TY - JOUR A1 - Auersch, Lutz T1 - Mitigation of railway-induced ground vibration by soft support elements and a higher bending stiffness of the track N2 - The mitigation of train-induced ground vibrations by track solutions is investigated by calculations and measurements. The calculation by a wavenumber domain method includes the correct vehicle–track interaction and the correct track–soil interaction. Some theoretical results for elastic elements and an increased bending stiffness of the track are presented where the force transfer of the track and the vehicle–track interaction are calculated for the high-frequency dynamic mitigation, and the force distribution along the track is calculated for the low-frequency mitigation which is due to the smoother impulses from the passing static loads. Measurement results for the ground vibration near isolated and un-isolated tracks are given for several under-sleeper pads, for under-ballast mats, and for several under-ballast plates and ballast troughs. The elastic elements yield a resonance frequency of the vehicle–track–soil system and a high-frequency reduction of the dynamic axle loads which depends mainly on the softness of the pads or mats and which can be improved by a higher sleeper mass. In addition, all troughs and most of the soft elements show a low-frequency reduction which is attributed to the scattered impulses of the static axle loads. Besides this main contribution of the article, the problem of a soft reference section on a different soil is discussed and recommendations for better ground vibration measurements of mitigation effects are given. KW - Railway track KW - Elastic elements KW - Bending stiffness KW - Ground vibration KW - Mitigation KW - Lowfrequency reduction KW - Axle impulses PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612568 DO - https://doi.org/10.3390/app14031244 VL - 14 IS - 3 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-61256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different (simply supported, integral, multi-span, continuous) bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long single-span bridge on elastomeric bearings under standard train speeds, to a short two-span bridge under high-speed traffic, and to a long three-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4, a Maglev train on a viaduct, and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. KW - Rail bridge KW - Resonance KW - ICE4 KW - MAGLEV KW - Hyperloop KW - Continuous bridge KW - Multi-span bridge PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612595 DO - https://doi.org/10.1088/1742-6596/2647/25/252014 VL - 2647 SP - 1 EP - 11 PB - IOP Publishing AN - OPUS4-61259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway vibration – fast physics-based models for the prediction of ground vibration and the identification of track damage N2 - The following applications of machine learning will be discussed: 1. The prediction of the wave propagation from a railway line (completely physics based for surface lines, physics-based machine learning for tunnel lines) 2. The track behaviour for the emission of train-induced ground vibration (physics based for homogeneous soil, machine learning for layered soil) 3. Track damage detection and quantification from frequency response functions and moving load responses 4. Bridge damage detection and localisation from modal analysis and moving load 5. The use of axle-box acceleration for the identification of track/sub-soil condition and bridge resonances. The prediction of railway vibration usually needs time-consuming finite element, boundary element and wavenumber domain calculations. For a user-friendly prediction software however, fast calculations are needed. Several time-consuming detailed calculations have been used to develop simpler and fast models for the surface railway lines. The more challenging prediction from tunnel lines will be attacked by purely mathematical and by physics-informed machine learning. The dynamic stiffnesses of isolated or un-isolated railway tracks from detailed calculations with a continuous soil have been approximated with the simpler Winkler soil. The vehicle-track resonance (P2 resonance) rules the effect of the mitigation measures, and it can also be used for the on-board monitoring of the track and sub-soil condition. For the identification of track damage such as gaps between sleepers, track slabs and layers, detailed models with a continuous soil have been updated to get the best fit to the measured frequency response functions from hammer tests and the deformation pattern from the moving load response. Whereas the track damage can be locally identified, this is more difficult for bridges where the modal analysis gives mainly global information. The influence lines of the inclination for statically passing vehicles (locomotive, truck, compaction roller) have been used to localise bridge damage (stiffness variations). The on-board monitoring of rail bridges needs special conditions (regular trains with special speeds) to excite and measure the bridge resonance. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Vibration prediction KW - Track damage detection KW - Human and machine learning KW - Wave propagation KW - Surface line KW - Tunnel KW - Bridge resonance PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612462 DO - https://doi.org/10.58286/29865 SN - 1435-4934 SP - 1 EP - 9 PB - NDT.net CY - Kirchwald AN - OPUS4-61246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hering, Marcus A1 - Agasty, Amit A1 - Costard, René A1 - Hüsken, Götz A1 - Chruscicki, Sebastian A1 - Hicke, Konstantin T1 - Explosion effects on reinforced concrete structures – A preliminary study of scaling laws N2 - Blast tests are required to investigate accidental or intentional blast events and to assess the level of protection for people and facilities in critical infrastructures. Conducting large-scale field tests for complex scenarios is very resource intensive. Reliable small-scale experiments are a promising alternative. However, the scaling laws for the design of reinforced concrete structures under blast loads are not sufficiently established. In our research work, a consortium made up of three BAM departments, focuses on reinforced concrete structures that are suitable for the standardization of scaled blast tests. As part of the feasibility study, blast tests were carried out on test specimens of different sizes on the BAM Test Site for Technical Safety (TTS). Various reinforced concrete plates were tested and subjected to different blast loads. The blast tests included various measurement techniques to quantify the blast load and the behavior of the reinforced concrete plate. The blast load was measured with flush-mounted piezoelectric pressure gauges, while accelerometers and embedded fiber optic sensor cables were used to characterize the dynamic behavior of the plate under blast loading. In addition, damage characteristics were also determined using distributed fiber optic sensing. The application of these measurement techniques as well as the use of different numerical software tools offer the possibility to verify or adapt the scaling laws. T2 - 19th International Symposium on Interaction of the Effects of Munitions with Structures (19th ISIEMS) CY - Bonn, Germany DA - 09.12.2024 KW - Scaling KW - Blast KW - Fiber optic sensing PY - 2024 SP - 1 EP - 9 AN - OPUS4-62258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit T1 - Replica scaling of RC slabs under blast loading: a preliminary assessment N2 - Blast testing is undoubtedly the most straightforward and direct method of evaluating the blast resistance of a structure. For the calibration and validation of numerical models as well, blast tests must be carried out. However, true-scale prototype testing under different blast loading scenarios is not always feasible. Reliable small-scale experiments are a promising alternative. Application of dimensional analysis and similarity principals can be found in different engineering fields. For applications to the phenomenon of shock wave propagation, Hopkinson-Cranz or cube-root scaling is a well-established concept. When it comes to the scaling the structural response, research has predominantly focused on structures made of metallic materials. Scaled investigations with concrete or reinforced concrete (RC) structures remain limited, specifically under blast loading. In a preliminary study, we tested RC slabs at two different scales under near-field blast loading. Replica scaling, which is geometrical scaling while using the same materials at different scales, was implemented in the construction of the test specimens. The assessment of scaling and the discrepancy in its application was investigated by characterizing the blast loads, dynamic response, and damage. The experiments were supplemented by numerical simulations of these scenarios. The quantification of scenario-and-response-specific discrepancy can be used to modify the scaling laws, so that a blast assessment can be performed based on resource efficient small-scale tests. T2 - 25th International Physical Security Forum CY - Schwarzenburg, Switzerland DA - 11.05.2025 KW - Blast KW - RC slabs KW - Scaling PY - 2025 AN - OPUS4-63184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit A1 - Hering, Marcus T1 - Experimental and Numerical Analysis of Reinforced Concrete Structures Under Blast Loading: Scopes and Challenges N2 - Protection against terrorist or accidental scenarios in industrial settings requires suitable designs of structures to resist blast loads. Field testing as well as finite element simulations are among the techniques available to engineers in the understanding of the structural behavior against blast loading. As blast testing of complex scenarios can be very resource intensive, tests are generally performed for simplified scenarios. Numerical tools can be used to model these scenarios in order to get a better insight into blast loading, structural response and the resulting damage to the structure. In the next steps, the simplified scenario is successively modified in numerical simulations to incorporate complexities that cannot be covered in blast testing experiments. One of the conditions for this approach to work is that the original simplified numerical simulation is valid. The scopes and challenges encountered in such a validation are the focus of this presentation. A relatively ‘simple’ field test of a horizontal reinforced concrete (RC) slab subjected to blast loading is taken as an example for validation of the performance of numerical tools. The blast test incorporated various measurement techniques to quantify the blast load as well as the behavior of the RC slab. Blast load was measured using flush-mounted piezoelectric pressure gauges, whereas acceleration sensors and fiber-optic sensor cables were used to characterize the dynamic behavior of the slab under blast loading. Additionally, damage characteristics were ascertained also using fiber-optic sensing. The application of such measurement techniques, along with different numerical software available for the analysis of the scenario in question, demonstrate the scope of our contribution. T2 - 24th International Physical Security Forum Brussels CY - Brussels, Belgium DA - 15.04.2024 KW - Blast KW - Reinforced Concrete Structures KW - Numerical simulations PY - 2024 AN - OPUS4-60880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hering, Marcus T1 - Explosion effects on reinforced concrete structures: A preliminary study of scaling laws N2 - Blast tests are required to investigate accidental or intentional blast events and to assess the level of protection for people and facilities in critical infrastructures. Conducting large-scale field tests for complex scenarios is very resource intensive. Reliable small-scale experiments are a promising alternative. However, the scaling laws for the design of reinforced concrete structures under blast loads are not sufficiently established. In our research work, a consortium made up of three BAM departments, focuses on reinforced concrete structures that are suitable for the standardization of scaled blast tests. As part of the feasibility study, blast tests were carried out on test specimens of different sizes on the BAM Test Site for Technical Safety (TTS). Various reinforced concrete plates were tested and subjected to different blast loads. The blast tests included various measurement techniques to quantify the blast load and the behavior of the reinforced concrete plate. The blast load was measured with flush-mounted piezoelectric pressure gauges, while accelerometers and embedded fiber optic sensor cables were used to characterize the dynamic behavior of the plate under blast loading. In addition, damage characteristics were also determined using distributed fiber optic sensing. The application of these measurement techniques as well as the use of different numerical software tools offer the possibility to verify or adapt the scaling laws. T2 - 19th International Symposium on Interaction of the Effects of Munitions with Structures (19th ISIEMS) CY - Bonn, Germany DA - 09.12.2024 KW - Blast KW - Fiber optic sensing KW - Scaling PY - 2024 AN - OPUS4-62260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Costard, René T1 - Auswirkungsbetrachtungen auf Strukturen T1 - Scaling of Blast Effects on Reinforced Concrete Structures N2 - Protection against terroristic or accidental scenarios in industrial settings requires suitable designs of structures to resist blast loads. Field testing as well as finite element simulations are among the techniques available to engineers in the understanding of the structural behavior against blast loading. As blast testing of complex scenarios can be very resource intensive, tests are generally performed for simplified scenarios. Numerical tools can be used to model these scenarios to get better insight into blast loading, structural response, and the resulting damage to the structure. During the next steps, the simplified scenario is successively modified in numerical simulations to incorporate complexities that cannot be covered in blast testing experiments. One of the conditions for this approach to work is that the original simplified numerical simulation is valid. The scopes and challenges encountered in such a validation are the focus of this presentation/article. A relatively ‘simple’ field test of a horizontal reinforced concrete (RC) slab subjected to blast loading is taken as an example for validation of the performance of numerical tools. The blast test incorporated various measurement techniques to quantify the blast load as well as the behavior of the RC slab. Blast load was measured using flush mounted piezoelectric pressure gauges, whereas acceleration sensors and fiber-optic sensor cables were used to characterize the dynamic behavior of the slab under blast loading. Additionally, damage characteristics were ascertained also using fiber optic sensing. The application of such measurement techniques, along with different numerical software available for the analysis of the scenario in question, demonstrate the scope of our contribution. When it comes to the challenges, it begins with proper instrumentation of the test specimen followed by the data processing. For numerical modelling, geometric conditions with appropriate boundary constraints, physical conditions such as the configuration of the rebars, as well as material parameters add to this challenge. The issues of choosing appropriate material models and comparison of results with multiple software tools will be discussed. This discussion forms the basis for a coherent approach to technical-safety assessment of blast effects on structures in its broader sense. T2 - Beiratssitzung Infrastruktur CY - Berlin, Germany DA - 11.04.2024 KW - Blast KW - Scaling KW - Fiber optic sensing KW - CFD KW - FEM PY - 2024 AN - OPUS4-59849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Costard, René T1 - Explosionsauswirkungen auf Strukturen Versuche und Simulationen N2 - Vorstellung der Versuche von Explosionsversuchen auf dem TTS. Diese werden ergänzt durch die Ergebnisse durchgeführter Simulationen und zeigen die Wirkung von zivilen Explosivstoffen auf Gebäudestrukturen und die aufgetretenen Schädigungen. T2 - 46. Informationstagung Sprengtechnik CY - Siegen, Germany DA - 25.04.2025 KW - Explosivstoff KW - Skalierung KW - Strukturauswirkung KW - Numerische Simulation PY - 2025 AN - OPUS4-62998 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Jürgen A1 - Eidenmüller, Moritz A1 - Auersch, Lutz T1 - Prognose von Erschütterungs- und Sekundärschall- Immissionen an Bahnlinien unter Verwendung von FEM Gebäudemodellen N2 - Die Errichtung von Wohngebäuden an Bahnstrecken erfordert Betrachtungen zur Begrenzung der Erschütterungs- und Sekundärschallimmissionen. Hierzu werden spektrale Prognoseverfahren ausgehend von Freifeldmessungen eingesetzt. Im rechnerischen Modell werden die Teilaspekte der Körperschallübertragung mit Hilfe von spektralen Übertragungsfunktionen beschrieben. Kenntnis über die Zusammenhänge dieser spektralen Übertragungsfunktionen erhält man im Wechselspiel von: - Messergebnissen von Körperschall- und Luftschallmessungen für einzelne Übertragungssysteme - Modellberechnungen mit der Finite-Elemente-Methode, Parameterstudien, Abgleich mit Messergebnissen - Modellberechnung mit der Finite-Elemente-Methode zur Wechselwirkung des schwimmenden Estrichs mit dem Gebäude T2 - VDI-Tagung Baudynamik CY - Würzburg, Germany DA - 02.04.2025 KW - Bahnerschütterungen KW - Gebäudemodelle KW - Schwimmender Estrich KW - Sekundärschall PY - 2025 SN - 978-3-18-092447-2 SN - 0083-5560 VL - 2447 SP - 301 EP - 314 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-62887 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -