TY - CONF A1 - Heyn, A. A1 - Müller, Thoralf A1 - Balzer, M. A1 - Fenker, M. A1 - Kappl, H. T1 - Corrosion protection mechanisms of TiMgN hard coatings on steel T2 - Tagungsband zum 20. Werkstofftechnischen Kolloquium N2 - . Hard coated steel components are used in a wide application range, mostly for protective, wear resistant and decorative purposes. Despite of these coatings being regarded as relatively dense, there is always a high risk of localized corrosion when a coated low alloyed steel component encounters a surrounding high humidity atmosphere or even an aqueous medium. An approach to enhance the corrosion properties is the addition of magnesium to physical vapor deposited hard coatings, like TiN. It has been found that there is a remarkable increase in corrosion resistance in dependence of magnesium content of the TiMgN coating and its surface properties. In this work the authors will explain the underlying corrosion protection mechanisms by means of electrochemical and analytical studies. The positive impact of magnesium in the coating relates on its preferred dissolution vs. steel. This causes the potential to shift to more negative direction with respect to the steel substrate and additionally leads to a temporarily passivation of the steel due to alkalization of the surrounding electrolyte by formation of magnesium hydroxide. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Titanium nitride KW - PVD hard coating KW - Magnesium PY - 2018 SN - 978-3-00-058901-0 SN - 1439-1597 VL - 72 SP - 74 EP - 83 PB - Eigenverlag CY - Chemnitz AN - OPUS4-44526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromi-um carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hard-ening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - 20. Werkstofftechnischen Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Heat treatment KW - Stainless steel KW - Corrosion resistance KW - EPR KW - Corrosion testing PY - 2018 AN - OPUS4-44553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 T2 - Tagungsband zum 20. Werkstofftechnischen Kolloquium N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromi-um carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hard-ening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Corrosion resistance KW - Corrosion testing KW - EPR KW - Heat treatment KW - Stainless steel PY - 2018 SN - 978-3-00-058901-0 SN - 1439-1597 VL - 72 SP - 277 EP - 284 PB - Eigenverlag CY - Chemnitz AN - OPUS4-44558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino T1 - Potential Mapping at Concrete Structures N2 - Potentialmapping is an electrochemical measurement for the detection of active corroding reinforcement at concrete structures. T2 - NDT&E Advanced Training Workshop 2018 CY - Berlin, Germany DA - 27.06.2018 KW - Corrosion KW - Potential mapping PY - 2018 AN - OPUS4-45356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Burkert, Andreas A1 - Mietz, Jürgen T1 - Corrosion behavior of galvanized reinforcement in chloride containing mortar and carbonated mortar T2 - Intergalva 2018 N2 - Korrosionseigenschaften von feuerverzinktem Betonstahl unterscheiden sich grundlegend von herkömmlichen Betonstahl. In diesem Vortrag sind Beispiele für das Korrosionsverhalten in chloridhaltigen und carbonatisierten Mörteln dargestellt T2 - Intergalva 2018 - 25th International Galvanizing Conference CY - Berlin, Germany DA - 17.06.2018 KW - Corrosion KW - Korrosion KW - Verzinkt KW - Betonstahl PY - 2018 SP - 301 EP - 309 AN - OPUS4-45240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kauss, N. A1 - Rosemann, Paul A1 - Halle, T. T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 JF - IOP Conference Series: Materials Science and Engineering N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromium carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heattreated states. The results show that a work hardening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - WTK2018 CY - Chemnitz DA - 14.03.2018 KW - Corrosion KW - Corrosion resistance KW - Corrosion testing KW - EPR KW - Heat treatment KW - Stainless steel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452482 DO - https://doi.org/10.1088/1757-899X/373/1/012020 SN - 1757-899X SN - 1757-8981 VL - 373 SP - Article 012020, 1 EP - 9 PB - Institute of Physics CY - London AN - OPUS4-45248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Kauss, N. A1 - Halle, T. T1 - Application of the electrochemical potentiodynamic reactivation method on martensitic stainless steels N2 - The double loop electrochemical potentiodynamic reactivation (EPR) method is a standardised procedure for detecting and quantifying sensitisation on austenitic, ferritic and ferritic-austenitic stainless-steel grades. This sensitisation is caused by microstructural alternations, as the formation of chromium carbides, nitrides or sigma-phases, which generate local chromium depleted zones nearby. The latter strongly influence the corrosion resistance and the electrochemical response of a stainless steel during electrochemical potentiodynamic reactivation, providing important information on the degree of chromium depletion. In case of martensitic stainless steels, which are used for cutlery and surgical instruments, the heat treatment has a strong impact on the microstructure, the material properties and especially on the corrosion resistance. To study this interaction, the EPR method was modified for the application on martensitic stainless steels with about 13 wt.-% chromium. Different H2SO4 concentrations and EPR-parameters were tested and compared on two standard martensitic stainless-steel grades (AISI 420 A / X20Cr13 and AISI 420 C / X46Cr13) to define applicable parameters. Afterwards, these parameters were used to study the effect of austenitisation time and cooling rate on the corrosion resistance of both martensitic stainless steels. The response of both alloys was different due to the different carbon levels, which will be explained by microstructural investigations in detail. All results allow postulating a process window, in which chromium depletion is suppressed and an optimised corrosion resistance is guaranteed. Based on this research, the modified EPR-test is now used to control the heat treatment and its impact on the corrosion resistance of martensitic stainless steels in the cutlery industry. The EPR-test is thus an interesting alternative for manufacturers, processors, users and researchers to the time-consuming exposition test normally used to characterise the corrosion resistance of martensitic stainless steels. T2 - Electrochemical Methods in Corrosion Research 2018 CY - Cambridge, UK DA - 22.07.2018 KW - EPR KW - Corrosion resistance KW - Heat treatment KW - Stainless steels KW - Corrosion KW - Corrosion testing KW - Martensitic stainless steels PY - 2018 AN - OPUS4-45613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Heyn, A. A1 - Rosemann, Paul T1 - How to Detect Sensitivity on Aged Lean-Duplex Stainless Steel With Electrochemical Methods N2 - The influence of isothermal ageing on microstructure, sensitisation and pitting corrosion resistance of the lean duplex stainless steel (LDSS) X2CrNiN23-4 was investigated with various electrochemical methods. The aging at 600 °C (from 0.1 h up to 20 h) lead to the formation of precipitations at the ferrite-ferrite (α/α) and ferrite-austenite (α/γ) grain boundaries, inducing sensitisation due to chromium depletion. The degree of sensitisation was evaluated with the double loop electrochemical potentiokinetic reactivation method (DL-EPR) according to ASTM G108 and correlated with critical pitting potentials (Epit) as well as critical pitting temperature (CPT) measured in an electrolyte according to ASTM G48 using electrochemical noise. Up to an ageing time of 1 h, the sensitisation did rise significantly, stabilising at a nearly constant level with a slight drop at 20 h. This behaviour correlated perfectly with the potentiodynamically determined pitting potentials Epit and sensitisation. The CPT showed a higher sensitivity at short ageing times compared to the DL-EPR and Epit. Finally, the KorroPad method was applied to visualise the sensitisation induced reduction of pitting corrosion resistance. The “KorroPad” is an agar-based gel-electrolyte containing 0.1 mol/l sodium chloride (NaCl) and 0.1 mol/l potassium ferricyanide III (K3[Fe(CN)6]), invented at the Federal Institute of Materials Research and Testing in Berlin (Germany) to detect surfaces of stainless steel prone to pitting corrosion. The standard configuration of the KorroPad showed no differentiation for the various aging conditions. Increasing the concentration of both NaCl and potassium ferrocyanide III to 0.5 M shifts the detection limit of the KorroPad method to stainless steels with higher corrosion resistance, producing the same trends detected by standard electrochemical pitting corrosion values (Epit, CPT) and sensitisation (DL-EPR). By that, the KorroPad method was successfully adjusted to the lean-duplex stainless steel X2CrNiN23-4, enabling short-time testing to detect sensitization. T2 - Electrochemical Methods in Corrosion Research 2018 CY - Cambridge, UK DA - 22.07.2018 KW - Corrosion testing KW - Duplex stainless steels KW - Corrosion KW - KorroPad KW - Pitting corrosion KW - EPR KW - Electrochemical noise KW - Stainless steel PY - 2018 AN - OPUS4-45615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Roth, C. T1 - Polyaniline/silicon dioxide containing coating for use in artificial geothermal brines T2 - Conference Proceedings NACE International Corrosion Conference 2018 N2 - Geothermal brine is a complex system containing a wide variety of dissolved salts resulting from the condition s in a geothermal well. These fluids lead to corrosion in pipes and other parts of geothermal system construction and necessitate intense research efforts in finding new suitable materials. Carbon steel is susceptible to corrosion in geothermal brine especially when it is exposed to a high temperature and high-pressure medium, which is considered to be an aggressive environment. An artificial geothermal water, bas ed on a brine composition found in Indonesia, was used to investigate the performance of high alloyed materials. The electrolyte has pH 4 and contains 1,500 mg/l Cl-, 20 mg/l SO4 2-, 15 mg/l HCO3 -, 200 mg/l Ca 2+, 250 mg/l K+, and 600 mg/l Na+. In order to protect the bare material in geothermal application, it is necessary to either use high alloyed material s or coatings. In this research, a coating system consisting of polyaniline and silicon dioxide was investigated regarding its behavior to protect carbon steel. In detail, the effect of SiO2 and polyaniline (PANi) addition was evaluated by exposure and electrochemical tests for 7 days, i.e. electrochemical impedance spectroscopy (EIS) and open circuit potential (OCP ) at room temperature and 150 °C with 1 MPa pressure . T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - Geothermal KW - Coating KW - SiO 2 KW - Polyaniline KW - Corrosion PY - 2018 SP - 10708, 1 EP - 14 PB - Omnipress CY - Houston AN - OPUS4-44916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Roth, C. T1 - Electrochemical study of polyaniline/silicon dioxide containing coatings in geothermal solution N2 - Polyaniline/Silicon Dioxide containing coatings were electrochemically investigated in a saline geothermal solution. With the increase of exposure time, impedance values of coated specimens decreased at low frequency, which could be caused by the decrease of pore resistance due to electrolyte or water uptake. Coating system needs further optimization work. T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - Geothermal KW - Coating KW - SiO2 KW - Polyaniline KW - Corrosion PY - 2018 AN - OPUS4-44918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -