TY - JOUR A1 - Martins, Ines A1 - Al-Sabbagh, Dominik A1 - Bentrup, U. A1 - Marquardt, Julien A1 - Schmid, Thomas A1 - Scoppola, E. A1 - Kraus, Werner A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill A1 - Weidner, Steffen A1 - Emmerling, Franziska T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure. KW - Bismuth KW - In situ EXAFS KW - In situ SAXS/WAXS KW - Lacunary Keggin ion KW - Polyoxometalates KW - Self-assembly PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546823 DO - https://doi.org/10.1002/chem.202200079 SN - 0947-6539 VL - 28 IS - 27 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Haferkamp, Sebastian A1 - Kraus, Werner T1 - Studies on the mechanochemical Knoevenagel condensation of fluorinated benzaldehyde derivates N2 - The mechanochemical Knoevenagel condensation of three fluorinated benzaldehyde derivates and malononitrile was investigated. The reactions were performed under solvent- and catalyst-free conditions and resulted in highly crystalline products after crystallization from a viscous phase in the milling jar. The quality of the obtained crystals was sufficient for single-crystal X-ray diffraction circumventing a recrystallization step. To gain more information on the reaction, progress was investigated in situ using time-resolved Raman spectroscopy. The results show a direct conversion of the reactants. KW - C-C coupling KW - Knoevenagel condensation KW - In situ KW - Mechanochemistry PY - 2018 DO - https://doi.org/10.1007/s10853-018-2492-0 SN - 0022-2461 VL - 53 IS - 19 SP - 13713 EP - 13718 PB - Springer Link AN - OPUS4-45682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lörchner, Dominique A1 - Kraus, Werner A1 - Köppen, Robert T1 - Photodegradation of the novel brominated flame retardant 2,4,6-Tris-(2,4,6-tribromophenoxy)-1,3,5-triazine in solvent system: Kinetics, photolysis products and pathway. N2 - In this study the direct and indirect photolysis of the novel brominated flame retardant 2,4,6-Tris-(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) in an organic solvent mixture (60:30:10, ACN:MeOH:THF) under UV-(C) and simulated sunlight irradiation was investigated, and the formed photo-transformation products were identified for the first time. TTBP-TAZ was almost completely degraded within 10 min under UV-(C) irradiation. Due to the fast degradation no specific kinetic order could be observed. In comparison, the reaction under simulated sunlight irradiation was much slower and thus, the kinetic first-order could be determined. The observed photolysis rate constant k as well as the half-life time t1/2 were estimated to be k = (0.0163 ± 0.0002) h-1 and t1/2 = 42.3 h, respectively. The addition of 2-propanol and hydrogen peroxide to investigate the influence of indirect photolysis under UV-(C) irradiation causes no influence on the degradation of TTBP-TAZ. Nevertheless, the removal of TTBP-TAZ under UV-(C) and simulated sunlight without additional chemicals (except solvent) indicates that the direct photolysis plays a significant role in the degradation mechanism of TTBP-TAZ. In both irradiation experiments, TTBP-TAZ was quantitatively degraded that involve the formation of previously unknown PTPs. Overall, two main PTPs were determined when irradiated with UV-(C) and eight sequential debromination products were observed when irradiated by simulated sunlight. These were determined by HPLC-DAD and - MS/(MS), respectively. Based on the chosen experimental conditions the consecutive debromination as well as photo-Fries rearrangement was confirmed as the main degradation pathway by high resolution mass spectrometry and X-ray diffraction. KW - XRD KW - Direct/indirect photolysis KW - HRMS KW - Photo-transformation products KW - TTBP-TAZ PY - 2019 DO - https://doi.org/10.1016/j.chemosphere.2019.04.184 SN - 0045-6535 SN - 1879-1298 VL - 229 SP - 77 EP - 85 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-48066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Sukhikh, A. A1 - Kraus, Werner A1 - Gromilov, S. T1 - Synthesis and Crystal Chemistry of Octahedral Rhodium(III) Chloroamines N2 - Rhodium(III) octahedral complexes with amine and chloride ligands are the most common starting compounds for preparing catalytically active rhodium(I) and rhodium(III) species. Despite intensive study during the last 100 years, synthesis and crystal structures of rhodium(III) complexes were described only briefly. Some [RhClx(NH3)6-x] compounds are still unknown. In this study, available information about synthetic protocols and the crystal structures of possible [RhClx(NH3)6−x] octahedral species are summarized and critically analyzed. Unknown crystal structuresof(NH4)2[Rh(NH3)Cl5],trans–[Rh(NH3)4Cl2]Cl·H2O,andcis–[Rh(NH3)4Cl2]Clarereported based on high quality single crystal X-ray diffraction data. The crystal structure of [Rh(NH3)5Cl]Cl2 was redetermined. All available crystal structures with octahedral complexes [RhClx(NH3)6-x] were analyzed in terms of their packings and pseudo-translational sublattices. Pseudo-translation lattices suggest face-centered cubic and hexagonal closed-packed sub-cells, where Rh atoms occupy nearly ideal lattices. KW - Pseudo-translationalsublattices KW - Rhodiumcomplexes KW - Ligandsubstitution KW - Crystalstructure PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508194 DO - https://doi.org/10.3390/molecules25040768 VL - 25 IS - 4 SP - 768 PB - MDPI CY - Basel AN - OPUS4-50819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bykov, M. A1 - Yusenko, Kirill A1 - Bykova, E. A1 - Pakhomova, A. A1 - Kraus, Werner A1 - Dubrovinskaia, N. A1 - Dubrovinsky, L. T1 - Synthesis of arsenopyrite-type rhodium pernitride RhN2 from a single-source azide precursor N2 - Nitrogen-rich noble metal nitrides possess unique mechanical and catalytic properties, therefore their synthesis and characterization is of interest for fundamental solid state chemistry and materials science. In this study we have synthesized a singlesource precursor [Rh(NH3)6]3(N3)5Cl4 (Rh:N ratio 1:11). Its controlled decomposition in a laser-heated diamond anvil cell at 39 GPa resulted in a formation of rhodium pernitride, RhN2. According to the results of single-crystal X-ray diffraction RhN2 has arsenopyrite structure type crystal structure previously unknown for this compound (P21/c (no. 14). KW - EOS KW - High-pressure KW - Nitrides PY - 2019 DO - https://doi.org/10.1002/ejic.201900488 IS - 32 SP - 3667 EP - 3671 PB - Wiley AN - OPUS4-48924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moldovan, R.-P. A1 - Wenzel, B. A1 - Teodoro, R. A1 - Neumann, W. A1 - Dukic-Stefanovic, S. A1 - Kraus, Werner A1 - Rong, P. A1 - Deuther-Conrad, W. A1 - Hey-Hawkins, E. A1 - Krügel, U. A1 - Brust, P. T1 - Studies towards the development of a PET radiotracer for imaging of the P2Y1 receptors in the brain: synthesis, 18F-labeling and preliminary biological evaluation N2 - Purine nucleotides such as ATP and ADP are important extracellular signaling molecules in almost all tissues activating various subtypes of purinoreceptors. In the brain, the P2Y1 receptor (P2Y1R) subtype mediates trophic functions like differentiation and proliferation, and modulates fast synaptic transmission, both suggested to be affected in diseases of the central nervous system. Research on P2Y1R is limited because suitable brain-penetrating P2Y1R-selective tracers are not yet available. Here, we describe the first efforts to develop an 18F-labeled PET tracer based on the structure of the highly affine and selective, non-nucleotidic P2Y1R allosteric modulator 1-(2-[2-(tert-butyl)phenoxy]pyridin-3-yl)-3- [4-(trifluoromethoxy)phenyl]urea (7). A small series of fluorinated compounds was developed by systematic modification of the p-(trifluoromethoxy)phenyl, the urea and the 2-pyridyl subunits of the lead compound 7. Additionally, the p-(trifluoromethoxy)phenyl subunit was substituted by carborane, a boron-rich cluster with potential applicability in boron neutron capture therapy (BNCT). By functional assays, the new fluorinated derivative 1-{2-[2-(tert-butyl)phenoxy]pyridin-3-yl}-3-[4-(2-fluoroethyl) phenyl]urea (18) was identified with a high P2Y1R antagonistic potency (IC50 ¼10 nM). Compound [18F] 18 was radiosynthesized by using tetra-n-butyl ammonium [18F]fluoride with high radiochemical purity, radiochemical yield and molar activities. Investigation of brain homogenates using hydrophilic interaction chromatography (HILIC) revealed [18F]fluoride as major radiometabolite. Although [18F]18 showed fast in vivo metabolization, the high potency and unique allosteric binding mode makes this class of compounds interesting for further optimizations and investigation of the theranostic potential as PET tracer and BNCT agent. KW - Purine P2Y1 receptors KW - Positron emission tomography KW - Brain PET tracers KW - Radiometabolites KW - Micellar chromatography KW - Hydrophilic interaction chromatography PY - 2019 DO - https://doi.org/10.1016/j.ejmech.2019.01.006 SN - 0223-5234 VL - 165 SP - 142 EP - 159 PB - Elsevier CY - Amsterdam AN - OPUS4-47253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simoes, R. A1 - Bernades, C. A1 - Joseph, A. A1 - Piedade, F. A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Diogo, H. A1 - da Piedade, M. T1 - Polymorphism in simvastatin: Twinning, disorder, and enantiotropic phase transitions N2 - : Simvastatin is one of the most widely used active pharmaceutical ingredients for the treatment of hyperlipidemias. Because the compound is employed as a solid in drug formulations, particular attention should be given to the characterization of different polymorphs, their stability domains, and the nature of the phase transitions that relate them. In this work, the phase transitions delimiting the stability domains of three previously reported simvastatin forms were investigated from structural, energetics, and dynamical points of view based on single crystal X-ray diffraction (SCXRD), hot stage microscopy (HSM), and differential scanning calorimetry (DSC) experiments (conventional scans and heat capacity measurements), complemented with molecular dynamics (MD) simulations. Previous assignments of the crystal forms were confirmed by SCXRD: forms I and II were found to be orthorhombic (P212121, Z′/Z = 1/4) and form III was monoclinic (P21, Z′/Z = 2/4). The obtained results further indicated that (i) the transitions between different forms are observed at 235.9 ± 0.1 K (form III → form II) and at 275.2 ± 0.2 K (form II → form I) in DSC runs carried out at 10 K min−1 and close to these values when other types of techniques are used (e.g., HSM). (ii) They are enantiotropic (i.e., there is a transition temperature relating the two phases before fusion at which the stability order is reversed), fast, reversible, with very little hysteresis between heating and cooling modes, and occur under single crystal to single crystal conditions. (iii) A nucleation and growth mechanism seems to be followed since HSM experiments on single crystals evidenced the propagation of an interface, accompanied by a change of birefringence and crystal contraction or expansion (more subtle in the case of form III → form II), when the phase transitions are triggered. (iv) Consistent with the reversible and small hysteresis nature of the phase transitions, the SCXRD results indicated that the molecular packing is very similar in all forms and the main structural differences are associated with conformational changes of the “ester tail”. (v) The MD simulations further suggested that the tail is essentially “frozen” in two conformations below the III → II transition temperature, becomes progressively less hindered throughout the stability domain of form II, and acquires a large conformational freedom above the II → I transition. Finally, the fact that these transitions were found to be fast and reversible suggests that polymorphism is unlikely to be a problem for pharmaceutical formulations employing crystalline simvastatin because, if present, the III and II forms will readily convert to form I at ambient temperature. KW - Polymorphism KW - Twinning KW - Disorder KW - Simvastatine PY - 2018 DO - https://doi.org/10.1021/acs.molpharmaceut.8b00818 SN - 1543-8384 SN - 1543-8392 VL - 15 IS - 11 SP - 5349 EP - 5360 PB - American Chemical Society CY - Washington, DC AN - OPUS4-46927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -