steps, the simplified scenario is successively modified in numerical simulations to incorporate complexities that cannot be covered in blast testing experiments. One of the conditions for this approach to work is that the original simplified numerical simulation is valid. The scopes and challenges encountered in such a validation are the focus of this presentation/article. A relatively ‘simple’ field test of a horizontal reinforced concrete (RC) slab subjected to blast loading is taken as an example for validation of the performance of numerical tools. The blast test incorporated various measurement techniques to quantify the blast load as well as the behavior of the RC slab. Blast load was measured using flush mounted piezoelectric pressure gauges, whereas acceleration sensors and fiber-optic sensor cables were used to characterize the dynamic behavior of the slab under blast loading. Additionally, damage characteristics were ascertained also using fiber optic sensing. The application of such measurement techniques, along with different numerical software available for the analysis of the scenario in question, demonstrate the scope of our contribution. When it comes to the challenges, it begins with proper instrumentation of the test specimen followed by the data processing. For numerical modelling, geometric conditions with appropriate boundary constraints, physical conditions such as the configuration of the rebars, as well as material parameters add to this challenge. The issues of choosing appropriate material models and comparison of results with multiple software tools will be discussed. This discussion forms the basis for a coherent approach to technical-safety assessment of blast effects on structures in its broader sense. T2 - Beiratssitzung Infrastruktur CY - Berlin, Germany DA - 11.04.2024 KW - Blast KW - Scaling KW - Fiber optic sensing KW - CFD KW - FEM PY - 2024 AN - OPUS4-59849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kemmler, Samuel T1 - Simulating Piping Erosion in Suction Buckets N2 - This presentation gives an overview of the recent achievements in simulating piping erosion during the installation process of suction bucket foundations for offshore wind turbines. The physical correctness of the code is validated, and the simulation code's performance on the LUMI supercomputer is presented. The simulation results are compared to experimental data. T2 - Forschungsbesuch CY - Aix-en-Provence, France DA - 14.05.2024 KW - Offshore wind turbine KW - Suction bucket KW - Coupled fluid-particle simulation KW - High-performance computing PY - 2024 AN - OPUS4-60136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias ED - Alexander, M.G. ED - Beushausen, H. ED - Dehn, F. ED - Moyo, P. T1 - Workability and mechanical properties of ultrafine cement based grout for structural rehabilitation: A parametric study on the partial replacement with SCMs N2 - Grouting is a universal repair and strengthening technique, which is constantly used for structural remediation of concrete components, trenches, mine subsidence, dam joints, restoration of masonry structures, and geological stabilizations. Having an extremely small particle size of only few microns, ultrafine cements are ideal for grouting applications due to their superior permeability and compressive strength properties of the hardened cement paste compared to that of the less-expensive, but coarser ordinary Portland cements. Supplementary cementitious materials (SCMs) are often used to replace ultrafine cement in order to modify certain properties and to reduce costs. The aim of this experimental study is to investigate the effect of three supplementary materials: microsilica (MS), fly ash (FA), and metakaolin (MK) on the workability, and mechanical properties of an ultrafine cement based grout with a constant water-binder ratio and constant superplasticizer content. Maximum percentages of replacement with ultrafine cement were 6% by volume of cement for MS and 16% for FA, and MK. In general, results suggest that the workability is improved by addition of FA, whereas is reduced, when modified with MS and MK. The compressive strength of grout after cement replacement remains comparable to that of pure cement grout. However, there is a tendency of the MS to positively affect the compressive strength opposite to FA, whereas flexural strength is positively affected by FA. Based on the results, it is evident that grouts with Hägerman cone flow more than 500 mm and compressive strength of more than 90 MPa after 28 days can be produced. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) CY - Cape Town, South Africa DA - 19.11.2018 KW - Grouting KW - Repair KW - Box-Behnken KW - Supplementary cementitious materials KW - Analysis of variance PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464769 DO - https://doi.org/10.1051/matecconf/201819907006 SN - 2261-236X VL - 199 SP - 07006-1 EP - 07006-7 PB - MATEC Web of Conferences AN - OPUS4-46476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Long-term mechanical and shrinkage properties of cementitious grouts for structural repair N2 - Grouts have numerous applications in construction industry such as joint sealing, structural repair, and connections in precast elements. They are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23oC and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Grout KW - Long-term shrinkage KW - Micro silica KW - Fly ash KW - Metakaolin PY - 2019 DO - https://doi.org/10.21809/rilemtechlett.2019.82 SN - 2518-0231 VL - 4 SP - 9 EP - 15 PB - RILEM Publications SARL CY - 4 avenue du Recteur Poincaré, 75016 Paris, France AN - OPUS4-48712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Superplasticizer and Shrinkage Reducing Admixture Dosages for Microfine Cement in Grout Systems N2 - Grouts have numerous applications including crack repair as maintenance in construction industries. Microfine cements are intensively used for high strength mortar and grout products. They are ideal for injection grouting in structural repair. Such grouts should have suitable rheological properties to be injectable, especially those used in repair and rehabilitation. The use of superplasticizers (SP) in these products is thus becoming increasingly crucial to achieve favorable workability and viscosity properties. A difficulty in such grouts is the plastic shrinkage due to finer particles used. It is thus necessary to determine optimum SP and shrinkage reducing admixture (SRA) dosages for a microfine cement based grout. In this study, a saturation dosage was decided from two Polycarboxylate ether (PCE) based SPs in relation to neat cement using slump flow and rheological parameters. A range of grout mixtures was formulated containing micro silica (MS) and fly ash (FA), and tested for suitable rheological and mechanical parameters. Based on the results, a grout mixture with MS and FA was selected to determine optimum SRA content. According to the results, a SP dosage of 3% by weight of neat cement is sufficient to achieve saturation. The grout material including MS and FA can produce comparable properties to neat cement grout. MS is found to improve compressive strength within the range considered, whereas a higher FA content provides favourable rheological properties. Finally, a SRA dosage of 4%, which could reduce the shrinkage by about 43% after 28d days, is determined for the grout system. T2 - 2nd International Conference on Building Materials and Materials Engineering (ICBMM 2018) CY - University of Lisbon, Portugal DA - 26.09.2018 KW - Grout KW - Microfine Cement KW - Superplasticizer KW - Supplementary Cementitious Materials KW - Shrinkage Reducing Admixture PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478319 DO - https://doi.org/10.1051/matecconf/201927801001 VL - 278 SP - Article Number 01001 PB - EDP Sciences AN - OPUS4-47831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - A risk-based framework for optimizing inspection and maintenance of deteriorating structures monitored by vibration-based monitoring systems N2 - In this presentation, a framework for integrating vibration-based structural health monitoring data into the optimization of inspection and maintenance of deteriorating structural systems is presented. The framework is demonstrated in an illustrative example considering a steel frame subject to fatigue. T2 - EERA JP Wind WORKSHOP on Ongoing research in offshore wind structures CY - Online meeting DA - 16.09.2021 KW - Structural Health Monitoring KW - Inspection KW - Maintenance KW - Deterioration KW - Vibration KW - Structural Systems PY - 2021 AN - OPUS4-53749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Baeßler, Matthias T1 - Integrating vibration monitoring into risk-based inspection and maintenance planning for deteriorating structural systems N2 - A reliability and risk-based framework for integrating vibration monitoring data in the planning of inspection and maintenance of deteriorating structural systems is discussed and demonstrated in a numerical example. T2 - Wind Energy Science Conference (WESC 2021) CY - Online Meeting DA - 25.05.2021 KW - Deterioration KW - Structural systems KW - Inspection KW - Vibration monitoring KW - Maintenance PY - 2021 AN - OPUS4-52766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -