TY - JOUR A1 - Bonse, Jörn A1 - Seuthe, T. A1 - Grehn, M. A1 - Eberstein, M. A1 - Rosenfeld, A. A1 - Mermillod-Blondin, A. T1 - Time-resolved microscopy of fs-laser-induced heat flows in glasses N2 - Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient dn/dT. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser–matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials. KW - Femtosecond laser KW - Phase-contrast microscopy KW - Heat diffusion KW - Glasses PY - 2018 DO - https://doi.org/10.1007/s00339-017-1465-5 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 1 SP - 60, 1 EP - 6 PB - Springer-Verlag AN - OPUS4-43739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are often present when processing solid targets with linearly polarized ultrashort laser pulses. The different irradiation parameters to produce them on metals, semiconductors and dielectrics have been studied extensively, identifying suitable regimes to tailor its properties for applications in the fields of optics, medicine, fluidics and tribology, to name a few. One important parameter widely present when exposing the samples to the high intensities provided by these laser pulses in air environment, that generally is not considered, is the formation of a superficial laser-induced oxide layer. In this paper, we fabricate LIPSS on a layer of the oxidation prone hard-coating material chromium nitride in order to investigate the impact of the laser-induced oxide layer on its formation. A variety of complementary surface analytic techniques were employed, revealing morphological, chemical and structural characteristics of well-known high-spatial frequency LIPSS (HSFL) together with a new type of low-spatial frequency LIPSS (LSFL) with an anomalous orientation parallel to the laser polarization. Based on this input, we performed finite-difference time-domain calculations considering a layered system resembling the geometry of the HSFL along with the presence of a laser-induced oxide layer. The simulations support a scenario that the new type of LSFL is formed at the interface between the laser-induced oxide layer and the non-altered material underneath. These findings suggest that LSFL structures parallel to the polarization can be easily induced in materials that are prone to oxidation. KW - Laser-induced oxide layer KW - Laser-induced periodic surface structures (LIPSS) KW - Surface chemistry KW - Femtosecond laser processing KW - Nanostructuring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502530 DO - https://doi.org/10.3390/nano10010147 SN - 2079-4991 VL - 10(1) IS - Special issue "Laser-generated periodic nanostructures" SP - 147-1 EP - 147-18 PB - MDPI CY - Basel AN - OPUS4-50253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Menzel, F. A1 - Epperlein, N. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Bacterial adhesion on femtosecond laser-modified polyethylene N2 - In this study, femtosecond laser-induced sub-micrometer structures are generated to modify polyethylene (PE) surface topographies. These surfaces were subjected to bacterial colonization studies with Escherichia coli and Staphylococcus aureus as test strains. The results reveal that the nanostructures do not influence S. aureus coverage, while the adhesion of E. coli is reduced. KW - Bacterial adhesion KW - Laser-modified surface KW - Polyethylene KW - Laser-induced nanostructures KW - Biofilm PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492280 DO - https://doi.org/10.3390/ma12193107 VL - 12 IS - 19 SP - 3107 PB - MDPI CY - Basel, Schweiz AN - OPUS4-49228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joseba Ayerdi, J. A1 - Slachciak, Nadine A1 - Llavori, I. A1 - Zabala, A. A1 - Aginagalde, A. A1 - Bonse, Jörn A1 - Spaltmann, Dirk T1 - On the role of a ZDDP in the tribological performance of femtosecond laser-induced periodic surface structures on titanium alloy against different counterbody materials N2 - Laser-induced periodic surface structures (LIPSS, ripples) with ~500–700 nm period were produced on titanium alloy (Ti6Al4V) surfaces upon scan processing in air by a Ti:sapphire femtosecond laser. The tribological performance of the surfaces were qualified in linear reciprocating sliding tribological tests against balls made of different materials using different oilbased lubricants. Extending our previous work, we studied the admixture of the additive 2-ethylhexyl-zinc-dithiophosphate to a base oil containing only anti-oxidants and temperature stabilizers. The presence of this additive along with the variation of the chemical composition of the counterbodies allows us to explore the synergy of the additive with the laseroxidized nanostructures. KW - Additives KW - Surface structures KW - Wear KW - Friction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488458 DO - https://doi.org/10.3390/lubricants7090079 SN - 2075-4442 VL - 7 SP - 79, 1 EP - 13 PB - MDPI AN - OPUS4-48845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezera, M. A1 - Bonse, Jörn A1 - Römer, G.R.B.E. T1 - Influence of Bulk Temperature on Laser-Induced Periodic Surface Structures on Polycarbonate N2 - In this paper, the influence of the bulk temperature (BT) of Polycarbonate (PC) on the occurrence and growth of Laser-induced Periodic Surface Structures (LIPSS) is studied. Ultrashort UV laser pulses with various laser peak fluence levels F_0 and various numbers of overscans (N_OS) were applied on the surface of pre-heated Polycarbonate at different bulk temperatures. Increased BT leads to a stronger absorption of laser energy by the Polycarbonate. For N_OS < 1000 High Spatial Frequency LIPSS (HSFL), Low Spatial Frequency LIPSS perpendicular (LSFL-I) and parallel (LSFL-II) to the laser polarization were only observed on the rim of the ablated tracks on the surface but not in the center of the tracks. For N_OS ≥ 1000 , it was found that when pre-heating the polymer to a BT close its glass transition temperature (T_g), the laser fluence to achieve similar LIPSS as when processed at room temperature decreases by a factor of two. LSFL types I and II were obtained on PC at a BT close to T_g and their periods and amplitudes were similar to typical values found in the literature. To the best of the author’s knowledge, it is the first time both LSFL types developed simultaneously and consistently on the same sample under equal laser processing parameters. The evolution of LIPSS from HSFL, over LSFL-II to LSFL I, is described, depending on laser peak fluence levels, number of pulses processing the spot and bulk temperature. KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Bulk temperature KW - Ultrashort laser pulses PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498242 UR - https://www.mdpi.com/2073-4360/11/12/1947 DO - https://doi.org/https://doi.org/10.3390/polym11121947 SN - 2073-4360 VL - 11 IS - 12 SP - 1947 PB - MDPI CY - Basel, Switzerland AN - OPUS4-49824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Effects of laser-induced periodic surface structures on the superconducting properties of Niobium N2 - It is well known that the use of ultrashort (fs) pulsed lasers can induce the generation of (quasi-) periodic nanostructures (LIPSS, ripples) on the surface of many materials. Such nanostructures have also been observed in sample’s surfaces irradiated with UV lasers with a pulse duration of 300 ps. In this work, we compare the characteristics of these nanostructures on 1-mm and on 25-μm thick niobium sheets induced by 30 fs n-IR and 300 ps UV pulsed lasers. In addition to conventional continuous or burst mode processing configurations, two-dimensional laser beam and line scanning modes have been investigated in this work. The latter allows the processing of large areas with a more uniform distribution of nanostructures at the surface. The influence of the generated nanostructures on the superconducting properties of niobium has also been explored. For this aim, magnetic hysteresis loops have been measured at different cryogenic temperatures to analyse how these laser treatments affect the flux pinning behaviour and, in consequence, the superconductor’s critical current values. It was observed that laser treatments are able to modify the superconducting properties of niobium samples. T2 - E-MRS Spring Meeting 2019 CY - Nice, France DA - 27.05.2019 KW - Superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Niobium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502541 DO - https://doi.org/10.1016/j.apsusc.2019.145140 SN - 0169-4332 SN - 1873-5584 VL - 508 IS - 1 SP - 145140-1 EP - 145140-7 PB - Elsevier CY - Amsterdam AN - OPUS4-50254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - The influence of processing parameters on X‑ray emission during ultra‑short pulse laser machining N2 - During ultra-short laser material processing at high laser pulse repetition rates unwanted X-ray radiation can be generated in a quantity that may constitute a potential risk for health. An adequate X-ray radiation protection requires a thoroughly understanding of the influence of the laser processing parameters on the generation of X-ray radiation. In the present work, the generated X-ray dose during laser machining was investigated in air for varying beam scanning conditions at a pulse duration of 925 fs, a center wavelength of 1030 nm and a laser peak intensity of 2.6 × 10^14 W/cm^2. The X-ray radiation dose and the corresponding spectral X-ray emission were investigated in dependence on the laser’s pulse repetition rate and on the beam scanning speed. The results show a strong dependence of the X-ray emission on these laser processing parameters. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486441 DO - https://doi.org/10.1007/s00339-019-2827-y SN - 0947-8396 SN - 1432-0630 VL - 125 IS - 8 SP - 570, 1 EP - 8 PB - Springer AN - OPUS4-48644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Anja A1 - Buchberger, G. A1 - Stifter, D. A1 - Duchoslav, J. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Spatial Period of Laser-Induced Surface Nanoripples on PET Determines Escherichia coli Repellence N2 - Bacterial adhesion and biofilm formation on surfaces are associated with persistent microbial contamination, biofouling, and the emergence of resistance, thus, calling for new strategies to impede bacterial surface colonization. Using ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns), laser-induced periodic surface structures (LIPSS) featuring different submicrometric periods ranging from ~210 to ~610 nm were processed on commercial poly(ethylene terephthalate) (PET) foils. Bacterial adhesion tests revealed that these nanorippled surfaces exhibit a repellence for E. coli that decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Although chemical and structural analyses indicated a moderate laser-induced surface oxidation, a significant influence on the bacterial adhesion was ruled out. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the role of extracellular appendages in the bacterial repellence observed here. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Polyethylene terephthalate KW - Biofilm formation KW - Cell appendages KW - Biomimetic KW - F pili PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537431 DO - https://doi.org/10.3390/nano11113000 VL - 11 IS - 11 SP - 3000 PB - MDPI AN - OPUS4-53743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Gräf, S. T1 - Ten Open Questions about Laser-Induced Periodic Surface Structures N2 - Laser-induced periodic surface structures (LIPSS) are a simple and robust route for the nanostructuring of solids that can create various surface functionalities featuring applications in optics, medicine, tribology, energy technologies, etc. While the current laser technologies already allow surface processing rates at the level of m2/min, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry, as well as by limitations in controlling the processing of LIPSS and in the long-term stability of the created surface functions. This Perspective article aims to identify some open questions about LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, we intend to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry. KW - Laser-induced periodic surface structures (LIPSS) KW - Industrial application KW - Functional properties KW - Surface functionalization KW - Modelling PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539503 DO - https://doi.org/10.3390/nano11123326 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 21 PB - MDPI CY - Basel, Switzerland AN - OPUS4-53950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Single Femtosecond Laser-Pulse-Induced Superficial Amorphization and Re-Crystallization of Silicon N2 - Superficial amorphization and re-crystallization of silicon in <111> and <100> orientation after irradiation by femtosecond laser pulses (790 nm, 30 fs) are studied using optical imaging and transmission electron microscopy. Spectroscopic imaging ellipsometry (SIE) allows fast data acquisition at multiple wavelengths and provides experimental data for calculating nanometric amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. For a radially Gaussian laser beam and at moderate peak fluences above the melting and below the ablation thresholds, laterally parabolic amorphous layer profiles with maximum thicknesses of several tens of nanometers were quantitatively attained. The accuracy of the calculations is verified experimentally by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). Along with topographic information obtained by atomic force microscopy (AFM), a comprehensive picture of the superficial re-solidification of silicon after local melting by femtosecond laser pulses is drawn. KW - Femtosecond laser KW - Silicon KW - Amorphization KW - Crystallization KW - Spectroscopic imaging ellipsometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523687 UR - https://www.mdpi.com/1996-1944/14/7/1651 DO - https://doi.org/10.3390/ma14071651 SN - 1996-1944 VL - 14 IS - 7 SP - 1651-1 EP - 1651-21 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-52368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -