TY - CONF A1 - Agasty, Amit A1 - Costard, René A1 - Hering, Marcus A1 - Hüsken, Götz A1 - Chruscick, Sebastian A1 - Hicke, Konstantin T1 - Dynamic response of reinforced concrete (RC) components in scaled-down blast tests N2 - Current capabilities for full-scale field testing are highly resource intensive. Reliable small-scale experiments are an effective alternative. Characterization of the dynamic response and damage of RC elements to scaled blast loads was investigated in scaled-down field experiments. Spatially resolved information on the dynamic structural response using distributed fiber optic acoustic sensing (DAS) and acceleration as well as blast loading by piezoelectric pressure sensors. T2 - 45. Informationstagung Sprengtechnik CY - Siegen, Germany DA - 05.04.2024 KW - Blast tests KW - Reinforced concrete KW - Acceleration sensors PY - 2024 AN - OPUS4-59808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni T1 - Modeling the Relationship between Weld Pool Dynamics and Centerline Solidification Cracking in High Power Laser Beam Welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and two thermal imaging cameras is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs above 10 mm penetration depth. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root. T2 - Gastvortrag an der Universität Innsbruck, Institut für Konstruktion und Materialwissenschaften CY - Innsbruck, Austria DA - 18.06.2023 KW - Laser beam welding KW - Centerline solidification cracking KW - Bulging KW - Numerical simulation PY - 2024 AN - OPUS4-60333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Aubram, Daniel T1 - Vorstellung OWA VERBATIM N2 - Das Risiko von Pfahlfussbeulen ist ein wesentlicher Grund für hohe Pfahlwandstärken bei Monopiles. Das Projekt VERBATIM - Verifikation des Beulnachweises und –verhaltens großer Monopiles zielte darauf ab, Beulphänomene zu untersuchen, die sich sowohl auf die plastischen Verformungen der Pfahlspitze während der Installation als auch auf das Beulen des eingebetteten Pfahls in der Nähe des Seebodens beziehen. Auf der Basis aufwändiger Versuche wurden numerische Modelle entwickelt und validiert. Dies ermöglicht ein besseres Verständnis des Beulverhaltens, um die Wanddicke zu reduzieren, was Kosteneinsparungen bei der Stahlmenge sowie die Entwicklung sicherer und optimierter Strukturen erlaubt. Die bisherigen Designverfahren konnten die erfolgreiche Installation der Monopiles gewährleisten. Da die Größe von Monopiles jedoch stetig zunimmt, wird die Entwicklung verbesserter Designverfahren für sichere und kostengünstige Fundamente immer wichtiger. Der Rückenwind-Vortrag gibt eine Übersicht zu den durchgeführten Untersuchungen und Ergebnissen T2 - Rückenwind Aktuelles aus der Windenergieforschung (PTJ) CY - Online meeting DA - 21.06.2024 KW - Offshore Windenergy Pile Buckling PY - 2024 AN - OPUS4-60349 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Balscheit, Hagen A1 - Schepers, Winfried A1 - Victor, Albrecht A1 - Daryaei, Reza A1 - Bianco, Marcelo A1 - Starost, Christina T1 - Close-out Webinar OWA VERBATIM N2 - The risk of pile base buckling is a major reason for high pile wall thicknesses in monopiles. The VERBATIM project - Verification of the buckling detection and behaviour of large monopiles - aimed to investigate buckling phenomena related to both the plastic deformation of the pile tip during installation and the buckling of the embedded pile near the seabed. Numerical models were developed and validated on the basis of extensive tests. This enables a better understanding of the buckling behaviour in order to reduce the wall thickness, which allows cost savings in the amount of steel and the development of safer and optimised structures. The previous design procedures were able to ensure the successful installation of the monopiles. However, as the size of monopiles continues to increase, the development of improved design methods for safe and cost-effective foundations is becoming increasingly important. The presentation provides an overview of the investigations carried out and the results. T2 - Webinar Carbon Trust Offshore Wind Accelerator CY - Online meeting DA - 22.05.2024 KW - Offshore Windenergy Pile Buckling PY - 2024 AN - OPUS4-60348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Schepers, Winfried A1 - Geißler, Peter A1 - Breithaupt, Matthias A1 - Basedau, Frank A1 - Balscheit, Hagen T1 - VERBATIM: Project Introduction and Large Scale Experiments N2 - The presentation summarizes the scope of the joint project VERBATIM on buckling of large Monopiles. The presented work from the authors focusses on the experimental field tests of large predented piles during driving and a numerical investigation on the observed buckling behaviour. T2 - Colloquium „Buckling of Offshore Wind Energy Structures“ CY - Berlin, Germany DA - 14.02.2024 KW - Buckling KW - Offshore KW - Wind Energy Structures KW - Monopiles KW - Pile-Tip-Buckling PY - 2024 AN - OPUS4-59535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Eichner, Lukas A1 - Weise, Sigurd T1 - Digital building management for OWEC-structures N2 - The presentation summarizes the data management and Digital modeling processes in the recurring inspection of wind turbines as developed in DiMoWind-Inspect. T2 - Windforce 2024 CY - Bremerhaven, Germany DA - 10.06.2024 KW - DiMoWind RDS-PP Maintenance Digital Twin Offshore Wind Energy PY - 2024 AN - OPUS4-60351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Weise, Sigurd T1 - Digitalization of Maintenance Processes N2 - Main aspects of Digitalization of Maintenance Processes are summarized and discussed. Introduction to the Windforce2024 session organised by BAM. T2 - Windforce 2024 CY - Bremerhaven, Germany DA - 11.06.2024 KW - Maintenance Digital Twin Offshore Wind Energy PY - 2024 AN - OPUS4-60350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Balscheit, Hagen T1 - Soil Embedded Piles - Reference Tests for Model Validation N2 - This presentation shows buckling tests on embedded piles conducted within the VERBATIM project. The generated data may serve as a valuable validation basis for numerical buckling design verification of Windenergy foundations in terms of the GMNIA concept. T2 - Buckling of Offshore Wind Energy Structures : 2-Day Buckling Colloquium CY - Berlin, Germany DA - 14.02.2024 KW - Wind Energy KW - Shell Buckling KW - Offshore Structures KW - GMNIA PY - 2024 AN - OPUS4-59536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartels, Jan-Hauke A1 - Xu, Ronghua A1 - Kang, Chongjie A1 - Herrmann, Ralf A1 - Marx, Steffen T1 - Experimental Investigation on the Transfer Behavior and Environmental Influences of Low-Noise Integrated Electronic Piezoelectric Acceleration Sensors JF - Metrology N2 - Acceleration sensors are vital for assessing engineering structures by measuring properties like natural frequencies. In practice, engineering structures often have low natural frequencies and face harsh environmental conditions. Understanding sensor behavior on such structures is crucial for reliable masurements. The research focus is on understanding the behavior of acceleration sensors in harsh environmental conditions within the low-frequency acceleration range. The main question is how to distinguish sensor behavior from structural influences to minimize errors in assessing engineering structure conditions. To investigate this, the sensors are tested using a long-stroke calibration unit under varying temperature and humidity conditions. Additionally, a mini-monitoring system configured with four IEPE sensors is applied to a small-scale support structure within a climate chamber. For the evaluation, a signal-energy approach is employed to distinguish sensor behavior from structural behavior. The findings show that IEPE sensors display temperature-dependent nonlinear transmission behavior within the low-frequency acceleration range, with humidity having negligible impact. To ensure accurate engineering structure assessment, it is crucial to separate sensor behavior from structural influences using signal energy in the time domain. This study underscores the need to compensate for systematic effects, preventing the underestimation of vibration energy at low temperatures and overestimation at higher temperatures when using IEPE sensors for engineering structure monitoring. KW - Acceleration sensors KW - Environmental influence KW - IEPE KW - Structural Health Monitoring KW - Low-frequency shaker PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594623 UR - https://www.mdpi.com/2673-8244/4/1/4/ DO - https://doi.org/10.3390/metrology4010004 SN - 2673-8244 VL - 4 IS - 1 SP - 46 EP - 65 PB - MDPI CY - Basel AN - OPUS4-59462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Costard, René A1 - Agasty, Amit A1 - Hering, Marcus A1 - Hüsken, Götz A1 - Hicke, Konstantin T1 - Auswirkungsbetrachtungen auf Strukturen T1 - Scaling of Blast Effects on Reinforced Concrete Structures N2 - Protection against terroristic or accidental scenarios in industrial settings requires suitable designs of structures to resist blast loads. Field testing as well as finite element simulations are among the techniques available to engineers in the understanding of the structural behavior against blast loading. As blast testing of complex scenarios can be very resource intensive, tests are generally performed for simplified scenarios. Numerical tools can be used to model these scenarios to get better insight into blast loading, structural response, and the resulting damage to the structure. During the next steps, the simplified scenario is successively modified in numerical simulations to incorporate complexities that cannot be covered in blast testing experiments. One of the conditions for this approach to work is that the original simplified numerical simulation is valid. The scopes and challenges encountered in such a validation are the focus of this presentation/article. A relatively ‘simple’ field test of a horizontal reinforced concrete (RC) slab subjected to blast loading is taken as an example for validation of the performance of numerical tools. The blast test incorporated various measurement techniques to quantify the blast load as well as the behavior of the RC slab. Blast load was measured using flush mounted piezoelectric pressure gauges, whereas acceleration sensors and fiber-optic sensor cables were used to characterize the dynamic behavior of the slab under blast loading. Additionally, damage characteristics were ascertained also using fiber optic sensing. The application of such measurement techniques, along with different numerical software available for the analysis of the scenario in question, demonstrate the scope of our contribution. When it comes to the challenges, it begins with proper instrumentation of the test specimen followed by the data processing. For numerical modelling, geometric conditions with appropriate boundary constraints, physical conditions such as the configuration of the rebars, as well as material parameters add to this challenge. The issues of choosing appropriate material models and comparison of results with multiple software tools will be discussed. This discussion forms the basis for a coherent approach to technical-safety assessment of blast effects on structures in its broader sense. T2 - Beiratssitzung Infrastruktur CY - Berlin, Germany DA - 11.04.2024 KW - Blast KW - Scaling KW - Fiber optic sensing KW - CFD KW - FEM PY - 2024 AN - OPUS4-59849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -