TY - JOUR A1 - Benseghier, Z. A1 - Cuéllar, Pablo A1 - Luu, L.-H. A1 - Bonelli, S. A1 - Philippe, P. T1 - A parallel GPU-based computational framework for the micromechanical analysis of geotechnical and erosion problems N2 - This article deals with the relevance and practical feasibility of micromechanical simulations for their application to general geomechanical problems involving fluid-saturated granular assemblies, whether frictional or cohesive. A set of conceptual and numerical tools is here presented, advocating for a parallel computation using graphical processing units (GPUs) to treat large numbers of degrees of freedom with conventional Desktop computers. The fluid phase is here simulated with a particle-resolved approach in the frame of the Lattice Botzmann Method (LBM) while the granular solid phase is modelled as a collection of discrete particles from a Molecular Dynamics DEM perspective. The range of possible material behaviours for the solid granular phase is intended here to cover a broad spectrum from purely frictional to viscous cohesive materials with either brittle or transient debonding features. Specific details of the implementation and some validation cases are put forward. Finally, some exemplary applications in the fields of soil erosion and geotechnical profile installation are provided along with a discussion on the parallel performance of the presented models. The results show that a micromechanical approach can be feasible and useful in practice, providing meaningful insights into complex engineering problems like the erosion kinetics of a soil under an impinging jet or the penetration resistance of a deep foundation in a layered soil profile. KW - Offshore geomechanics KW - Erosion KW - Micromechanical modelling KW - LBM-DEM KW - GPU Parallel computing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502309 DO - https://doi.org/10.1016/j.compgeo.2019.103404 VL - 120 SP - Paper 103404, 1 PB - Elsevier Ltd. AN - OPUS4-50230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, W.-H A1 - Tang, D.-H. A1 - Wang, M. A1 - Liu, J.-L. A1 - Li, Z.-H. A1 - Lu, W. A1 - Teng, J. A1 - Said, Samir A1 - Rohrmann, R. G. T1 - Resonance Monitoring of a Horizontal Wind Turbine by Strain-Based Automated Operational Modal Analysis N2 - A strain-based automated operational modal analysis algorithm is proposed to track the long-term dynamic behavior of a horizontal wind turbine under operational conditions. This algorithm is firstly validated by a scaled wind turbine model, and then it is applied to the dynamic strain responses recorded from a 5 MW wind turbine system. We observed variations in the fundamental frequency and 1f, 3f excitation frequencies due to the mass imbalance of the blades and aerodynamic excitation by the tower dam or tower wake. Inspection of the Campbell diagram revealed that the adverse resonance phenomenon and Sommerfeld effect causing excessive vibrations of the wind tower. KW - Strain KW - Automated operational modal analysis KW - Resonance KW - Horizontal wind turbine PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503350 DO - https://doi.org/10.3390/en13030579 VL - 13 IS - 3 SP - 579 EP - 584 PB - MDPI CY - Schweiz, Basel AN - OPUS4-50335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models – each estimated from data measured in a reference state – are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - 21st IFAC World Congress CY - Online meeting DA - 13.07.2020 KW - Linear parameter varying systems KW - Fault detectionchanging KW - Process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524652 DO - https://doi.org/10.1016/j.ifacol.2020.12.868 SN - 2405-8963 VL - 53 IS - 2 SP - 13668 EP - 13673 PB - Elsevier AN - OPUS4-52465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straub, D. A1 - Schneider, Ronald A1 - Bismut, E. A1 - Kim, H.-J. T1 - Reliability analysis of deteriorating structural systems N2 - Reliability analysis of deteriorating structural systems requires the solution of time-variant reliability problems. In the general case, both the capacity of and the loads on the structure vary with time. This analysis can be approached by approximation through a series of time-invariant reliability problems, which is a potentially effective strategy for cases where direct solutions of the time-variant reliability problem are challenging, e.g. for structural systems with many elements or arbitrary load processes. In this contribution, we thoroughly Review the formulation of the equivalent time-invariant reliability problems and extend this approximation to structures for which inspection and monitoring data is available. Thereafter, we present methods for efficiently evaluating the reliability over time. In particular, we propose the combination of sampling-based methods with a FORM (first-order reliability method) approximation of the series system reliability problem that arises in the computation of the lifetime reliability. The framework and algorithms are demonstrated on a set of numerical examples, which include the computation of the reliability conditional on inspection data. KW - Monitoring KW - Reliability KW - Deterioration KW - Structural systems KW - Bayesian analysis KW - Inspection PY - 2020 DO - https://doi.org/10.1016/j.strusafe.2019.101877 VL - 82 SP - Paper 101877, 1 PB - Elsevier Ltd. AN - OPUS4-48952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowitz, Astrid A1 - Wu, Cheng-Chieh A1 - Helmerich, Rosemarie A1 - Hille, Falk A1 - Kadoke, Daniel A1 - Gründer, Klaus-Peter A1 - Hauser, S. A1 - Schwarzinger, H. ED - Bland, S. T1 - Impact on a micro-reinforced UHPC: Experimental studies versus numerical modeling N2 - Within the presented research project, experimental and numerical investigations were performed to develop a thin-shelled, modular, mobile element system made of a micro-reinforced ultra-high-performance ductile concrete (DUCON®). Material parameters were experimentally determined to adapt the material model within the numerical analysis applying the Drucker-Prager relationship. Afterwards, for validation of the numerical models, quasi-static and high-velocity impact tests were performed on plate-like structures. Finally, a suitable geometry of transportable barrier elements will be designed, which provides a maximum of resistance against impact by a minimum of weight and a maximum of mobility. KW - UHPC KW - Impact KW - DUCON® KW - Quasi-static and dynamic tests KW - Micro-reinforcement KW - Ductility KW - Mobile elements KW - Numerical modeling KW - Stereo photogrammetry KW - Compressive strength KW - E-modulus PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S2214785319305115?dgcid=author DO - https://doi.org/10.1016/j.matpr.2019.03.152 SN - 2214-7853 VL - 12 IS - 2 SP - 474 EP - 483 PB - Elsevier Ltd CY - Amsterdam AN - OPUS4-48181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Zhang, Q. A1 - Hille, Falk A1 - Mevel, L. T1 - Subspace-based Damage Detection with Rejection of the Temperature Effect and Uncertainty in the Reference N2 - Temperature variation can be a nuisance that perturbs vibration based structural health monitoring (SHM) approaches for civil engineering structures. In this paper, temperature affected vibration data is evaluated within a stochastic damage detection framework, which relies on a null space based residual. Besides two existing temperature rejection approaches – building a reference state from an averaging method or a piecewise method – a new approach is proposed, using model interpolation. In this approach, a general reference model is obtained from data in the reference state at several known reference temperatures. Then, for a particular tested temperature, a local reference model is derived from the general reference model. Thus, a well fitting reference null space for the formulation of a residual is available when new data is tested for damage detection at an arbitrary temperature. Particular attention is paid to the computation of the residual covariance, taking into account the uncertainty related to the null space matrix estimate. This improves the test performance, contrary to prior methods, for local and global damages, resulting in a higher probability of detection (PoD) for the new interpolation approach compared to previous approaches. T2 - International Operational Modal Analysis Conference CY - Copenhagen, Danmark DA - 13.05.2019 KW - Uncertainty KW - Statistical method KW - Subspace-based method KW - Temperature rejection KW - Model interpolation PY - 2019 SP - 1 EP - 11 AN - OPUS4-48240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Bhuyan, Delwar A1 - Hille, Falk A1 - Viefhues, Eva A1 - Döhler, M. A1 - Mevel, L. ED - Zingoni, Alphose T1 - Impact of environmental based effects on SHM strategies N2 - Environmental based perturbations influence significantly the ability to identify structural dam-age in Structural Health Monitoring. Strategies are needed to classify such effects and consider them appropri-ately in SHM. It has to be considered if seasonal effects just mask the structural response or if temperature itself correlates to a weakening of the structure. Various methods have been developed and analyzed to separate environmental based effects from damage induced changes in the measures. Generally, two main approaches have emerged from research activity in this fields: (a) statistics-based tools analyzing patterns in the data or in computed parameters and (b) methods, utilizing the structural model of the bridge considering environmental as well as damage-based changes of stiffness values. With the background of increasing affordability of sensing and computing technology, effort should be made to increase sensitivity, reliability and robustness of proce-dures, separating environmental from damage caused changes in SHM measures. The contribution describes an attempt to evaluate both general strategies, their advantages and drawbacks. In addition, two vibration moni-toring procedures are introduced, allowing for temperature-based perturbations of the monitoring data. T2 - SEMC 2019 CY - Cape Town, South Africa DA - 02.09.2019 KW - SHM environmental bridges PY - 2019 SN - 978-1-138-38696-9 SN - 978-0-429-42650-6 DO - https://doi.org/10.1201/9780429426506 SP - Paper 324, 1 EP - Paper 324, 6 PB - CRC Press CY - Boca Raton AN - OPUS4-49167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhuyan, Md Delwar Hossain A1 - Gautier, G. A1 - Le Touz, N. A1 - Döhler, M. A1 - Hille, Falk A1 - Dumoulin, J. A1 - Mevel, L. T1 - Vibration‐based damage localization with load vectors under temperature changes N2 - Damage detection and localization in civil or mechanical structures is a subject of active development and research. A few vibration‐based methods have been developed so far, requiring, for example, modal parameter estimates in the reference and damaged states of the investigated structure, and for localization in addition a finite element model. For structures in operation, temperature has been shown to be a major nuisance to the efficiency of such methods because the modal parameters are varying not only with damage but also due to temperature variations. For detection, a few rejection approaches have been developed. Besides the increased complexity, environmental variation is hardly taken into account in localization approaches. In this paper, we propose a sensitivity‐based correction of the identified modal parameters in the damaged state with respect to the temperature field in the reference state, on the basis of a sensitivity analysis with respect to temperature dependent Parameters of the finite element model in the reference state. The approach is then applied to the stochastic dynamic damage locating vector method, where its improved performance under nonuniform temperature variations is shown in a numerical application on a beam. KW - Statistical evaluation KW - Damage localization KW - Load vector KW - Temperature effect rejection KW - Temperature modeling PY - 2019 DO - https://doi.org/10.1002/stc.2439 SN - 1545-2255 SN - 1545-2263 SP - e2439, 1 EP - 16 PB - John Wiley & Sons, Ltd. AN - OPUS4-48843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Rica, S. A1 - Rackwitz, F. T1 - An enhanced interface model for friction fatigue problems of axially loaded piles N2 - The shaft bearing capacity often plays a dominant role for the overall structural behaviour of axially loaded piles in offshore deep foundations. Under cyclic loading, a narrow zone of soil at the pile-soil interface is subject to cyclic shearing solicitations. Thereby, the soil may densify and lead to a decrease of confining stress around the pile due to microphenomena such as particle crushing, migration and rearrangement. This reduction of radial stress has a direct impact on the shaft capacity, potentially leading in extreme cases to pile failure. An adequate interface model is needed in order to model this behaviour numerically. Different authors have proposed models that take typical Interface phenomena in account such as densification, grain breakage, normal pressure effect and roughness. However, as the models become more complex, a great number of material parameters need to be defined and calibrated. This paper proposes the adoption and transformation of an existing soil bulk model (Pastor- Zienkiewicz) into an interface model. To calibrate the new interface model, the results of an experimental campaign with the ring shear device under cyclic loading conditions are here presented. The constitutive model shows a good capability to reproduce typical features of sand behaviour such as cyclic compaction and dilatancy, which in saturated partially-drained conditions may lead to liquefaction and cyclic mobility phenomena. T2 - Conference: OMAE CY - Glasgow, Scotland, UK DA - 09.06.2019 KW - Soil-structure interaction KW - Interface PY - 2019 VL - 2019 SP - Article Number: UNSP V001T10A013 PB - ASME CY - Glasgow, Scotland AN - OPUS4-48444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Teng, Jun A1 - Tang, De-Hui A1 - Zhang, Xiao A1 - Hu, Wei-Hua A1 - Said, Samir A1 - Rohrmann, Rolf G. T1 - Automated modal analysis for tracking structural change during construction and operation phases N2 - The automated modal analysis (AMA) technique has attracted significant interest over the last few years, because it can track variations in modal parameters and has the potential to detect structural changes. In this paper, an improved density-based spatial clustering of applications with noise (DBSCAN) is introduced to clean the abnormal poles in a stabilization diagram. Moreover, the optimal system model order is also discussed to obtain more stable poles. A numerical Simulation and a full-scale experiment of an arch bridge are carried out to validate the effectiveness of the proposed algorithm. Subsequently, the continuous dynamic monitoring system of the bridge and the proposed algorithm are implemented to track the structural changes during the construction phase. Finally, the artificial neural network (ANN) is used to remove the temperature effect on modal frequencies so that a health index can be constructed under operational conditions. KW - Automated Modal Analysis for Tracking Structural Change during Construction and Operation Phases PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475116 UR - https://www.mdpi.com/1424-8220/19/4/927/pdf DO - https://doi.org/10.3390/s19040927 SN - 1424-8220 VL - 19 IS - 4 SP - 927, 1 EP - 23 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-47511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -