TY - CONF A1 - Baeßler, Matthias A1 - Schneider, Ronald T1 - OWEC repowering from a structural engineering and research perspective N2 - A significant number of new wind farms has to be installed and, at the same time, existing wind farms reaching the end of their planned life need to be reused efficiently to ensure that the ambitous goals for deploying offshore wind are met. Some relevant reuse alternatives for offshore wind farms are lifetime extension, repowering utilizing existing substructures and full replacement. In this presentation - starting from experience gained from extending the lifetime of the of the U1 metro viaduct in Berlin - we discuss end-of-life decision making in offshore wind. We focus particularly on issues concerning substructures and highlight existing challenges and opprtunities in research and development. T2 - RWE RePowering Event CY - Wilhelmshaven, Germany DA - 10.10.2023 KW - Offshore wind KW - End-of-life decision making KW - Repowering KW - Substructures PY - 2023 AN - OPUS4-58632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Structural integrity management research at BAM N2 - This presentation provides an overview on the structural integrity management research at BAM. In addition, a framework for monitoring and risk-informed inspection and maintenance planning for offshore steel structures is presented. T2 - Structural Health Monitoring Using Statistical Pattern Recognition CY - Berlin, Germany DA - 20.03.2023 KW - Structural integrity KW - Monitoring KW - Maintenance KW - Inspeciton KW - Bridges KW - Offshore wind PY - 2023 AN - OPUS4-57864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Baeßler, Matthias T1 - Optimal vibration sensor placement for jacket support structures of offshore wind turbines based on value of information analysis N2 - Information on the condition and reliability of an offshore jacket structure provided by a vibration-based structural health monitoring system can guide decisions on inspection and maintenance. When selecting the sensor setup, the designer of the monitoring system must assess its overall benefit compared to its costs before installation. The potential benefit of continuously monitoring the dynamic response of a jacket structure can be formally quantified through a value of information analysis from Bayesian decision theory. In this contribution, we present a framework for optimizing the placement of vibration sensors on offshore jacket structures by maximizing the value of information of the monitoring system. To solve the resulting discrete optimization problem, we adapt a genetic algorithm. The framework is demonstrated in a numerical example considering a redundant jacket-type steel frame. The numerical study shows that monitoring the vibration response of the frame is beneficial. Good sensor setups consist of relatively few sensors located towards the upper part of the frame. The adapted genetic algorithm performs similarly well as established sequential sensor placement algorithms and holds substantial promise for application to real jacket structures. KW - Optimal sensor placement KW - Value of information KW - Jacket support structure KW - Offshore wind turbine KW - Monitoring-informed inspection and maintenance planning PY - 2023 DO - https://doi.org/10.1016/j.oceaneng.2023.115407 SN - 0029-8018 VL - 288 IS - 2 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-58725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerards-Wünsche, Paul A1 - Ratkovac, Mirjana A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for assessing the reliability of crack luminescence – an automated fatigue crack detection system N2 - The new crack luminescence method offers the possibility of making fatigue surface cracks in metallic materials more visible during inspections through a special coating system. This coating system consists of two layers, whereby the first layer has fluorescent properties and emits visible light as soon as it is irradiated by UV light. The top layer is black and is designed to prevent the fluorescent layer from emitting if no crack develops in the underlying material. The technique proved particularly useful in a wide variety of fatigue tests of steel components under laboratory conditions. Moreover, it has the potential to be used in various industrial applications. To enable industrial deployment and integration into maintenance strategies, a concept study is developed in this contribution, resulting in a qualification framework that can serve as a foundation for determining the reliability of the crack luminescence system in terms of a probability of detection curve. Within this study, factors causing measurement variability and uncertainty are being determined and their influences assessed. Due to the extension of the system by a moving computer vision system for automated crack detection using artificial intelligence, additional long-term effects associated with structural health monitoring systems need to be incorporated into an extended probability of detection study as part of the technical justification. Finally, important aspects and findings related to design of experiments are discussed, and a framework for reliability assessment of a new optical crack monitoring method is presented, emphasizing the influence of various uncertainty parameters, including long-term effects such as system ageing. T2 - SPIE Conference Smart Structures + Nondestructive Evaluation 2023 CY - Long Beach, CA, USA DA - 24.03.2023 KW - Structural Health Monitoring KW - Non-Destructive Evaluation KW - Probability of Detection KW - Reliability KW - Artificial Intelligence KW - Computer Vision KW - Crack Luminescence KW - Wind PY - 2023 SN - 978-1-5106-6086-1 DO - https://doi.org/10.1117/12.2658390 SP - 1 EP - 15 AN - OPUS4-57244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lesny, K. A1 - Arnold, P. A1 - Sorgatz, J. A1 - Schneider, Ronald T1 - Wie sicher sind unsere Bauwerke? - Strukturpapier des Arbeitskreises 2.15 der DGGT „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ N2 - Der zukünftige Eurocode 7 wird ausdrücklich die Nutzung zuverlässigkeitsbasierter Methoden in der geotechnischen Planung und Bemessung erlauben. In Deutschland gibt es bisher kaum Erfahrung in der praktischen Anwendung derartiger Verfahren und entsprechend sind die Vorbehalte gegenüber diesen Methoden oft groß. Der neue DGGT-Arbeitskreis (AK) 2.15 „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ hat sich zum Ziel gesetzt, durch praxisorientierte Anleitungen und Empfehlungen sowie begleitende Aus- und Weiterbildungsangebote den praktischen Zugang zu diesen Verfahren zu unterstützen. Ziel ist es, Möglichkeiten und Grenzen zu verdeutlichen sowie vor allem ihre Potenziale zu erschließen. In dem vorliegenden Beitrag werden allgemeine Grundlagen und die zukünftigen Arbeitsfelder des AK 2.15 vorgestellt. Ausgehend von der Einführung relevanter Fachbegriffe wird zunächst die Einbettung zuverlässigkeitsbasierter Verfahren in den aktuellen Normungs- und Regelungskontext aufgezeigt. Anschließend werden anhand des Lebenszyklus eines geotechnischen Bauwerks die Unsicherheiten in den geotechnischen Prognosen und Bewertungen beschrieben. Daran anknüpfend wird aufgezeigt, an welchen Stellen zuverlässigkeitsbasierte Methoden als mögliches Werkzeug sinnvoll genutzt werden können, um Ingenieur:innen, Bauherr:innen und Prüfer:innen in Nachweis- und Entscheidungsprozessen zu unterstützen. Zu den sich daraus ableitenden Arbeitsthemen werden durch den AK 2.15 zukünftig Empfehlungen erarbeitet und sukzessive veröffentlicht KW - Brückensicherheit KW - Sicherheit KW - Wahrscheinlichkeit KW - Zuverlässigkeit KW - Bemessung KW - Bewertung KW - Offshore Wind PY - 2023 DO - https://doi.org/10.1002/gete.202300014 VL - 46 IS - 3 SP - 153 EP - 164 PB - Ernst & Sohn GmbH CY - Berlin AN - OPUS4-58208 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald T1 - Von der Datenerfassung bis zur Entscheidungsfindung: Jede Brücken-Überwachung bedarf einer Gesamtmethodik N2 - Brücken müssen laufend überwacht werden, damit die Unsicherheiten hinsichtlich ihres Zustands, ihrer Beanspruchung und ihrer Leistungsfähigkeit verringert werden können. Diese Aufgabe soll künftig mit digitalen Methoden erleichtert werden. Im folgenden Beitrag werden deshalb die digitale Bauwerksmodellierung und die Entscheidungsfindung beleuchtet. Dazu wird gezeigt, wie Zustandsdiagnosen und -prognosen digital ermöglicht werden und wie durch diagnostische und prognostische Modelle eine wissenschaftliche Basis für risikobasierte Entscheidungen über Erhaltungsmaßnahmen und für den Übergang vom reaktiven zum vorausschauenden Brückenmanagement gebildet werden kann. Dabei wird klar: Jede Brücken-Überwachung bedarf einer Gesamtmethodik, ihre wichtigsten Elemente sind: Datenerfassung, Datenmanagement, Datenanalyse, Bauwerksmodellierung, Bauwerksbewertung und die letztendlichen Entscheidungen über notwendige Erhaltungsmaßnahmen. KW - Prädiktive Instandhaltung KW - Brücken KW - Erhaltungsmanagement KW - Digitale Zwillinge PY - 2023 IS - 62 SP - 76 EP - 83 AN - OPUS4-57811 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - SHM system integration and experiments at a high speed railway bridge N2 - The long-term preservation of our infrastructure requires not only intelligent sensor technology and highly developed monitoring procedures, but also innovative digital tools for analyzing, evaluating and utilizing the results. This includes mathematical and, in particular, probabilistic methods for damage detection and tracking as well as for calculating service life and maintenance cycles and data management. The example project Maintal Bridge Gemuenden as part of the AISTEC project shows the workflow for the implementation of structural health monitoring and experimental tests with a train of Deutsche Bahn. The influence lines, as one possible way for damage detection, were measured with a highly accurate GNSS System to locate the trains position when crossing the bridge. The results were compared to measurements from 1987 just before the bridge went in operation. T2 - Structural Health Monitoring Using Statistical Pattern Recognition CY - Berlin, Germany DA - 20.03.2023 KW - SHM KW - Maintal Bridge Gemuenden KW - Load Test KW - Damage Detection KW - Railway PY - 2023 AN - OPUS4-57242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Vibration-based system identification of a large steel box girder bridge N2 - The Bundesanstalt für Materialforschung und -prüfung (BAM) collaborates with TNO to develop a software framework for automated calibration of structural models based on monitoring data. The ultimate goal is to include such models in the asset management process of engineering structures. As a basis for developing the framework, a multi-span road bridge consisting of ten simply supported steel box girders was selected as a test case. Our group measured output-only vibration data from one box girder under ambient conditions. From the data, we determined eigenfrequencies and mode shapes. In parallel, we developed a preliminary structural model of the box girder for the purpose of predicting its modal properties. In this contribution, we provide an overview of the measurement campaign, the operational modal analysis, the structural modeling and qualitatively compare the identified with the predicted modes. As an outlook, we discuss the further steps in the calibration process and future applications of the calibrated model. T2 - XII International Conference on Structural Dynamics (EURODYN 2023) CY - Delft, Netherlands DA - 02.07.2023 KW - Bridge KW - Safety KW - Fatigue KW - Modal system identification KW - Model updating PY - 2023 AN - OPUS4-57863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Modeling in support of offshore wind farm end-of-life decision making N2 - The EU member states have set out ambitious long-term goals for deploying offshore wind energy. The installed offshore wind capacity is set to increase from 14.6 GW in 2021 to around 320 GW in 2050. This signifies the role of offshore wind energy as a major contributor to reaching the EU’s climate and energy goals. To ensure that the defined targets are met, a significant number of new wind farms has to be installed and existing wind farms reaching the end of their planned life need to be reused efficiently. Some of the relevant reuse alternatives are lifetime extension, repowering based on the existing support structures and repowering with new turbines. As a basis of the decision-making regarding the reuse of existing offshore wind farm, the expected utility of each relevant option should be determined based on the associated expected rewards, costs and risks. The optimal concept maximizes the utility of the decision-maker and fulfills the existing constraints and requirements. To facilitate such a quantitative decision-making, models and methods have to be developed. In particular, models are required that enable predictions of (a) the condition and performance of the turbines and support structures and (b) the renumeration, costs and consequences of adverse events. These predictions have to consider (a) the governing uncertainties, (b) the available information from the planning, construction, installation and operating phase, (b) potential repair, retrofitting and strengthening schemes and (c) possible monitoring, inspection and maintenance regimes for the future operating phase. Over the past years, several models, methods and tools have been developed at the Bundesanstalt für Materialforschung und -prüfung (BAM) to support the structural integrity management of offshore wind turbine substructures. These include: (a) a prototype for reliability-based, system-wide, adaptive planning of inspections of welded steel structures in offshore wind farms, (b) a method for monitoring and risk-informed optimization of inspection and maintenance strategies for jacket structures subject to fatigue, and (c) a probabilistic cost model of inspection and maintenance of welded steel structures in offshore wind farms. This contribution provides an overview on these works and discusses how they can be adapted and extended to support the decision-making regarding lifetime extensions and repowering of offshore wind farms. T2 - 12th International Forum on Engineering Decision Making (12th IFED) CY - Stoos, Switzerland DA - 05.12.2023 KW - Windenergie KW - Offshore Wind KW - Lifetime Extension KW - Repowering PY - 2023 AN - OPUS4-60430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -