TY - CONF A1 - Geißler, Peter A1 - Schwarz, Johannes A1 - Cuéllar, Pablo A1 - Hüsken, Götz A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten A1 - Morrone, C. T1 - Compaction grouting to improve the pile bearing capacity in non-cohesive soil N2 - The aim of an ongoing research project is to develop a design approach for typical offshore driven piles (e.g. Jacket piles) based on the application of injections by compaction grouting directly at the pile shaft. The paper aims to present the results of laboratory and in-situ tests, which reveal the efficiency and the promising potential of the optimised foundation concept for a more economic dimensioning of pile foundations and to increase their bearing capacity in non-cohesive soil at any moment after installation. T2 - Twenty-ninth International Ocean and Polar Engineering Conference CY - Honolulu, HI, USA DA - 16.06.2019 KW - Offshore Pile Foundation KW - Compaction Grouting KW - Grout KW - Injection Sequence KW - Tensile Capacity PY - 2019 SN - 978-1-880653-85-2 SN - 1098-6189 VL - II SP - 2178 EP - 2184 PB - International Society of Offshore and Polar Engineers (ISOPE) CY - Cupertino, California, USA AN - OPUS4-48505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Balscheit, Hagen A1 - Schepers, Winfried A1 - Victor, Albrecht A1 - Daryaei, Reza A1 - Bianco, Marcelo A1 - Starost, Christina T1 - Close-out Webinar OWA VERBATIM N2 - The risk of pile base buckling is a major reason for high pile wall thicknesses in monopiles. The VERBATIM project - Verification of the buckling detection and behaviour of large monopiles - aimed to investigate buckling phenomena related to both the plastic deformation of the pile tip during installation and the buckling of the embedded pile near the seabed. Numerical models were developed and validated on the basis of extensive tests. This enables a better understanding of the buckling behaviour in order to reduce the wall thickness, which allows cost savings in the amount of steel and the development of safer and optimised structures. The previous design procedures were able to ensure the successful installation of the monopiles. However, as the size of monopiles continues to increase, the development of improved design methods for safe and cost-effective foundations is becoming increasingly important. The presentation provides an overview of the investigations carried out and the results. T2 - Webinar Carbon Trust Offshore Wind Accelerator CY - Online meeting DA - 22.05.2024 KW - Offshore Windenergy Pile Buckling PY - 2024 AN - OPUS4-60348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, Vivian A1 - Thiele, Marc A1 - Pirskawetz, Stephan A1 - Meng, Birgit A1 - Rogge, Andreas T1 - Characterizing the Fatigue Behavior of High-Performance Concrete for Wind Energy Structures N2 - Severe mechanical fatigue conditions for worldwide proliferating windfarms are a Major challenge for high-performance concrete in towers, connecting joints and foundations of wind turbines. High-performance concrete offers potential for the application in offshore windfarms, not only regarding its good mechanical, but also chemical resistivity due to low diffusivity in the highly densified microstructure. For a more reliable fatigue assessment, monitoring based on nondestructive testing can be a valuable complement to design rules. Both approaches demand reliable experimental data, information about scalability and the development of standardized testing methods. This article presents results of an ongoing research program of BAM (Bundesanstalt für Materialforschung und -prüfung), which is a part of a joint national project (WinConFat) funded by the German Federal Ministry for Economic Affairs and Energy. The subproject implemented by BAM examines the fatigue behavior in dependence of size and slenderness for varying concrete strength at different stress levels. Besides fatigue strength, nondestructive testing is carried out additionally. Methods used are strain measurement and ultrasonic testing. The change of strain, stiffness and ultrasonic pulse velocity in the fatigue process is discussed. Results disclose a deeper insight into the damage process under cyclic loading of high-performance concrete and contribute to improve nondestructive monitoring. T2 - LORCENIS - Long Lasting Reinforced Concrete fpr Energy Infrastructure under Severe Operating Conditions CY - Ghent, Belgium DA - 10.09.2019 KW - Compressive Cyclic loading KW - Fatigue KW - High-strength concrete KW - Non destructive testing KW - Ultrasonic testing PY - 2019 SN - 978-9-463-88638-3 SP - 1 EP - 4 AN - OPUS4-49500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, Vivian A1 - Thiele, Marc A1 - Pirskawetz, Stephan A1 - Meng, Birgit A1 - Rogge, Andreas T1 - Characterizing the Fatigue Behavior of High-Performance Concrete for Wind Energy Structures N2 - Severe mechanical fatigue conditions for worldwide proliferating windfarms are a Major challenge for high-performance concrete in towers, connecting joints and foundations of wind turbines. High-performance concrete offers potential for the application in offshore windfarms, not only regarding its good mechanical, but also chemical resistivity due to low diffusivity in the highly densified microstructure. For a more reliable fatigue assessment, monitoring based on nondestructive testing can be a valuable complement to design rules. Both approaches demand reliable experimental data, information about scalability and the development of standardized testing methods. This article presents results of an ongoing research program of BAM (Bundesanstalt für Materialforschung und -prüfung), which is a part of a joint national project (WinConFat) funded by the German Federal Ministry for Economic Affairs and Energy. The subproject implemented by BAM examines the fatigue behavior in dependence of size and slenderness for varying concrete strength at different stress levels. Besides fatigue strength, nondestructive testing is carried out additionally. Methods used are strain measurement and ultrasonic testing. The change of strain, stiffness and ultrasonic pulse velocity in the fatigue process is discussed. Results disclose a deeper insight into the damage process under cyclic loading of high-performance concrete and contribute to improve nondestructive monitoring. T2 - LORCENIS - Long Lasting Reinforced Concrete for Energy Infrastructue under Severe Operating Conditions CY - Gent, Belgium DA - 10.09.2019 KW - Compressive Cyclic loading KW - Fatigue KW - High-strength concrete KW - Non destructive testing KW - Ultrasonic testing PY - 2019 AN - OPUS4-49474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Challenges of vibration prediction – realistic irregularities, the scattering of axle pulses, and the tunnel-surface reduction N2 - A prediction software has been developed by BAM. The following topics have still be solved. A realistic irregularity spectrum can be derived from axle-box measurements. It agrees wel with the spectrum used for the high-speed 2 project in the United Kingdom. In addition, the scattering of axle pulses should be included. This mid-frequency component can also be found in the HS2 procedure. Finally, the reduction in case of a tunnel line compared to a surface line should be included. Some measurement results of BAM, HS2 and other institutes show a certain mid-frequency reduction. This is due to the load distribution of the tunnel which yields softer axle pulses and the scattered axle impulses are reduced. T2 - ISO/TC 108/SC 2/WG 8 Working group Ground-borne noise and vibration from rail systems CY - London, UK DA - 21.11.2022 KW - Ground vibration KW - Railway trafiic KW - Prediction KW - Irregularities KW - Axle pulses KW - Tunnel line KW - Surface line PY - 2022 AN - OPUS4-56738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Balscheit, Hagen T1 - Buckling Behavior of embedded Shells N2 - Presentation on ongoing test campaign on buckling of embedded piles, which is part of the VERBATIM-Project. T2 - Phd Seminar LFU-Innsbruck CY - Innsbruck, Austria DA - 24.06.2022 KW - Buckling KW - Monopiles KW - Windenergy KW - Foundations KW - Offshore PY - 2022 AN - OPUS4-55458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Berechnung und Beeinflussung von Deckeneigenfrequenzen N2 - Es werden Erfahrungen zur Berechnung von Deckeneigenfrequenzen aus zahlreichen Projekten zusammengetragen. T2 - Projektbesprechung zum Hotelneubau CY - Berlin, Germany DA - 10.07.2019 KW - Deckeneigenfrequenzen PY - 2019 AN - OPUS4-49448 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Baeßler, Matthias T1 - Belastungsversuch und Methodenvalidierung an der Maintalbrücke Gemünden N2 - Im Projekt AISTEC wurden Methoden entwickelt, die der prädiktiven Instandhaltung von Ingenieurbauwerken dienen. Zur Validierung dieser Methoden wurden an einem Referenzbauwerk - der Maintalbrücke Gemünden - Belastungstests durchgeführt. T2 - Abschlussveranstaltung AISTEC CY - Berlin, Germany DA - 02.05.2022 KW - Belastungsfahrt KW - GNSS KW - Einflusslinien PY - 2022 AN - OPUS4-55496 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Bayes‘sche Analyse von Ingenieurmodellen N2 - Der Vortrag zeigt, dass Unsicherheiten in Ingenieurmodellen quantitativ mit Methoden der Wahrscheinlichkeitstheorie modelliert werden können. Zusätzlich können durch eine Bayes‘sche Analyse probabilistische Ingenieurmodelle konsistent anhand von Daten „gelernt“ werden. T2 - Workshop "Digitaler Zwilling" des BAM Koptenzzentrums „Modellierung und Simulation“ CY - Berlin, Germany DA - 04.06.2018 KW - Probabilitische Ingenieurmodelle KW - Bayes'sche Analyse PY - 2018 AN - OPUS4-46437 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias T1 - Bayesian system identification of a reinforced concrete beam subject to temperature variations based on static response data N2 - Changes in the measured response of structural systems can be an indication of structural damages. However, such changes can also be caused by the effect of varying environmental conditions. To detect, localize and quantify changes or damages in structural systems subject to varying environmental conditions, physics-based models of the structural systems have to be applied which explicitly account for the influence of ambient conditions on the structural behavior. Data obtained from the structural systems should be used to calibrate the models and update predictions. Bayesian system identification is an effective framework for this task. In this paper, we apply this framework to learn the parameters of two competing structural models of a reinforced concrete beam subject to varying temperatures based on static response data. The models describe the behavior of the beam in the uncracked and cracked condition. The data is collected in a series of load tests in a climate chamber. Bayesian model class selection is then applied to infer the most plausible condition of the beam conditional on the available data. T2 - Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) CY - Online meeting DA - 11.04.2021 KW - Bayesian system identification KW - Reinforced concrete KW - Damage identification KW - Environmental effects KW - Structural health monitoring KW - Structural systems PY - 2021 AN - OPUS4-52812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -