TY - CONF A1 - Schneider, Ronald T1 - Bayes‘sche Analyse von Ingenieurmodellen N2 - Der Vortrag zeigt, dass Unsicherheiten in Ingenieurmodellen quantitativ mit Methoden der Wahrscheinlichkeitstheorie modelliert werden können. Zusätzlich können durch eine Bayes‘sche Analyse probabilistische Ingenieurmodelle konsistent anhand von Daten „gelernt“ werden. T2 - Workshop "Digitaler Zwilling" des BAM Koptenzzentrums „Modellierung und Simulation“ CY - Berlin, Germany DA - 04.06.2018 KW - Probabilitische Ingenieurmodelle KW - Bayes'sche Analyse PY - 2018 AN - OPUS4-46437 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Risikoanalyse technischer Systeme: Aktivitäten an der BAM N2 - Die Risikoanalyse ist ein formales Verfahren zur Unterstützung von Entscheidungen unter Unsicherheit und Risiko. Es ermöglicht eine Optimierung von Maßnahmen zur Verhinderung unerwünschter Konsequenzen. Der Vortrag stellt die aktuellen Aktivitäten an der BAM in dem Feld Risikoanalyse technischer System vor. T2 - 4. Sitzung des Beirates „Infrastruktur“ der Bundesanstalt für Materialforschung und –prüfung (BAM) CY - Berlin, Germany DA - 19.04.2018 KW - Risiko KW - Risikoanalyse PY - 2018 AN - OPUS4-46436 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Kontinuierliches Bauwerksmonitoring – Sensor-basiert (AP4) N2 - Kontinuierliche sensorbasierte Bauwerksmessungen leisten einen wichtigen Beitrag zur Sicherheit von Verkehrsbauwerken. Hierzu werden im Vorhaben AISTEC Referenzbauwerke und Referenzverfahren untersucht mit Schwerpunkt auf den Einfluss klimatischer Bedingungen. Der Vortrag stellt den aktuellen Projektstand des FB 7.2 vor. T2 - 3. Verbundtreffen AISTEC CY - Online meeting DA - 05.05.2020 KW - Zivile Sicherheit KW - Brücken KW - Structural Health Monitoring PY - 2020 AN - OPUS4-50796 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Deborah A1 - Moosavi, Robabeh A1 - Bracklow, F. A1 - Hering, M. A1 - Kühn, T. A1 - Curbach, M. A1 - Hille, Falk A1 - Rogge, Andreas T1 - Impact damage characterization at RC plates with planar tomography and FEM N2 - Prediction of dynamic effects of reinforced concrete structures under impact loading is a technical challenge. This is a consequence of the great variability of the physical properties resulting from the wide adaptability of reinforced concrete and a consequence of the wide range of impact loading. Experiments and numerical investigations are normally used on a small scale to address the problem. In this paper, impact tests on reinforced conrete plates with the lateral dimensions of 1.5 m x 1.5 m and a thickness of 30 cm are presented. In bending reinforcement, besides the velocity two properties are varied, the diameter and the spatial distribution of the rebars. Experiments are performed at the Otto-Mohr-Laboratory of the Institute of Concrete Structures of the Technische Universit¨at Dresden. Due to the accelerated fall of the impactor the velocity ranges between 20 and 70 m/s. In addition to the measured quantities such as bearing forces, accelerations are also measured at 4 different positions on and under the plate, as well as the deflection at several positions. The measured data are used for the analysis of the damage form and the numerical examinations with the program Ansys Autodyn and the material model after Drucker-Prager. Numerical investigations support the tests, with detailed analysis of individual effects. These numerical computations and the planar tomographic investigations were carried out at BAM in Berlin. With the help of planar tomographic evaluation, the damaged structure is made visible and compared with the numerical results. Influences of the bending reinforcement are explained on the basis of damage evaluation in the local area and on selected measured values. In addition to the test evaluation, the tomographic and numerical methods are presented. T2 - XI International Conference on Structural Dynamics (EURODYN 2020) CY - Online meeting DA - 23.11.2020 KW - Post-impact evaluation KW - Damage characterization KW - Planar tomography KW - Drucker-Prager KW - Ansys Autodyn PY - 2020 AN - OPUS4-51768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias T1 - Implementing a Structural Health Monitoring System using Digital Models of the BAM Large Drop Test Facility N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - System Identification KW - Digital Twin KW - Point Cloud KW - Drop Test PY - 2020 AN - OPUS4-51734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Modeling in support of offshore wind farm end-of-life decision making N2 - The EU member states have set out ambitious long-term goals for deploying offshore wind energy. The installed offshore wind capacity is set to increase from 14.6 GW in 2021 to around 320 GW in 2050. This signifies the role of offshore wind energy as a major contributor to reaching the EU’s climate and energy goals. To ensure that the defined targets are met, a significant number of new wind farms has to be installed and existing wind farms reaching the end of their planned life need to be reused efficiently. Some of the relevant reuse alternatives are lifetime extension, repowering based on the existing support structures and repowering with new turbines. As a basis of the decision-making regarding the reuse of existing offshore wind farm, the expected utility of each relevant option should be determined based on the associated expected rewards, costs and risks. The optimal concept maximizes the utility of the decision-maker and fulfills the existing constraints and requirements. To facilitate such a quantitative decision-making, models and methods have to be developed. In particular, models are required that enable predictions of (a) the condition and performance of the turbines and support structures and (b) the renumeration, costs and consequences of adverse events. These predictions have to consider (a) the governing uncertainties, (b) the available information from the planning, construction, installation and operating phase, (b) potential repair, retrofitting and strengthening schemes and (c) possible monitoring, inspection and maintenance regimes for the future operating phase. Over the past years, several models, methods and tools have been developed at the Bundesanstalt für Materialforschung und -prüfung (BAM) to support the structural integrity management of offshore wind turbine substructures. These include: (a) a prototype for reliability-based, system-wide, adaptive planning of inspections of welded steel structures in offshore wind farms, (b) a method for monitoring and risk-informed optimization of inspection and maintenance strategies for jacket structures subject to fatigue, and (c) a probabilistic cost model of inspection and maintenance of welded steel structures in offshore wind farms. This contribution provides an overview on these works and discusses how they can be adapted and extended to support the decision-making regarding lifetime extensions and repowering of offshore wind farms. T2 - 12th International Forum on Engineering Decision Making (12th IFED) CY - Stoos, Switzerland DA - 05.12.2023 KW - Windenergie KW - Offshore Wind KW - Lifetime Extension KW - Repowering PY - 2023 AN - OPUS4-60430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz A1 - Shamsuddoha, M. A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Long-term mechanical and shrinkage properties of cementitious grouts for structural repair N2 - Grouts are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23 °C and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Grout KW - Long-term shrinkage KW - Micro silica KW - Fly ash KW - Metakaolin PY - 2019 AN - OPUS4-47625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kemmler, Samuel A1 - Cuéllar, Pablo A1 - Köstler, Harald T1 - Gekoppelte Fluid Partikel Simulationen einer Suction Bucket Gründung zur Analyse von Piping Erosion während der Installation von Offshore Windkraftanlagen N2 - Wir stellen unseren Ansatz und unsere Methodik zur Simulation von Piping-Erosion vor, welche während des Installationsprozesses von Suction Bucket Fundamenten für Offshore-Windkraftanlagen auftreten kann und ein kritisches Versagen des Installationsprozesses darstellt. Wir zeigen die Ergebnisse mehrere Simulationen und analysieren die hydrodynamischen und Kontaktkräfte, die auf das granulare Medium wirken, sowie die Druckdifferenz der flüssigen Phase. Solche Simulationen können zum besseren Verständnis von Piping-Erosion und letztendlich zu dessen Verhinderung beitragen. T2 - Gesinus-Treffen 2024 CY - Stuttgart, Germany DA - 20.06.2024 KW - Suction Bucket KW - Gekoppelte Fluid-Partikel Simulationen KW - Offshore-Windkraftanlagen PY - 2024 AN - OPUS4-60516 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Mevel, L. T1 - Stochastic subspace-based damage detection of a temperature affected beam structure N2 - Structural health monitoring (SHM) of civil structures often is limited due to changing environmental conditions, as those changes affect the structural dynamical properties in a similar way like damages can do. In this article, an approach for damage detection under changing temperatures is presentedand applied to a beam structure. The used stochastic subspace-based algorithm relies on a reference null space estimate, which is confronted to data from the testing state in a residual function. For damage detection the residual is evaluated by means of statistical hypothesis tests. Changes of the system due to temperature effects are handled with a model interpolation approach from linear parameter varying system theory. From vibration data measured in the undamaged state at some few reference temperatures, a model of the dynamic system valid for the current testing temperature is interpolated. The reference null space and the covariance matrix for the hypothesis test is computed from this interpolated model. This approach has been developed recently and was validated in an academic test case on simulations of a mass-spring-damper. In this paper, the approach is validated experimentally on a beam structure under varying temperature conditions in a climate chamber. Compared to other approaches, the interpolation approach leads to significantly less false positive alarms in the reference state when the structure is exposed to different temperatures, while faults can still be detected reliably T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 CY - Online meeting DA - 30.06.2021 KW - Damage detection KW - Subspace methods KW - Temperature effects KW - Model interpolation KW - Climate chamber KW - Laboratory beam structure PY - 2021 AN - OPUS4-53000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Bayesian methods KW - Environmental effects KW - Structural health monitoring PY - 2020 AN - OPUS4-51732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -