TY - JOUR A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Statistical subspace-based damage detection with estimated reference N2 - The statistical subspace-based damage detection technique has shown promising theoretical and practical results for vibration-based structural health monitoring. It evaluates a subspacebased residual function with efficient hypothesis testing tools, and has the ability of detecting small changes in chosen system parameters. In the residual function, a Hankel matrix of Output covariances estimated from test data is confronted to its left null space associated to a reference model. The hypothesis test takes into account the covariance of the residual for decision making. Ideally, the reference model is assumed to be perfectly known without any uncertainty, which is not a realistic assumption. In practice, the left null space is usually estimated from a reference data set to avoid model errors in the residual computation. Then, the associated uncertainties may be non-negligible, in particular when the available reference data is of limited length. In this paper, it is investigated how the statistical distribution of the residual is affected when the reference null space is estimated. The asymptotic residual distribution is derived, where its refined covariance term considers also the uncertainty related to the reference null space estimate. The associated damage detection test closes a theoretical gap for real-world applications and leads to increased robustness of the method in practice. The importance of including the estimation uncertainty of the reference null space is shown in a numerical study and on experimental data of a progressively damaged steel frame. KW - Damage detection KW - Uncertainty quantification KW - Statistical tests KW - Ambient excitation KW - Vibration measurement PY - 2022 DO - https://doi.org/10.1016/j.ymssp.2021.108241 SN - 0888-3270 VL - 164 SP - 108241 PB - Elsevier Ltd. AN - OPUS4-52998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thibaux, Philippe A1 - Van Wittenberghe, Jeroen A1 - Fricke, Wolfgang A1 - Thiele, Marc A1 - Nielsen, Lars Peter A1 - Conti, Fabien T1 - Results of the JaCo project: fatigue strength of robot‑welded tubular joints for offshore wind energy converters N2 - Jacket foundations requires the welding of a large number of tubular joints. These foundations type is suitable to support wind energy converters in deeper water. In order to increase the production speed and its quality, robot systems were developed to produce tubular joints. Since fatigue is dominating the design of these structures, an assessment of the performance of tubular joints produced by robots was performed and compared with the performance of manually welded joints. 18 large-scale tests were performed on joints with dimensions representative for offshore structures, which were produced in industrial environment. Breakthrough cracks occurred through the chord, with cracks initiated at the weld toe, although in some cases cracks were also initiated between weld beads. The measured fatigue strengths of joints produced by robot were similar or higher than the T-curve of DNV-RP-C203. Some delivered components showed fatigue strength that was more than 20% higher than the standard curve. These results emphasize that mastering the welding process with robots is necessary to achieve superior levels of fatigue strength. KW - Fatigue KW - Tubular joint KW - Robot welding KW - Hot spot method KW - Large-scale testing PY - 2024 DO - https://doi.org/10.1007/s40194-024-01903-5 SN - 1878-6669 SP - 1 EP - 14 PB - Springer CY - Berlin ; Heidelberg AN - OPUS4-62319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Mitigation of railway-induced ground vibration by soft support elements and a higher bending stiffness of the track N2 - The mitigation of train-induced ground vibrations by track solutions is investigated by calculations and measurements. The calculation by a wavenumber domain method includes the correct vehicle–track interaction and the correct track–soil interaction. Some theoretical results for elastic elements and an increased bending stiffness of the track are presented where the force transfer of the track and the vehicle–track interaction are calculated for the high-frequency dynamic mitigation, and the force distribution along the track is calculated for the low-frequency mitigation which is due to the smoother impulses from the passing static loads. Measurement results for the ground vibration near isolated and un-isolated tracks are given for several under-sleeper pads, for under-ballast mats, and for several under-ballast plates and ballast troughs. The elastic elements yield a resonance frequency of the vehicle–track–soil system and a high-frequency reduction of the dynamic axle loads which depends mainly on the softness of the pads or mats and which can be improved by a higher sleeper mass. In addition, all troughs and most of the soft elements show a low-frequency reduction which is attributed to the scattered impulses of the static axle loads. Besides this main contribution of the article, the problem of a soft reference section on a different soil is discussed and recommendations for better ground vibration measurements of mitigation effects are given. KW - Railway track KW - Elastic elements KW - Bending stiffness KW - Ground vibration KW - Mitigation KW - Lowfrequency reduction KW - Axle impulses PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612568 DO - https://doi.org/10.3390/app14031244 VL - 14 IS - 3 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-61256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different (simply supported, integral, multi-span, continuous) bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long single-span bridge on elastomeric bearings under standard train speeds, to a short two-span bridge under high-speed traffic, and to a long three-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4, a Maglev train on a viaduct, and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. KW - Rail bridge KW - Resonance KW - ICE4 KW - MAGLEV KW - Hyperloop KW - Continuous bridge KW - Multi-span bridge PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612595 DO - https://doi.org/10.1088/1742-6596/2647/25/252014 VL - 2647 SP - 1 EP - 11 PB - IOP Publishing AN - OPUS4-61259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiehle, Philipp A1 - Baier, Johanna A1 - Thiele, Marc T1 - Structural Design of Earth Masonry in Accordance with Eurocode 6 – Considering Moisture Content and E/fk Ratio N2 - The load‐bearing behaviour of earth masonry is similar to conventional masonry, with two key differences: compressive strength and Young's modulus are dependent on moisture content, and the ratio between Young's modulus and characteristic compressive strength (E/fk) is significantly lower. The current design concept according to the Lehmbau Regeln does not explicitly address these factors, relying instead on a general safety margin, leading to an underestimation of the load‐bearing capacity of modern earth masonry.Compression tests on small‐scale masonry specimens and storey‐high walls revealed that compressive strength and Young's modulus decrease inversely proportional to the increase in relative humidity. Additionally, it was found that conventional masonry design guidelines overestimate the buckling resistance of earth masonry due to its low E/fk ratio of ∼440. However, this ratio remains independent of moisture content, simplifying structural design, as the load‐bearing capacity is only influenced by wall slenderness.The study's findings form the foundation for the newly published German design standard DIN 18940, which explicitly considers moisture content through service classes with moisture factors and addresses the low E/fk ratio with a bilinear adaptation of the reduction factor considering the slenderness. Along with the introduction of the semi‐probabilistic design concept and rigid‐plastic determination of cross‐sectional load‐bearing capacity, modern earth masonry can now be applied in buildings up to four storeys. T2 - Earth Builder Summit CY - Biberach, Germany DA - 06.03.2025 KW - Service class KW - Earth masonry KW - Structural design KW - Moisture PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637803 DO - https://doi.org/10.1002/cepa.3287 SN - 2509-7075 VL - 8 IS - 1 SP - 9 EP - 21 PB - Ernst & Sohn GmbH AN - OPUS4-63780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The dynamic train-track interaction on a bridge and in a tunnel compared with the simultaneous vehicle, track, and ground vibration measurements at a surface line N2 - The vehicle–track interaction generates forces and consequently vibrations in the environment. The interaction has been analysed by the simultaneous measurements of vehicle, track and ground vibrations during test runs with varied train speeds. The special effects of the passage over a bridge and through a tunnel are studied and compared with the measurements on a conventional ballasted surface line. The maximum amplitudes, narrow band and one-third octave band spectra are presented for the axle-box accelerations and for the track, bridge and ground vibrations. The different frequencies and frequency bands are related to wheel out-of-roundness, track alignment errors, the sleeper passage and the wheelset–track resonance. An axle impulse component has been observed at the track, at the near-field soil and as a scattered version in the far field. Specific results can be found for the bridge track, where clearly speed-dependent bridge resonances occur due to the axle sequence of the train, and for the tunnel track where soft rail pads are responsible for a strong amplification around the wheelset–track resonance. On the other hand, the axle impulses are strongly reduced by the tunnel track, and the scattered axle impulse component is not as relevant as for the surface track. As a consequence, a strong mid-frequency amplitude reduction of the tunnel compared to the surface line has been measured for low and high train speeds by the Federal Institute of Material Research and Testing (BAM) and by other institutes. KW - Vehicle–track interaction KW - Ground vibration KW - Tunnel-to-surface reduction KW - Bridge resonance KW - Axle sequence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585139 DO - https://doi.org/10.3390/app131910992 VL - 13 IS - 19 SP - 1 EP - 23 PB - MDPI CY - Basel, Schweiz AN - OPUS4-58513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Soil–structure interaction and damping by the soil - effects of foundation groups, foundation flexibility, soil stiffness and layers N2 - In many tasks of railway vibration, the structure, that is, the track, a bridge, and a nearby building and its floors, is coupled to the soil, and the soil–structure interaction and the damping by the soil should be included in the analysis to obtain realistic resonance frequencies and amplitudes. The stiffness and damping of a variety of foundations is calculated by an indirect boundary element method which uses fundamental solutions, is meshless, uses collocation points on the boundary, and solves the singularity by an appropriate averaging over a part of the surface. The boundary element method is coupled with the finite element method in the case of flexible foundations such as beams, plates, piles, and railway tracks. The results, the frequency-dependent stiffness and damping of single and groups of rigid foundations on homogeneous and layered soil and the amplitude and phase of the dynamic compliance of flexible foundations, show that the simple constant stiffness and damping values of a rigid footing on homogeneous soil are often misleading and do not represent well the reality. The damping may be higher in some special cases, but, in most cases, the damping is lower than expected fromthe simple theory. Some applications and measurements demonstrate the importance of the correct damping by the soil. KW - Soil–structure interaction KW - Soil dynamics KW - Radiation damping of the soil KW - Rigid foundation KW - Flexible foundation KW - Foundation groups KW - Boundary element method KW - Vibration measurement PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627007 DO - https://doi.org/10.3390/vibration8010005 SN - 2571-631X VL - 8 IS - 5 SP - 1 EP - 28 PB - MDPI CY - Basel, Schweiz AN - OPUS4-62700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Prediction of ground vibrations from rail tunnels –finite-element, boundary-element and wavenumber calculations N2 - The prediction of ground and building vibrations has been established for surface lines and has now been extended to tunnel lines. The wave propagation in homogeneous or layered soils (the transmission) is calculated by an integration in wavenumber domain. The wave amplitudes at different distances and for different frequencies will be analysed for the following situations. 1. The horizontal propagation from a surface point to a surface point constitutes the basic rules. 2. The horizontal propagation from a source point at depth to a receiver point at depth which is related to a building with a deep basement or on a pile foundation. 3. The propagation from depth to the surface, which is the normal case for free-field measurements, has some different characteristics, for example a weaker attenuation with the horizontal distance from the source, which can be approximated by the full-space solution and the reflection rules for incident waves. The emission from a tunnel structure has been calculated by a finite-element model of the tunnel combined with a boundary-element model of the soil giving the reduction compared to a point-load excitation. The immission has been analysed by finite-element models of tunnel-soil-building systems for examples of research and consultancy work. Measurement results from a high-speed and a metro line confirm some of the established rules. KW - Railway tunnel KW - Ground vibration KW - Building vibration KW - Wavenumber integral KW - Full-space solution KW - Reflection at the surface PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627015 DO - https://doi.org/10.1088/1742-6596/2909/1/012013 SN - 1742-6596 VL - 2909 SP - 1 EP - 12 PB - IOP Publishing CY - London AN - OPUS4-62701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Farhat, Abbas A1 - Luu, Li-Hua A1 - Doghmane, Alexis A1 - Cuéllar, Pablo A1 - Benahmed, Nadia A1 - Wichtmann, Torsten A1 - Philippe, Pierre T1 - Micro and macro mechanical characterization of artificial cemented granular materials N2 - The focus of this study is the experimental characterization of cemented granular materials, with the aim of identifying the microscopic properties of the solid bonds and describing the extension to macroscopic mechanical strength of cemented samples.We chose to use artificially bonded granular materials, made of glass beads connected by solid paraffin bridges. The results of several sets of laboratory tests at different scales are presented and discussed. Micromechanical tests investigate the yield strength of single solid bonds between particles under traction, shearing, bending and torsion loading, as a function of variations in particle size, surface texture and binder content. Macro-scale tensile tests on cemented samples explore then the scale transition, including influence of confining walls through homothetic variations of the sample size. Despite the large statistical dispersion of the results, it was possible to derive and validate experimentally an analytical expression for micro tensile yield force as a function of the binder content, coordination number and grain diameter. In view of the data, an adhesive bond strength at the contact between bead and solid bond is deduced with very good accuracy and it is even reasonable to assume that the other threshold values (shear force, bending and torsion moments) are simply proportional to the tensile yield, thus providing a comprehensive 3D model of cemented bond. However, the considerable dispersion of the data at the sample scale prevents validation of the extended model for macroscopic yield stress. A final discussion examines the various factors that may explain intrinsic variability. By comparison with other more realistic systems studied in the literature in the context of bio-cementation, our artificial material nevertheless appears suitable for representing a cemented granular material. Being easy to implement, it could thus enable the calibration of discrete cohesion models for simulation of practical applications. KW - Cemented granular material KW - Micro-mechanical characterisation KW - Artificial soils KW - Yield tensile stress PY - 2024 DO - https://doi.org/10.1007/s10035-024-01426-2 SN - 1434-5021 VL - 26 IS - 3 SP - 1 EP - 20 PB - Springer CY - Berlin AN - OPUS4-63507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kemmler, Samuel A1 - Rettinger, Christoph A1 - Rüde, Ulrich A1 - Cuéllar, Pablo A1 - Köstler, Harald T1 - Efficiency and scalability of fully-resolved fluid-particle simulations on heterogeneous CPU-GPU architectures N2 - Current supercomputers often have a heterogeneous architecture using both conventional Central Processing Units (CPUs) and Graphics Processing Units (GPUs). At the same time, numerical simulation tasks frequently involve multiphysics scenarios whose components run on different hardware due to multiple reasons, e.g., architectural requirements, pragmatism, etc. This leads naturally to a software design where different simulation modules are mapped to different subsystems of the heterogeneous architecture. We present a detailed performance analysis for such a hybrid four-way coupled simulation of a fully resolved particle-laden flow. The Eulerian representation of the flow utilizes GPUs, while the Lagrangian model for the particles runs on conventional CPUs. Two characteristic model situations involving dense and dilute particle systems are used as benchmark scenarios. First, a roofline model is employed to predict the node level performance and to show that the lattice-Boltzmann-based Eulerian fluid simulation reaches very good performance on a single GPU. Furthermore, the GPU-GPU communication for a large-scale Eulerian flow simulation results in only moderate slowdowns. This is due to the efficiency of the CUDA-aware MPI communication, combined with the use of communication hiding techniques. On 1024 A100 GPUs, an overall parallel efficiency of up to 71% is achieved. While the flow simulation has good performance characteristics, the integration of the stiff Lagrangian particle system requires frequent CPU-CPU communications that can become a bottleneck, especially when simulating the dense particle system. Additionally, special attention is paid to the CPU-GPU communication overhead since this is essential for coupling the particles to the flow simulation. However, thanks to our problem-aware co-partitioning, the CPU-GPU communication overhead is found to be negligible. As a lesson learned from this development, four criteria are postulated that a hybrid implementation must meet for the efficient use of heterogeneous supercomputers. KW - Discrete element method KW - Hybrid implementation KW - High-performance computing KW - Particulate flow KW - Lattice Boltzmann method PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623958 DO - https://doi.org/10.1177/10943420241313385 SN - 1741-2846 SP - 1 EP - 19 PB - SAGE Publications AN - OPUS4-62395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -