TY - JOUR A1 - Zhao, H. A1 - Chakraborty, Poulami A1 - Ponge, D. A1 - Hickel, Tilmann A1 - Sun, B. A1 - Wu, C.-H. A1 - Gault, B. A1 - Raabe, D. T1 - Hydrogen trapping and embrittlement in high-strength Al alloys N2 - Ever more stringent regulations on greenhouse gas emissions from transportation motivate efforts to revisit materials used for vehicles. High-strength aluminium alloys often used in aircrafts could help reduce the weight of automobiles, but are susceptible to environmental degradation. Hydrogen ‘embrittlement’ is often indicated as the main culprit; however, the exact mechanisms underpinning failure are not precisely known: atomic-scale analysis of H inside an alloy remains a challenge, and this prevents deploying alloy design strategies to enhance the durability of the materials. Here we performed near-atomic-scale analysis of H trapped in second-phase particles and at grain boundaries in a high-strength 7xxx Al alloy. We used these observations to guide atomistic ab initio calculations, which show that the co-segregation of alloying elements and H favours grain boundary decohesion, and the strong partitioning of H into the second-phase particles removes solute H from the matrix, hence preventing H embrittlement. Our insights further advance the mechanistic understanding of H-assisted embrittlement in Al alloys, emphasizing the role of H traps in minimizing cracking and guiding new alloy design. KW - Atomistic models KW - Hydrogen KW - Metals and alloys KW - Mechanical properties PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543631 SN - 1476-4687 VL - 602 IS - 7897 SP - 437 EP - 441 PB - Nature Publ. Group CY - London AN - OPUS4-54363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -