TY - JOUR A1 - Signorini, Cesare A1 - Bracklow, Franz A1 - Hering, Marcus A1 - Butler, Marko A1 - Leicht, Lena A1 - Schubert, Thomas A1 - Beigh, Mirza A.B. A1 - Beckmann, Birgit A1 - Curbach, Manfred A1 - Mechtcherine, Viktor T1 - Ballistic limit and damage assessment of hybrid fibre-reinforced cementitious thin composite plates under impact loading N2 - Impact resistance of reinforced concrete (RC) structures can be significantly improved by strengthening RC members with thin composite layers featuring high damage tolerance. Indeed, to limit the well-known vulnerability of cement-based materials against impact loading, the synergistic effects of short fibres and continuous textile meshes as hybrid reinforcement has been proved to be highly beneficial. This paper addresses the characterisation of novel cement-based hybrid composites through accelerated drop-weight impact tests conducted on rectangular plates at different impact energies. Two distinct matrices are assessed, with particular interest in a newly developed limestone calcined clay cement (LC3)-based formulation. Important parameters quantifying energy dissipation capability, load bearing capacity and damage are cross-checked to compute the ballistic limit and estimate the safety-relevant characteristics of the different composites at hand. Although textiles alone can improve the damage tolerance of fine concrete to some extent, the crack-bridging attitude of short, well-dispersed fibres in hybrid composites imparts a certain ductility to the cement-based matrices, allowing a greater portion of the textile to be activated and significantly reducing the amount of matrix spalling under impact. KW - Impact loading KW - Cement-based composites KW - SHCC KW - TRC KW - Sustainable binders PY - 2023 U6 - https://doi.org/10.1016/j.jobe.2023.108037 VL - 80 SP - 1 EP - 21 PB - Elsevier Ltd. AN - OPUS4-58793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hering, Marcus A1 - Fiedler, Georg A1 - Schubert, Thomas A1 - Hille, Falk A1 - Hüsken, Götz A1 - Beckmann, Birgit A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Rogge, Andreas T1 - Investigation of multiple impact-damaged reinforced concrete structures as a reference for liquid penetration behavior and tomographic studies N2 - The structural integrity of outer reinforced concrete (RC) containments of nuclear power plants provides an essential shield against external hazards. If this containment is damaged by an impact event, such as an aircraft crash, the question arises to which degree the reinforced concrete containment still has its protective capability. This concerns both purely structural protection and protection against liquids penetrating the interior of the containment. Due to the dimensions of the containment structures, it is difficult to perform real scale impact experiments, so in the past decades plate geometries at medium scale have been used for investigations. Detailed investigations on the structural behaviour of RC members or RC plates subjected to impact loading have already been presented in Just et al., Hering, Hering et al., Bracklow et al., Hille et al. and Nerger et al. The following investigations deal with the single and multiple impact event (first hard impact and/or subsequent soft impact) on a RC specimen, which provides the basis for further investigations. A description of the test setup and the test procedure as well as a presentation of the test results from the impact tests are provided. Furthermore, the experimental program is presented, which the damaged RC specimens are to undergo to deal with the question of how much the impact-damaged RC structure has become permeable to liquid media, such as water and kerosene, depending on the intensity of the impact. The aim of these following investigations is to develop a test setup that can be applied to investigate the liquid penetration behaviour (LPB) of small, medium, and large-scale RC members. In addition to the liquid penetration experiments, the damaged specimens are to be examined by planar tomography to obtain the damage inside the specimen. The combination of damaging event, fluid penetration behaviour and tomography should enable a comprehensive understanding of the damage to the RC specimen. T2 - Conference: 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT) CY - Yokohama, Japan DA - 04.03.2024 KW - Drop tower KW - Hard impact KW - Soft impact KW - Multiple impact PY - 2024 SP - 1 EP - 10 PB - IASMiRT CY - Yokohama, Japan AN - OPUS4-59723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -