TY - JOUR A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface functionalization by laser-induced periodic surface structures N2 - In recent years, the improved understanding of the formation of laser-induced periodic surface structures (LIPSS) has led to an emerging variety of applications that modify the optical, mechanical, and chemical properties of many materials. Such structures strongly depend on the laser beam polarization and are formed usually after irradiation with ultrashort linearly polarized laser pulses. The most accepted explanation for the origin of the structures is based on the interference of the incident laser radiation with electromagnetic surface waves that propagate or scatter at the surface of the irradiated materials. This leads to an intensity modulation that is finally responsible for the selective ablation in the form of parallel structures with periods ranging from hundreds of nanometers up to some micrometers. The versatility when forming such structures is based on the high reproducibility with different wavelengths, pulse durations and repetition rate laser sources, customized micro- and nanometric spatial resolutions, and compatibility with industrially relevant processing speeds when combined with fast scanning devices. In this contribution, we review the latest applications in the rapidly emerging field of surface functionalization through LIPSS, including biomimetic functionalities on fluid transport, control of the wetting properties, specific optical responses in technical materials, improvement of tribological performance on metallic surfaces, and bacterial and cell growth for medical devices, among many others. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Surface functionalization KW - Applications PY - 2020 DO - https://doi.org/10.2351/7.0000103 SN - 1938-1387 VL - 32 IS - 2 SP - 022063 PB - Laser Institute of America AN - OPUS4-50780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface functionalization by laser-induced periodic surface structures N2 - In recent years, the improved understanding of the formation of laser-induced periodic surface structures (LIPSS) has led to an emerging variety of applications that modify the optical, mechanical and chemical properties of many materials. Such structures strongly depend on the laser beam polarization and are formed usually after irradiation with ultrashort linearly polarized laser pulses. The most accepted explanation for the origin of the structures is based on the interference of the incident laser radiation with electromagnetic surface waves that propagate or scatter at the surface of the irradiated materials. This leads to an intensity modulation that is finally responsible for the selective ablation in the form of parallel structures with periods ranging from hundreds of nanometers up to some micrometers. The versatility when forming such structures is based on the high reproducibility with different wavelength, pulse duration and repetition rate laser sources, customized micro- and nanometric spatial resolutions, and the compatibility with industrially relevant processing speeds when combined with fast scanning devices. In this contribution, we review the latest applications in the rapidly emerging field of surface functionalization through LIPSS, including biomimetic functionalities on fluid transport, control of the wetting properties, specific optical responses in technical materials, improvement of tribological performance on metallic surfaces and bacterial and cell growth for medical devices, among many others. T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Surface functionalization KW - Applications PY - 2019 SN - 978-1-940168-1-42 SP - Paper Nano 404 AN - OPUS4-50070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Epperlein, Nadja A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Surface functionalization by laser-induced periodic surface structures (LIPSS) N2 - In this contribution the mechanisms of formation and current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting properties, the mimicry of the natural texture of animal integuments, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - 10th Stuttgart Laser Technology Forum 2018 CY - Stuttgart, Germany DA - 05.06.2018 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Surface functionalization KW - Wetting KW - Tribology KW - Biofilms PY - 2018 SP - 35 AN - OPUS4-45128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Epperlein, Nadja A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Surface functionalization by laser-induced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the femtosecond to picosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical, biological, or chemical surface properties. In this contribution the mechanisms of formation and current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting properties, the mimicry of the natural texture of animal integuments, the tailoring of surface colonization by bacterial biofilms, the advancement of medical pacemakers, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - Stuttgarter Lasertage - SLT 2018 CY - Stuttgart, Germany DA - 05.06.2018 KW - Surface functionalization KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation PY - 2018 AN - OPUS4-45132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Surface nanotexturing by ultrashort laser pulses N2 - The presentation reviews the BAM activities in the field of surface processing by ultrashort laser pulses. A focus is laid on the generation of laser-induced periodic surface structures (LIPSS) which allow various surface functionalizations for applications in optics, tribology, liquid management, and medicine. T2 - Photonics Days Berlin Brandenburg 2022 CY - Berlin, Germany DA - 05.10.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Surface functionalization PY - 2022 AN - OPUS4-55921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Wonneberger, R. A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Wasmuth, Karsten A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Surface oxidation accompanying the formation of various types of femtosecond laser-generated surface structures on titanium alloy N2 - Different types of laser-generated surface structures, i.e., Laser-induced Periodic Surface Structures (LIPSS, ripples), Grooves, and Spikes are generated on titanium and Ti6Al4V surfaces by means of femtosecond (fs) laser scan processing (790 nm, 30 fs, 1 kHz) in ambient air. Morphological, chemical and structural properties of the different surface structures are characterized by various surface analytical techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Glow discharge optical emission spectroscopy (GD-OES), and depth-profiling Auger electron spectroscopy (AES). It is revealed that the formation of near-wavelength sized LIPSS is accompanied by the formation of a graded oxide extending several tens to a few hundreds of nanometers into depth. GD-OES performed on other superficial fs-laser generated structures produced at higher fluences and effective number of pulses per spot area such as periodic Grooves and irregular Spikes indicate even thicker graded oxide layers. These graded layers may be suitable for applications in prosthetics or tribology. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Titanium alloy KW - Oxidation KW - Glow-discharge optical emission spectroscopy PY - 2021 AN - OPUS4-52749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface superconductivity changes of niobium sheets by femtosecond laser-induced periodic nanostructures N2 - Irradiation with ultra-short (femtosecond) laser beams enables the generation of sub-wavelength laser-induced periodic surface structures (LIPSS) over large areas with controlled spatial periodicity, orientation, and depths affecting only a material layer on the sub-micrometer scale. This study reports on how fs-laser irradiation of commercially available Nb foil samples affects their superconducting behavior. DC magnetization and AC susceptibility measurements at cryogenic temperatures and with magnetic fields of different amplitude and orientation are thus analyzed and reported. This study pays special attention to the surface superconducting layer that persists above the upper critical magnetic field strength Hc2, and disappears at a higher nucleation field strength Hc3. Characteristic changes were distinguished between the surface properties of the laser-irradiated samples, as compared to the corresponding reference samples (non-irradiated). Clear correlations have been observed between the surface nanostructures and the nucleation field Hc3, which depends on the relative orientation of the magnetic field and the surface patterns developed by the laser irradiation. KW - Niobium KW - Surface superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Nanostructures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518462 DO - https://doi.org/10.3390/nano10122525 SN - 2079-4991 VL - 10(12) IS - Special issue "Laser-generated periodic nanostructures" SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-51846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Gräf, S. T1 - Ten Open Questions about Laser-Induced Periodic Surface Structures N2 - Laser-induced periodic surface structures (LIPSS) are a simple and robust route for the nanostructuring of solids that can create various surface functionalities featuring applications in optics, medicine, tribology, energy technologies, etc. While the current laser technologies already allow surface processing rates at the level of m2/min, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry, as well as by limitations in controlling the processing of LIPSS and in the long-term stability of the created surface functions. This Perspective article aims to identify some open questions about LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, we intend to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry. KW - Laser-induced periodic surface structures (LIPSS) KW - Industrial application KW - Functional properties KW - Surface functionalization KW - Modelling PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539503 DO - https://doi.org/10.3390/nano11123326 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 21 PB - MDPI CY - Basel, Switzerland AN - OPUS4-53950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - The influence of processing parameters on X‑ray emission during ultra‑short pulse laser machining N2 - During ultra-short laser material processing at high laser pulse repetition rates unwanted X-ray radiation can be generated in a quantity that may constitute a potential risk for health. An adequate X-ray radiation protection requires a thoroughly understanding of the influence of the laser processing parameters on the generation of X-ray radiation. In the present work, the generated X-ray dose during laser machining was investigated in air for varying beam scanning conditions at a pulse duration of 925 fs, a center wavelength of 1030 nm and a laser peak intensity of 2.6 × 10^14 W/cm^2. The X-ray radiation dose and the corresponding spectral X-ray emission were investigated in dependence on the laser’s pulse repetition rate and on the beam scanning speed. The results show a strong dependence of the X-ray emission on these laser processing parameters. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486441 DO - https://doi.org/10.1007/s00339-019-2827-y SN - 0947-8396 SN - 1432-0630 VL - 125 IS - 8 SP - 570, 1 EP - 8 PB - Springer AN - OPUS4-48644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rudenko, A. A1 - Déziel, J.-L. A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Siegel, J. A1 - Colombier, J.-P. T1 - The role of electromagnetic scattering in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon that is accompanying laser materials processing. These surface nanostructures pave a simple way for surface functionalization with numerous applications in optics, fluidics, tribology, medicine, etc. During the last decade remarkable experimental and theoretical improvements in understanding of their formation mechanisms were obtained - all pointing toward polarization-dependent energy deposition by absorption of optical radiation that is scattered at the surface roughness and interfering with the laser beam. This contribution reviews the current state-of-the-art on the role of electromagnetic scattering in the formation of LIPSS by ultrashort laser pulses. Special attention is drawn to recent finite-difference time-domain (FDTD) calculations that allow to visualize the radiation patterns formed in the vicinity of the sample surface and to the impact of a thin superficial laser-induced oxidation layer. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Optical scattering KW - Oxidation KW - Femtosecond laser PY - 2021 AN - OPUS4-52729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rudenko, A. A1 - Déziel, J.-L. A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Colombier, J.-P. T1 - The role of scattering in the formation of laserinduced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon that is accompanying laser materials processing. These surface nanostructures pave a simple way for surface functionalization with numerous applications in optics, fluidics, tribology, medicine, etc. This contribution reviews the current view on the role of electromagnetic scattering in the formation of LIPSS. T2 - Workshop on Theoretical and Numerical Tools for Nanophotonics (TNTN 2020) CY - Berlin, Germany DA - 12.02.2020 KW - Laser-induced periodic surface structures, LIPSS KW - Electromagnetic scattering KW - Finite-difference time-domain calculations PY - 2020 AN - OPUS4-50399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are often present when processing solid targets with linearly polarized ultrashort laser pulses. The different irradiation parameters to produce them on metals, semiconductors and dielectrics have been studied extensively, identifying suitable regimes to tailor its properties for applications in the fields of optics, medicine, fluidics and tribology, to name a few. One important parameter widely present when exposing the samples to the high intensities provided by these laser pulses in air environment, that generally is not considered, is the formation of a superficial laser-induced oxide layer. In this paper, we fabricate LIPSS on a layer of the oxidation prone hard-coating material chromium nitride in order to investigate the impact of the laser-induced oxide layer on its formation. A variety of complementary surface analytic techniques were employed, revealing morphological, chemical and structural characteristics of well-known high-spatial frequency LIPSS (HSFL) together with a new type of low-spatial frequency LIPSS (LSFL) with an anomalous orientation parallel to the laser polarization. Based on this input, we performed finite-difference time-domain calculations considering a layered system resembling the geometry of the HSFL along with the presence of a laser-induced oxide layer. The simulations support a scenario that the new type of LSFL is formed at the interface between the laser-induced oxide layer and the non-altered material underneath. These findings suggest that LSFL structures parallel to the polarization can be easily induced in materials that are prone to oxidation. KW - Laser-induced oxide layer KW - Laser-induced periodic surface structures (LIPSS) KW - Surface chemistry KW - Femtosecond laser processing KW - Nanostructuring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502530 DO - https://doi.org/10.3390/nano10010147 SN - 2079-4991 VL - 10(1) IS - Special issue "Laser-generated periodic nanostructures" SP - 147-1 EP - 147-18 PB - MDPI CY - Basel AN - OPUS4-50253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Seuthe, T. A1 - Grehn, M. A1 - Eberstein, M. A1 - Rosenfeld, A. A1 - Mermillod-Blondin, A. T1 - Time-resolved microscopy of fs-laser-induced heat flows in glasses N2 - Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient dn/dT. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser–matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials. KW - Femtosecond laser KW - Phase-contrast microscopy KW - Heat diffusion KW - Glasses PY - 2018 DO - https://doi.org/10.1007/s00339-017-1465-5 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 1 SP - 60, 1 EP - 6 PB - Springer-Verlag AN - OPUS4-43739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunz, C. A1 - Bonse, Jörn A1 - Spaltmann, Dirk A1 - Neumann, C. A1 - Turchanin, A. A1 - Bartolomé, J. F. A1 - Müller, F. A. A1 - Gräf, S. T1 - Tribological performance of metal-reinforced ceramic composites selectively structured with femtosecond laser-induced periodic surface structures N2 - The impact of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on tribological properties was investigated for metal-reinforced ceramic composites (Al2O3-ZrO2-Nb). For this purpose, the metallic niobium (Nb) phase was selectively structured with LIPSS in an air environment with different values of the fs-laser peak fluence by near-infrared fs-laser radiation (λ = 1025 nm, τ = 300 fs, frep = 1 kHz), taking advantage of the different light absorption behavior of ceramic and metal. The tribological performance was evaluated by reciprocating sliding tests in a ball-on-disc configuration using Ringer's solution as lubricant. The surfaces were characterized before and after laser irradiation by optical microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and by measuring the contact angle with Ringer's solution. The LIPSS formation resulted in an increased wetting of the surface with the lubricant. Moreover, the selectively structured composite surfaces revealed a coefficient of friction significantly reduced by a factor of ~3 when compared to the non-irradiated surface. Furthermore, the formation of a laser-induced oxidation layer was detected with NbO as the most prominent oxidation state. Selectively structured composites with outstanding mechanical properties and enhanced tribological performance are of particular interest for biomedical applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Ceramic matrix composites KW - Tribology PY - 2020 DO - https://doi.org/10.1016/j.apsusc.2019.143917 SN - 0169-4332 SN - 1873-5584 VL - 499 IS - 1 SP - 143917 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-49255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Slachciak, Nadine A1 - Elert, Anna Maria A1 - Griepentrog, Michael A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Dörfel, Ilona A1 - Sturm, Heinz A1 - Pentzien, Simone A1 - Koter, Robert A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization N2 - Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms. KW - Femtosecond laser KW - Titanium KW - Oxidation KW - Friction PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-445609 DO - https://doi.org/10.1007/s00339-018-1745-8 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 4 SP - 326, 1 EP - 10 PB - Springer-Verlag AN - OPUS4-44560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Tribologische Eigenschaften mittels Femtosekunden-Laserstrahlung nano- und mikrostrukturierter Metalloberflächen N2 - Lasermaterialbearbeitung ist eine sich schnell entwickelnde Technologie, um eine Vielzahl von Oberflächenfunktionalitäten auf Basis optischer, mechanischer oder chemischer Eigenschaften zu realisieren. Die Verwendung ultrakurzer Laserimpulse mit Dauern im Femtosekundenbereich ermöglicht dabei neben einer herausragenden Bearbeitungs-präzision auch die selbstorganisierte Erzeugung verschiedener charakteristischer Ober-flächenstrukturen mit Größenskalen im Mikrometer- bis hinunter in den sub-100-nm-Bereich, z.B. sogenannte Ripples („Laser-Induced Periodic Surface Structures“, LIPSS), Grooves, oder Spikes. In dem Vortrag wird ein Überblick über die in den vergangenen Jahren in Zusammenarbeit mit dem BAM Fachbereich 6.3 durchgeführten tribologischen Experimente gegeben. Besonderes Augenmerk liegt dabei auf den tribologischen Eigenschaften (Reibung und Verschleiß) der unterschiedlichen Femtosekunden-Laser-generierten Oberflächen-morphologien auf gängigen Metallen (z.B. Stahl, Titan). Einflüsse durch die Veränderungen der Härte des Werkstoffs infolge Laser-induzierter Oxidation, der Dicke und Struktur der Oxidschicht, und die Wirksamkeit unterschiedlicher Schmiermittel (z.B. additiviertes Motoröl) werden diskutiert. T2 - 76. Tribologie-Kolloquium des GfT-Arbeitskreises Berlin Brandenburg CY - Berlin, Germany DA - 12.06.2018 KW - Femtosekunden-Laserablation KW - Tribologie KW - Reibung KW - Verschleiß PY - 2018 AN - OPUS4-45169 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Stoian, R. A1 - Bonse, Jörn T1 - Ultrafast Laser Nanostructuring — The Pursuit of Extreme Scales N2 - Long seen as “a solution seeking a problem,” laser pulses are nowadays – more than 60 years after their first practical demonstration – paramount in shaping and structuring matter. Harnessing their capabilities to direct intense beams of light, the number of scientific and technological developments and daily-life applications is continuously increasing. Today, the presence of lasers is ubiquitous in all sites of scientific and technological interest, from the most advanced research laboratories to industrial factories and medical hospitals. The directionality of the laser beam determines equally a local character on lightmatter interaction and as such a local modification to a material target. Furthermore, the coherence of laser radiation enables near-field or far-field scattering and interference effects that widen significantly the capabilities of controlling and tracking laser-matter interactions in space and time. Already with the advent of lasers, powerful beams of light have been directed at solid materials for a variety of purposes, making this application as old as the laser itself. The roots of the major applications for laser structuring were developed already in the 1960s, setting the base of both theoretical and experimental studies on laser ablation, with the number of publications expanding explosively during the next decades. Within this dynamic context, laser processing of materials experienced an impressive development over the years. Laser processing means specifically the capability to structure and tailor a material on its surface or even within its volume, rendering new functions and properties that are impacting the mechanical, electrical, or optical characteristics of the material. These properties are scaledependent, generating thus over the years an equally impressive quest for spatial or temporal resolution. Therefore, the developments in laser engineering with major breakthroughs, notably in pulse duration and power, always closely accompanied the efforts in material structuring with two milestones in sight: (1) yield and (2) resolution. Every step in shrinking the laser pulse duration led to a subsequent strong-impact development in process precision – particularly when the ultrashort pulse durations surpassed the fundamental electron-phonon relaxation times. Thus, minimizing heat diffusion, the advent of pulses with duration smaller than molecular or lattice vibration times has managed to confine the spatial resolution to the optical diffraction limit and sometimes even beyond. The nanoscale was already in sight at the turn of the millennium. An important question may be raised now; is there any fundamental limit in the processing resolution, a barrier defined by the intrinsic properties of light and matter? The answer has an inherently multidisciplinary nature, following the conversion of free-propagating electromagnetic radiation into material-confined energy potentially usable to drive or transform matter, and will be the focus of the present book. Relying on the experience and expertise of the leading researchers in the field, the present book intends to explore the current efforts in achieving laser processing resolution beyond the diffraction limit, laying down a perspective towards extreme laser nanostructuring. Following the most recent advances and developments, it puts forward a concept of extreme processing scales enabled by optical pulses that are able to bypass diffraction limits and achieve structuring characteristic scales beyond 100 nm. This objective can be achieved by a comprehensive understanding on how light can change matter and how, in turn, matter can change light, allowing jointly for actively controlling light and material processes. In order to give an extended perspective on the current state-of-the-art in the field of precision laser structuring, the book is divided into three main parts. The first part of the book (Part I: Fundamental Processes) offers a perspective into the fundamentals of laser-matter interaction on extreme spatial scales, with a description of the most advanced modeling efforts in understanding energy deposition in matter, a plethora of material-relaxation pathways, as well as advanced concepts for probing and observing matter in motion. Roadmaps for energy localization will be developed, and the atomistic perspective of laser ablation visualized. Theoretical modelling enables in-depth insights on ultrafast quantum processes at the nanoscale. Laser-driven self-organization at surfaces will be dissected regarding the question of how light drives material periodic patterns down to the nanoscale, explored and transmitted to its ultimate limits of an atomic printer, and immediately complemented by the unprecedented capabilities of ultrafast in-situ observation approaches for tracking the laser-induced material response with extreme spatial and temporal resolution. In the second part of the book (Part II: Concepts of Extreme Nanostructuring), distinct concepts will be developed and explored that allow confinement of light and harnessing of a material response restricted to nano- or mesoscopic scales at surfaces or in the volume of irradiated materials. A special focus will be on optical near-field related approaches for localizing light on scales even below the optical diffraction limit and plasmonic printing. Spatial and temporal beam-shaping and tailored interference techniques are discussed in the context of ultrashort laser pulses, and insights into some extreme states of matter realized by the tight confinement of laser energy are presented. The ultimate limits of writing waveguides in the bulk of dielectrics and for manifesting 3D-nanolithography are elucidated. Plasma-based surface treatments can significantly enhance the vertical precision of surface processing through etching processes. Finally, the third part of the book (Part III: Applications) leads us to a number of resuming applications, unveiling the tremendous capabilities of surface functionalization through laser micro- and nanostructuring, assessing the 3D-writing of waveguides in the bulk of dielectrics or semiconductors for enabling new branches of integrated photonics, and summarizing related applications ranging from nanophotonics to nanofluidics and from optical sensing to biomedical applications, including the latest capabilities of refractive eye surgery. This part will analyze the applications’ compatibility in yield and reproducibility with current industrial requirements, costs, and intellectual property aspects. It expands the involved spatial scales by more than eight orders of magnitude, when extending extremely small structures featuring sizes of few tens of nanometers to larger dimensions in the meter range. Thus, from surfaces to the bulk, from subtractive to additive manufacturing approaches, from advanced theoretical frames to practical technological processes – we invite the readers here to an exciting journey into the varicolored landscape of extreme laser nanostructuring. The idea of this book project was seeded in early 2020. We were delighted about the numerous and extremely positive responses from the laser-processing community, quickly receiving commitments for more than 30 individual book chapters. About 2500 communications later, the book is published. We would like to thank all authors of this book project for their insightful and detailed chapters, reviewing and reporting on this fascinating topic of the pursuit of extreme scales in ultrafast laser nanostructuring. Moreover, we would like to acknowledge the professional help and guidance of the staff of Springer Nature. Finally, we hope you will enjoy reading this book as much as we have enjoyed putting it together. Saint Etienne, France Razvan Stoian Berlin, Germany Jörn Bonse December 2022 KW - Laser nanostructuring KW - Surface engineering KW - Nonlinear lithography KW - Self-organization KW - Laser-induced periodic surface structures, LIPSS PY - 2023 SN - 978-3-031-14751-7 (Hardcover) SN - 978-3-031-14752-4 (eBook) DO - https://doi.org/10.1007/978-3-031-14752-4 SN - 0342-4111 VL - 239 SP - 1 EP - 1245 PB - Springer Nature Switzerland AG CY - Cham ET - 1 AN - OPUS4-57294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Ayerdi, Jon J. A1 - Slachciak, Nadine A1 - Gradt, Thomas A1 - Krüger, Jörg A1 - Zabala, A. A1 - Spaltmann, Dirk T1 - Ultrakurzpulslaser induzierte Oxidschichten zur Reduktion von Reibung und Verschleiß auf Metalloberflächen N2 - Die Reduktion von Reibung und Verschleiß in technischen Systemen bietet ein großes Potenzial zur Reduktion von CO2-Emissionen. Dieser Beitrag diskutiert die Erzeugung und tribologische Charakterisierung von Ultrakurzpuls-generierten Nano- und Mikrostrukturen auf Metallen (Stahl, Titan). Besonderes Augenmerk wird dabei auf die Rolle der laserinduzierten Oxidschicht im Zusammenspiel mit verschleißreduzierenden Additiven in ölbasierten Schmiermitteln gerichtet. T2 - Workshop "Nachhaltigkeit durch Tribologische Schichten" - Europäische Forschungsgesellschaft Dünne Schichten e.V. CY - Karlsruhe, Germany DA - 17.05.2022 KW - Laser-induzierte periodische Oberflächenstrukturen KW - Reibungsreduktion KW - Verschleißreduktion KW - Oberflächenmodifikation KW - Oxidation KW - Additive PY - 2022 AN - OPUS4-54849 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraft, S. A1 - Böttcher, Katrin A1 - Bonse, Jörn A1 - Schille, J. A1 - Löschner, U. A1 - Krüger, Jörg T1 - Unwanted X-ray emission in ultrashort pulse laser processing: From metallic to biological materials N2 - X-rays can be generated as an unwanted side effect during ultrashort pulse laser material processing of technical work pieces and even biological samples with laser intensities above 10^13 W/cm^2. First studies demonstrate the need to address this effect in industrial as well as in medical applications. This secondary hazard should be considered in work safety and risk assessment. T2 - Lasers in Manufacturing 2023 (LiM 2023) CY - Munich, Germany DA - 26.06.2023 KW - Ultrashort pulse laser processing KW - Laser-induced X-ray emission KW - Secondary hazard PY - 2023 SP - LiM 2023 - 1 EP - LiM 2023 - 6 PB - Wissenschaftliche Gesellschaft Lasertechnik und Photonik e.V. (WLT) AN - OPUS4-58358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böttcher, Katrin A1 - Schmitt Rahner, M. A1 - Stolzenberg, U. A1 - Kraft, Sebastian A1 - Bonse, Jörn A1 - Feist, C. A1 - Albrecht, D. A1 - Pullner, B. A1 - Krüger, Jörg T1 - Worst-case X-ray photon energies in ultrashort pulse laser processing N2 - Ultrashort pulse laser processing can result in the secondary generation of unwanted X-rays if a critical laser irradiance of about 10^13 W/cm^2 is exceeded. Spectral X-ray emissions were investigated during the processing of tungsten and steel using three complementary spectrometers (based on CdTe and silicon drift detectors) simultaneously for the identification of a worst-case spectral scenario. Therefore, maximum X-ray photon energies were determined, and corresponding dose equivalent rates were calculated. An ultrashort pulse laser workstation with a pulse duration of 274 fs, a center wavelength of 1030 nm, pulse repetition rates between 50 kHz and 200 kHz, and a Gaussian laser beam focused to a spot diameter of 33 µm was employed in a single pulse and burst laser operation mode. Different combinations of laser pulse energy and repetition rate were utilized, keeping the average laser power constant close to the maximum power of 20 W. Peak irradiances ranging from 7.3 × 10^13 W/cm^2 up to 3.0 × 10^14 W/cm^2 were used. The X-ray dose equivalent rate increases for lower repetition rates and higher pulse energy if a constant average power is used. Laser processing with burst mode significantly increases the dose rates and the X-ray photon energies. A maximum X-ray photon energy of about 40 keV was observed for burst mode processing of tungsten with a repetition rate of 50 kHz and a peak irradiance of 3 × 10^14 W/cm^2. KW - Ultrashort pulsed laser KW - X-ray emission KW - X-ray spectrum KW - X-ray energies KW - Radiation protection PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566176 DO - https://doi.org/10.3390/ma15248996 VL - 15 IS - 24 SP - 1 EP - 17 PB - MDPI AN - OPUS4-56617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -