TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena A1 - Hülagü, Deniz T1 - Determining Material Properties with Spectroscopic Ellipsometry N2 - In this lecture, an introduction will be given on Spectroscopic Ellipsometry, what quantities can be obtained with it, and how we use it in ELENA and other projects to determine functional parameters of thin layers at the nanoscale. T2 - Summer school ELENAM : metrology at the nanoscale CY - Fréjus, France DA - 02.06.2024 KW - Thin Layers KW - Ellipsometry KW - Nanotechnology KW - Electrical Paramters PY - 2024 AN - OPUS4-60247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Wang, Shu A1 - Radnik, Jörg A1 - You, Yi A1 - Resch-Genger, Ute T1 - Assessing the protective effects of different surface coatings on NaYF4:YB3+, Er3+, upconverting nanoparticles in buffer and DMEM JF - Scientific reports N2 - We studied the dissolution behavior of β NaYF4:Yb(20%), Er(2%) UCNP of two different sizes in biologically relevant media i.e., water (neutral pH), phosphate buffered saline (PBS), and Dulbecco’s modified Eagle medium (DMEM) at different temperatures and particle concentrations. Special emphasis was dedicated to assess the influence of different surface functionalizations, particularly the potential of mesoporous and microporous silica shells of different thicknesses for UCNP stabilization and protection. Dissolution was quantified electrochemically using a fluoride ion selective electrode (ISE) and by inductively coupled plasma optical emission spectrometry (ICP OES). In addition, dissolution was monitored fluorometrically. These experiments revealed that a thick microporous silica shell drastically decreased dissolution. Our results also underline the critical influence of the chemical composition of the aqueous environment on UCNP dissolution. In DMEM, we observed the formation of a layer of adsorbed molecules on the UCNP surface that protected the UCNP from dissolution and enhanced their fluorescence. Examination of this layer by X ray photoelectron spectroscopy (XPS) and mass spectrometry (MS) suggested that mainly phenylalanine, lysine, and glucose are adsorbed from DMEM. These findings should be considered in the future for cellular toxicity studies with UCNP and other nanoparticles and the design of new biocompatible surface coatings. KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515984 DO - https://doi.org/10.1038/s41598-020-76116-z SN - 2045-2322 VL - 10 IS - 1 SP - 19318-1 EP - 19318-11 PB - Springer Nature CY - London AN - OPUS4-51598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Luch, A. A1 - Sogne, V. A1 - Maier, F. A1 - Burr, L. A1 - Schmid, D. A1 - Yoon, T.-H. A1 - Petters, R. A1 - Briffa, S.M. A1 - Valsami-Jones, E. T1 - Automation and Standardization—A Coupled Approach Towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis JF - Molecules N2 - Whereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by au-tomation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been de-veloped, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air–liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data. KW - Sample preparation KW - Automation KW - Nanomaterial analysis KW - Standardization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543988 DO - https://doi.org/10.3390/molecules27030985 VL - 27 IS - 3 SP - 1 EP - 22 PB - MDPI AN - OPUS4-54398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering JF - npj Materials degradation N2 - The roles extracellular polymeric substances (EPS) play in mineral attachment and weathering were studied using genetically modified biofilms of the rock-inhabiting fungus Knufia petricola strain A95. Mutants deficient in melanin and/or carotenoid synthesis were grown as air-exposed biofilms. Extracted EPS were quantified and characterised using a combination of analytical techniques. The absence of melanin affected the quantity and composition of the produced EPS: mutants no longer able to form melanin synthesised more EPS containing fewer pullulan-related glycosidic linkages. Moreover, the melanin-producing strains attached more strongly to the mineral olivine and dissolved it at a higher rate. We hypothesise that the pullulan-related linkages, with their known adhesion functionality, enable fungal attachment and weathering. The released phenolic intermediates of melanin synthesis in the Δsdh1 mutant might play a role similar to Fe-chelating siderophores, driving olivine dissolution even further. These data demonstrate the need for careful compositional and quantitative analyses of biofilm-created microenvironments. KW - Biofilms PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549025 DO - https://doi.org/10.1038/s41529-022-00253-1 SN - 2397-2106 VL - 6 SP - 1 EP - 11 PB - Springer Nature CY - London AN - OPUS4-54902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Emamverdi, Farnaz A1 - Cacua, K. A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Carrier Fibers for the Safe Dosage of Nanoparticles in Nanocomposites: Nanomechanical and Thermomechanical Study on Polycarbonate/Boehmite Electrospun Fibers Embedded in Epoxy Resin JF - Nanomaterials - Special Issue Advanced Materials for Aerospace: Polymer Nanocomposites N2 - The reinforcing effect of boehmite nanoparticles (BNP) in epoxy resins for fiber composite lightweight construction is related to the formation of a soft but bound interphase between filler and polymer. The interphase is able to dissipate crack propagation energy and consequently increases the fracture toughness of the epoxy resin. Usually, the nanoparticles are dispersed in the resin and then mixed with the hardener to form an applicable mixture to impregnate the fibers. If one wishes to locally increase the fracture toughness at particularly stressed positions of the fiber-reinforced polymer composites (FRPC), this could be done by spraying nanoparticles from a suspension. However, this would entail high costs for removing the nanoparticles from the ambient air. We propose that a fiber fleece containing bound nanoparticles be inserted at exposed locations. For the present proof-of-concept study, an electrospun polycarbonate nonwoven and taurine modified BNP are proposed. After fabrication of suitable PC/EP/BNP composites, the thermomechanical properties were tested by dynamic mechanical analysis (DMA). Comparatively, the local nanomechanical properties such as stiffness and elastic modulus were determined by atomic force microscopy (AFM). An additional investigation of the distribution of the nanoparticles in the epoxy matrix, which is a prerequisite for an effective nanocomposite, is carried out by scanning electron microscopy in transmission mode (TSEM). From the results it can be concluded that the concept of carrier fibers for nanoparticles is viable. KW - Advanced materials KW - Electrospun nanocomposite fiber KW - Nanomechanical charecteisation KW - Nanosafety KW - Epoxy nanocomposites PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528265 DO - https://doi.org/10.3390/nano11061591 VL - 11 IS - 6 SP - 1591 PB - MDPI CY - CH - 4020 Basel, Switzerland AN - OPUS4-52826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co0.75Fe2.25O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co0.75Fe2.25O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co0.75Fe2.25O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7940769 PB - Zenodo CY - Geneva AN - OPUS4-57664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co2.25Fe0.75O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co2.25Fe0.75O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co2.25Fe0.75O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7940538 PB - Zenodo CY - Geneva AN - OPUS4-57663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dietmar A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Boehmite Nanofillers in Epoxy Oligosiloxane Resins: Influencing the Curing Process by Complex Physical and Chemical Interactions JF - Materials Journal N2 - In this work, a novel boehmite (BA)-embedded organic/inorganic nanocomposite coating based on cycloaliphatic epoxy oligosiloxane (CEOS) resin was fabricated applying UV-induced cationic polymerization. The main changes of the material behavior caused by the nanofiller were investigated with regard to its photocuring kinetics, thermal stability, and glass transition. The role of the particle surface was of particular interest, thus, unmodified nanoparticles (HP14) and particles modified with p-toluenesulfonic acid (OS1) were incorporated into a CEOS matrix in the concentration range of 1–10 wt.%. Resulting nanocomposites exhibited improved thermal properties, with the glass transition temperature (Tg) being shifted from 30 °C for unfilled CEOS to 54 °C (2 wt.% HP14) and 73 °C (2 wt.% OS1) for filled CEOS. Additionally, TGA analysis showed increased thermal stability of samples filled with nanoparticles. An attractive interaction between boehmite and CEOS matrix influenced the curing. Real-time infrared spectroscopy (RT-IR) experiments demonstrated that the epoxide conversion rate of nanocomposites was slightly increased compared to neat resin. The beneficial role of the BA can be explained by the participation of hydroxyl groups at the particle surface in photopolymerization processes and by the complementary contribution of p-toluenesulfonic acid surface modifier and water molecules introduced into the system with nanoparticles. KW - Real-time infrared spectroscopy KW - Boehmite KW - Nanocomposite KW - Cationic photocuring KW - Cycloaliphatic epoxy oligosiloxane KW - Epoxy conversion degree PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479628 DO - https://doi.org/10.3390/ma12091513 VL - 12 IS - 9 SP - 1513 PB - MDPI AN - OPUS4-47962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - 1,3-Dimethyl-imidazolium dimethyl phosphate ([MMIM]+[DMP]−) analyzed by XPS and HAXPES JF - Surface Science Spectra N2 - The ionic liquid 1,3-dimethyl-imidazolium-dimethylphosphate ([MMIM]+[DMP]−) was analyzed using (hard) x-ray photoelectron spectroscopy. Here, XPS and HAXPES spectra are shown in comparison. For the acquisition of the XPS spectra, monochromatic Al Kα radiation at 1486.6 eV was used, while for the acquisition of the HAXPES spectra, monochromatic Cr Kα radiation at 5414.8 eV was applied. Here, survey scans and high-resolution spectra of P 2p, P 2s, C 1s, O 1s, and N 1s for both methods and P 1s, P KL2,3L2,3, and P KL1L2,3 for HAXPES are shown. KW - C7H15N2O4P KW - [MMIM]+[DMP]− KW - Lonic liquid KW - Hard x-ray photoelectron spectroscopy KW - HAXPES KW - XPS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571604 DO - https://doi.org/10.1116/6.0002297 VL - 30 IS - 1 SP - 1 EP - 20 PB - AIP Publishing AN - OPUS4-57160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Radnik, Jörg A1 - Ermilova, Elena A1 - Hodoroaba, Vasile-Dan T1 - Accuracy on all scales: Hybrid metrology for micro- and nanomanufacturing N2 - In this presentation, we discuss hybrid metrology and correlative imaging. These techniques are used to improve the design and quality monitoring of nanomaterials used in energy technology and for referencing the properties of nanoparticles. T2 - EMN for Advanced Manufacturing workshop CY - Berlin, Germany DA - 22.05.2024 KW - Nanotechnology KW - Nanoanalytics KW - Correlative Spectroscopy KW - Correlative Imaging PY - 2024 AN - OPUS4-60240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Chemello, Giovanni A1 - Radnik, Jörg T1 - Morphology Analysis of Graphene Oxide Flakes with SEM - Preparation of an Inter-Laboratory Comparison @VAMAS N2 - Experience gained at BAM within the European project ISGScope on the accurate measureemnt of graphene oxide flakes by electron microscopy is presented. Particularly, factors such as the type of solvent, substrate temperature, but also proper, gentle measurement parameters and image analysis conditions towards automation are highlighted. The measurement procedures in develeopment are being prepared to launch an inter-laboratory comparison under VAMAS (TWA41) as preparatory guidance for future standardisation at ISO. T2 - ISO/TC 229 Nanotechnologies Plenary Meeting - Graphene Standardisation CY - Teddington, UK DA - 14.11.2022 KW - Graphene oxide flakes KW - SEM KW - Morphology KW - VAMAS KW - Standardisation KW - Sample preparation KW - ISOGScope PY - 2022 AN - OPUS4-56300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - New Test Specimen for the Determination of the Field of View of Small-Area XPS N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces. For evaluating the quality of such microstructures, it is crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. The aperture has a major influence on the signal-contribution from the outside. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize the FoV: The signal-contribution from the outside is reduceable down to lower than 50 %, when the aperture is 30 % of the structure dimension for our Kratos AXIS Ultra DLD system. T2 - Kratos User's Meeting 2020 CY - Online meeting DA - 21.09.2020 KW - Small Area XPS KW - Reference Material KW - Imaging XPS KW - Field of View PY - 2020 AN - OPUS4-51413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Characterization of industrial graphene using HAXPES N2 - A comparative analysis is performed by XPS, HAXPES and SEM of industrial functionalised graphene powder of different morphology. The chemical analysis carried out by XPS, which probing depth is around 10nm, and HAXPES, which can reach up to 30nm probing depth. By combining these two techniques is possible to get a rough, non-destructive depth profiling of the sample's surface. The results show a higher concentration of the functionlisation elements on the surface of the sample and the influence of the morphology on the functionalisation process and the C/O ratio. T2 - SALSA Make and Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - Graphene KW - XPS KW - HAXPES KW - SEM KW - Graphene funcionalisation PY - 2022 AN - OPUS4-55971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Gernhard, M. A1 - Radnik, Jörg A1 - Witt, Julia A1 - Roth, C. A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of fluorine-containing Co-doped zeolitic imidazolate frameworks for producing electrocatalysts JF - Frontiers in chemistry N2 - Catalysts derived from pyrolysis of metal organic frameworks (MOFs) are promising candidates to replace expensive and scarce platinum-based electrocatalysts commonly used in polymer electrolyte membrane fuel cells. MOFs contain ordered connections between metal centers and organic ligands. They can be pyrolyzed into metal- and nitrogen-doped carbons, which show electrocatalytic activity toward the oxygen reduction reaction (ORR). Furthermore, metal-free heteroatom-doped carbons, such as N-F-Cs, are known for being active as well. Thus, a carbon material with Co-N-F doping could possibly be even more promising as ORR electrocatalyst. Herein, we report the mechanochemical synthesis of two polymorphs of a zeolitic imidazole framework, Co-doped zinc 2-trifluoromethyl-1H-imidazolate (Zn0.9Co0.1(CF3-Im)2). Time-resolved in situ X-ray diffraction studies of the mechanochemical formation revealed a direct conversion of starting materials to the products. Both polymorphs of Zn0.9Co0.1(CF3-Im)2 were pyrolyzed, yielding Co-N-F containing carbons, which are active toward electrochemical ORR. KW - Mechanochemistry KW - Metal-organic-frameworks KW - Nobel-metal free electrocatalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546833 DO - https://doi.org/10.3389/fchem.2022.840758 SN - 2296-2646 VL - 10 IS - 840758 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-54683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Wendt, R. A1 - Kunkel, B. A1 - Radnik, Jörg A1 - Hoell, A. A1 - Wohlrab, S. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Size-Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction JF - Advanced Engineering Materials N2 - A facile and efficient methodology is described for the solvothermal synthesis of size-tunable, stable, and uniform NiCu core–shell nanoparticles (NPs) for application in catalysis. The diameter of the NPs is tuned in a range from 6 nm to 30 nm and to adjust the Ni:Cu ratio from 30:1 to 1:1. Furthermore, the influence of different reaction parameters on the final NPs is studied. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small-angle X-ray scattering, X-ray absorption fine structure, and X-ray photoelectron spectroscopy. Using these analytical methods, it is possible to elucidate a core–shell–shell structure of all particles and their chemical composition. In all cases, a depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni-rich shell and an outer NiO shell. The SiO2-supported NiCu core–shell NPs show pronounced selectivity of >99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction) independent of size and Ni:Cu ratio. KW - Nanoparticles KW - Core-shell KW - Catalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543606 DO - https://doi.org/10.1002/adem.202101308 SN - 1438-1656 SP - 1 EP - 13 PB - Wiley VCH AN - OPUS4-54360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schutter, Jan David A1 - Eberhardt, Karl A1 - Elert, Anna Maria A1 - Radnik, Jörg A1 - Geißler, Daniel A1 - Özcan Sandikcioglu, Özlem T1 - Synthesis and characterization of lipopolysaccharide (LPS) anchored polystyrene microparticles as a synthetic model system for attachment studies JF - Colloids and Surfaces B: Biointerfaces N2 - Outer membrane lipopolysaccharides (LPS) play a crucial role in determining attachment behavior and pathogenicity of bacteria. The aim of this study was to develop a simple procedure for anchoring bacterial lipopolysaccharides to polystyrene (PS) microparticles as a model system for in situ attachment studies. By using a swellcapture methodology, commercially available LPS of Pseudomonas aeruginosa (strain ATCC 27316 serotype 10.22) was anchored onto PS microparticles in a proof-of-concept study. A detailed chemical and morphological characterization has proven the success of LPS incorporation. It was shown that the coverage and structure of the LPS film was concentration dependent. The procedure can easily be adapted to LPS of other bacterial strains to generate a synthetic model toolkit for attachment studies. KW - Bacterial lipopolysaccharides KW - Pseudomonas aeruginosa KW - Polystyrene microparticles KW - Swell-capture KW - Biomimicry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579818 DO - https://doi.org/10.1016/j.colsurfb.2023.113301 SN - 0927-7765 VL - 226 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-57981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Hahn, Marc Benjamin A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Nanomechanical study of polycarbonate/boehmite nanoparticles/epoxy ternary composite and their interphases JF - Journal of applied polymer science N2 - Thermoplastic modified thermosets are of great interest especially due to their improved fracture toughness. Comparable enhancements have been achieved by adding different nanofillers including inorganic particles such as nanosized boehmite. Here, we present a nanomechanical study of two composite systems, the first comprising a polycarbonate (PC) layer in contact with epoxy resin (EP) and the second consisting of a PC layer containing boehmite nanoparticles (BNP) which is also in contact with an EP layer. The interaction between PC and EP monomer is tested by in situ Fourier transformed infrared (FT-IR) analysis, from which a reaction induced phase separation of the PC phase is inferred. Both systems are explored by atomic force microscopy (AFM) force spectroscopy. AFM force-distance curves (FDC) show no alteration of the mechanical properties of EP at the interface to PC. However, when a PC phase loaded with BNP is put in contact with an epoxy system during curing, a considerable mechanical improvement exceeding the rule of mixture was detected. The trend of BNP to agglomerate preferentially around EP dominated regions and the stiffening effect of BNP on EP shown by spatial resolved measurements of Young's modulus, suggest the effective presence of BNP within the EP phase. KW - Composites KW - Mechanical properties KW - Nanoparticles KW - Thermoplastics KW - Thermosets PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515965 DO - https://doi.org/10.1002/app.50231 SN - 0021-8995 SN - 1097-4628 VL - 138 IS - 12 SP - 1 EP - 11 PB - Wiley CY - New York, NY AN - OPUS4-51596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Kim, K.J. T1 - Elemental Composition and Thickness Determination of Thin Films by Electron Probe Microanalysis (EPMA) N2 - microscopy (AFM), or X-ray reflectometry. For the additional determination of thin film composition, techniques like X-ray photoelectron spectroscopy (XPS) or mass spectrometry-based techniques can be used. An alternative non-destructive technique is electron probe microanalysis (EPMA). This method assumes a sample of homogenous (bulk) chemical composition, so that it cannot be usually applied to thin film samples. However, in combination with the thin film software StrataGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). These samples were used for an international round robin test. In 2021, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BadgerFilm software package and compared the resulting composition and thickness with the results of the established StrataGEM software and other reference methods. With the current evaluation, the BadgerFilm software shows good agreement with the composition and thickness calculated by StrataGEM and as the reference values provided by the KRISS. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Thin films KW - Electron Probe Microanalysis KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Keller, Lisa-Marie A1 - Scholz, Lena A1 - Weigert, Florian A1 - Radnik, Jörg A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Nanocarriers – Challenges Imposed by Material Characterization N2 - A brief perspective of BAM on nanocarriers is presented including examples with special emphasis on the characterization of such materials and underlying challenges. In this respect, also ongoing activities at BAM on different types of core/shell nanomaterials and related systems are briefly summarized. T2 - Kolloquium BfR CY - Online meeting DA - 18.03.2021 KW - Nanomaterial KW - Nanocarrier KW - Size KW - Surface chemistry KW - Release kinetics KW - Chemical composition KW - Core/shell nanoparticle KW - Quantum dot KW - Spectroscopy KW - Fluorescence PY - 2021 AN - OPUS4-52412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Dietrich, Paul M. A1 - Radnik, Jörg T1 - Near-ambient-pressure XPS as as tool to monitor DNA radiation damage directly in water N2 - Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - Miller Conference CY - Furiani, France DA - 03.06.2023 KW - Base damage KW - Base loss KW - Cancer treatment KW - DNA KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Dosimetry KW - Double-strand break (DSB) KW - ESCA KW - Energy deposit KW - G5P KW - Geant4 KW - Geant4-DNA KW - Hydrated DNA KW - Hydrated electron KW - Hydroxyl radical KW - Indirect damage KW - Ionisation KW - Ionization KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Particle scattering KW - Prehydrated electron KW - Presolvated electron KW - Protein KW - Quasi-direct damage KW - ROS KW - Radiation damage KW - Radiation therapy KW - Radical KW - Radiolysis KW - Radiotherapy KW - Reactive oxygen species KW - Simulation KW - Single-strand break (SSB) KW - Single-stranded DNA-binding proteins KW - TOPAS KW - TOPAS-nbio KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - Hydration shell PY - 2023 AN - OPUS4-57646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan T1 - VAMAS ILC of functionalized Graphene by XPS and Graphene Oxide by SEM N2 - The ideas of the planned VAMAS interlaboratory comparisons of functionalized graphene and graphene oxide are presented. T2 - Stakeholder Advisory Board ISO-G-Scope CY - Online meeting DA - 12.01.2022 KW - Graphene KW - XPS KW - SEM PY - 2022 AN - OPUS4-54375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized CeO2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized CeO2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - CeO2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7941461 PB - Zenodo CY - Geneva AN - OPUS4-57667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Benemann, Sigrid A1 - Pfeifer, Dietmar A1 - Sturm, Heinz T1 - Novel Boehmite-embedded organic/inorganic hybrid nanocomposite: cure behaviour, morphology and thermal properties N2 - Hybrid materials have attracted growing interest during the last decade, particularly due to their extraordinary properties. Cycloalyphatic-epoxy oligosiloxane (CEO) resin was shown to be a good candidate as a barrier material for the encapsulation purposes. Incorporation of inorganic nanoparticles such as Boehmite (BA) into polymers was observed to modify their specific characteristics, in particular, thermal, thermo-oxidative and barrier ones. In this work, novel BA-embedded organic inorganic hybrid nanocomposite material was engineered by combining the advantageous properties of hybrid polymers and nanoparticle enhancement effect. Impacts of particles on the photocuring kinetics, degree of crosslinking and the resultant changes in the thermal properties of the cured films were investigated. CEO synthesis via condensation reaction was confirmed by 1H and 29Si NMR. The particle distribution within the films was verified by SEM including transmission mode coupled with EDX elemental analysis. Photocuring kinetics and thermal properties of the films were studied by in situ FTIR spectroscopy and DSC with TGA, respectively. T2 - Deutschen Physikalischen Gesellschaft CY - Berlin, Germany DA - 11.03.2018 KW - Boehmite KW - Nanocomposite KW - Cycloalyphatic epoxy oligosiloxane KW - CEO PY - 2018 AN - OPUS4-44520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - Data for "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" N2 - Data for the publication "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" (https://doi.org/10.1038/s41529-022-00253-1). It includes: - The Summary of the EPS concentration, EPS sugar components and EPS linkages. - The Summary of the XPS analysis of freeze-dried biofilm samples of all strains. - The Summary of the pH, Mg, SI and Fe concentration, biomass and olivine dissolution rate for each time point of all dissolution experiments. KW - Biofilms PY - 2022 DO - https://doi.org/10.26272/opus4-54901 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Krahl, T. A1 - Radnik, Jörg A1 - Wagner, Andreas A1 - Werner, W. S. M. A1 - Ritter, B. A1 - Kemnitz, E. A1 - Unger, Wolfgang T1 - Chemical in-depth analysis of (Ca/Sr)F2 core–shell like nanoparticles by X-ray photoelectron spectroscopy with tunable excitation energy JF - Surface and Interface Analysis N2 - The fluorolytic sol–gel synthesis is applied with the intention to obtain two different types of core–shell nanoparticles, namely, SrF2–CaF2 and CaF2–SrF2. In two separate fluorination steps for core and shell formation, the corresponding metal lactates are reacted with anhydrous HF in ethylene glycol. Scanning transmission electron microscopy (STEM) and dynamic light scattering (DLS) confirm the formation of particles with mean dimensions between 6.4 and 11.5 nm. The overall chemical composition of the particles during the different reaction steps is monitored by quantitative Al Kα excitation X-ray photoelectron spectroscopy (XPS). Here, the formation of stoichiometric metal fluorides (MF2) is confirmed, both for the core and the final core–shell particles. Furthermore, an in-depth analysis by synchrotron radiation XPS (SR-XPS) with tunable excitation energy is performed to confirm the core–Shell character of the nanoparticles. Additionally, Ca2p/Sr3d XPS intensity ratio in-Depth profiles are simulated using the software Simulation of Electron Spectra for Surface Analysis (SESSA). In principle, core–shell like particle morphologies are formed but without a sharp interface between calcium and strontium containing phases. Surprisingly, the in-depth chemical distribution of the two types of nanoparticles is equal within the error of the experiment. Both comprise a SrF2-rich core domain and CaF2-rich shell domain with an intermixing zone between them. Consequently, the internal morphology of the final nanoparticles seems to be independent from the synthesis chronology. KW - Metal fluorides KW - Sol-gel synthesis KW - Synchrotron radiation KW - X-ray photoelectron spectroscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522284 DO - https://doi.org/10.1002/sia.6937 SN - 0142-2421 VL - 53 IS - 5 SP - 494 EP - 508 PB - Wiley VCH AN - OPUS4-52228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Broichert, C. A1 - Klingenhof, M. A1 - Frisch, M. A1 - Dresp, S. A1 - Kubo, N.M. A1 - Artz, J. A1 - Radnik, Jörg A1 - Palkovits, S. A1 - Beine, A.K. A1 - Strasser, P. A1 - Palkovits, R. T1 - Particle size-controlled synthesis of highperformance MnCo-based materials for alkaline OER at fluctuating potentials JF - Catalysis Science and Technology N2 - For the large-scale generation of hydrogen via water electrolysis the design of long term stable and active catalysts for the oxygen evolution reaction (OER) remains a key challenge. Most catalysts suffer from severe structural corrosion that becomes even more pronounced at fluctuating potentials. Herein, MnCo based cubic particles were prepared via a hydrothermal approach, in which the edge length of the micron-sized particles can be controlled by changing the pH value of the precursor solution. The cubes are composed of varying amounts of MnCo2O4, CoCO3 and a mixed (Mn/Co)CO3 phase. Structure–activity relationships were deduced revealing a volcano-type behavior for the intrinsic OER activity and fraction of spinel oxide phase. A low overpotential of 0.37 V at 10 mA cm−2 and a stability of more than 25 h was achieved in 1.0 M KOH using a rotating disc electrode (RDE) setup. The best performing catalyst material was successfully tested under dynamic process conditions for 9.5 h and shows a superior catalytic activity as anode for the Overall water splitting in an electrolyser setup in 1.0 M KOH at 333 K compared to a reference NiCo-spinel catalyst. KW - Water electrolysis KW - Oxygen evolution reaction KW - Structure activity relationships PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536050 DO - https://doi.org/10.1039/d1cy00905b SN - 2044-4753 VL - 11 IS - 12 SP - 7278 EP - 7286 PB - Royal Society of Chemistry AN - OPUS4-53605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Measurement of the morphology of graphene related 2D materials as flakes N2 - The presentation shows the results of the mini-interlaboratory comparison focused on the measurement of the morphology of graphene oxide flakes using scanning electron microscopy. In this work, a route for the sample preparation, SEM measurement and image analysis is proposed. The results of the image analysis, performed on 200+ flakes per sample, are presented by comparing the distributions of the size and shape descriptors calculated according to two different approaches. The influences of a different SEM measurement operator, analysis approach and analysis operator on the final size and shape distributions are highlighted. T2 - EMRS Fall 2023 CY - Warsaw, Poland DA - 18.09.2023 KW - Graphene oxide KW - SEM KW - 2D flakes KW - Image analysis PY - 2023 AN - OPUS4-58752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cinar Ciftci, G. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Direct laser surface micropatterning with polydopamine N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) is one of the simplest and most versatile approaches to confer new functionalities to nearly any material surface. Moreover, PDA exhibits high potential for surface modification and diversified secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. PDA has undergone significant expansion in its applications and is one of the most attractive areas within the materials field. Nevertheless, PDA integration in microdevices is still constrained by poor spatial and temporal control of excited deposition methods. Herein, we demonstrate a novel maskless approach for PDA micropatterning based on Direct Laser Writing (DLW) that overcomes present limitations. The pattern is formed upon exposure of the dopamine solution by light produced by tightly-focused fs NIR laser that scans substrate surface accordingly to the selected pattern design. Neither strong oxidants, metal ions nor adjusting pH to alkaline is required by this technique. Our method achieves the PDA micropatterns with the spatial resolution of 0.8 µm, at least an order of magnitude smaller than what is possible with other PDA microplanning techniques. The here introduced PDA deposition technique will uniquely unravel applications of polydopamine and other catecholamine-based mussel-inspired materials in various multifunctional systems and microdevices (e.g., MEMS elements, microfluidics). Adjustment of MPL parameters revealed that the morphology and thickness of resulted PDA microstructures can be controlled by altering the laser power and its scanning velocity. As a result, it also enables the production of micropatterns with structural gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. To ensure post-modification potential of MPL deposited PDA we demonstrated one-step deposition of micropatterns with trypsin. Obtained bio-functionalised surface can be further applied as a protein sensing active microelement. Presented in this work DLW-based microfabrication technique and the possibilities for further PDA surface post-functionalization empowers advanced applications of this material in single-molecule bioassays, sensors and other complex microdevices. T2 - Swiss ePrint 2022 CY - Buchs, Switzerland DA - 05.09.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-56422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Bennet, Francesca A1 - Ciornii, Dmitri A1 - Nymark, P. A1 - Grafström, R. A1 - Hodoroaba, Vasile-Dan T1 - Reliable Surface Analysis Data of Nanomaterials in Support of Risk Assessment Based on Minimum Information Requirements JF - nanomaterials N2 - The minimum information requirements needed to guarantee high-quality surface Analysis data of nanomaterials are described with the aim to provide reliable and traceable Information about size, shape, elemental composition and surface chemistry for risk assessment approaches. The widespread surface analysis methods electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were considered. The complete analysis sequence from sample preparation, over measurements, to data analysis and data format for reporting and archiving is outlined. All selected methods are used in surface analysis since many years so that many aspects of the analysis (including (meta)data formats) are already standardized. As a practical analysis use case, two coated TiO2 reference nanoparticulate samples, which are available on the Joint Research Centre (JRC) repository, were selected. The added value of the complementary analysis is highlighted based on the minimum information requirements, which are well-defined for the analysis methods selected. The present paper is supposed to serve primarily as a source of understanding of the high standardization level already available for the high-quality data in surface analysis of nanomaterials as reliable input for the nanosafety community. KW - Electron microscopy KW - X-ray photoelectron spectroscopy KW - Secondary ion mass spectrometry KW - Energy dispersive X-ray spectroscopy KW - Standardization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522683 DO - https://doi.org/10.3390/nano11030639 VL - 11 IS - 3 SP - 639 PB - MDPI AN - OPUS4-52268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dieter A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Influence of Boehmite nanofiller on the properties of cycloaliphatic-epoxy oligosiloxane resin coatings N2 - Organic-inorganic nanostructured materials have drawn much attention over the past decade, particularly due to their versatile and outstanding properties. Possessing the properties between those of polymers and those of glasses, siloxane-based resins are non-toxic, easy to synthesize and process hybrid materials, that hold a promising potential in the field of advanced coatings. Photocurable resins are nowadays widely used as coatings due to their unique advantages. In particular, cationic ring-opening curing is not inhibited by oxygen, leads to low degree of shrinkage and superior adhesion. The most important, it enables production of high-quality coatings within short exposure times without applying temperature, thus, minimizing the presence of the thermal stress in the substrate. Photocured Cycloaliphatic-Epoxy Oligosiloxane (CEO) resin was reported to be used as encapsulation material for organic electronics. However, further reinforcement of CEO properties is desired to achieve requested device lifetime. One of the common approaches to improve material characteristics is by embedding inorganic nanoparticles into polymer matrix. It has been shown that the resulted nanocomposites exhibit enhanced functional properties included but not limited by optical, mechanical, thermal and barrier ones. In this work we focused on the incorporation of Boehmite nanoparticles (BA) into CEO matrix as a tool to strengthen the film properties and to study the main changes occurred in the material behavior with regard to its photocuring kinetics, thermal stability and glass transition. Particular interest was focused on the role of particle surface in nanocomposite properties. Hence, BA particles without (HP14) and with organic surface modifier (OS1) at different loadings (up to 10 wt%) were applied in this study. Morphology investigation with SEM operated in transmission mode showed good BA dispersion forming network-like structure. At the same time, distribution of particles differed for HP14 and OS1 as a result of different interaction in CEO-solvent-particles system. CEO structure obtained via non-hydrolytic sol-gel reaction was verified by 13C and 29Si NMR. In situ monitoring of film curing was performed using RT-IR spectroscopy. A slight increase of final convention degree with particle incorporation was observed in contrast to the considerable decrease of curing efficiency reported previously for similar system. Further, the cured hybrid nanocomposite films were analyzed by TGA and DSC, which revealed impact of surface modifier on thermal stability and glass transition temperature. T2 - Kyiv Conference on Analytical Chemistry: Modern Trends CY - Kyiv, Ukraine DA - 17.09.2018 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - Photocuring PY - 2018 AN - OPUS4-47642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cinar Ciftci, G. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Direct laser writing of mussel inspired polydopamine N2 - Polydopamine (PDA) is one of the simplest and most versatile approaches for forming an excellent binding exterior to confer new functionalities to nearly any material surface. Inspired by nature, it mimics the behavior of mussels and can be easily deposited on virtually all types of inorganic and organic substrates, including superhydrophobic surfaces. Moreover, PDA exhibits high potential for surface modification and diversified secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. PDA has undergone significant expansion in its applications and is one of the most attractive areas within the materials field. Nevertheless, PDA integration in microdevices is still constrained by poor spatial and temporal control of excited deposition methods. Herein, we demonstrate a novel maskless approach for PDA micropatterning based on Direct Laser Writing that overcomes present limitations. The pattern is formed upon exposure of the dopamine solution by light produced by tightly-focused fs NIR laser that scans substrate surface accordingly to the selected pattern design. Neither strong oxidants, metal ions nor adjusting pH to alkaline is required by this technique to perform dopamine polymerization. Our method achieves the PDA micropatterns with the spatial resolution of 0.8 µm, at least an order of magnitude smaller than what is possible with other PDA microplanning techniques. Some examples of PDA patterns are shown in Figure 1. The here introduced PDA deposition technique will uniquely unravel applications of polydopamine and other catecholamine-based mussel-inspired materials in various multifunctional systems and microdevices (e.g., MEMS elements, microfluidics). The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. Moreover, the morphology and thickness of PDA microstructure can be controlled by the laser power and scanning velocity revealing the possibility of fabricating the structures with gradient. In most of the applied conditions the increase of the laser intensity and decrease of the scanning velocity would lead to the thicker PDA pattern. Different morphologies from smooth and bulky-like to grain like has been obtained. PDA was produced in the presence of tris buffer, phosphate buffer and DI water only. We also tested the effect of the solution pH applying pH 6.0, 7.0 and 8.5. Furthermore, the effect of antioxidants and purging of the solution with oxygen and nitrogen was investigated. Summarizing, we could see that the structures could be produced in all the given conditions, however their thickness and quality, morphology and roughness would differ. We did not observe negative impact of the antioxidants and nitrogen purging on the performance of PDA build up indicating that the PDA formation mechanism is different to common autooxidation. The current mechanism is based on the interaction of dopamine molecules with the photoinitiator added to solution as active to DLW laser light component. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. We also performed facile posts-modification of the PDA surface with protein enzymes like trypsin that was confirmed by XPS. Obtained bioactive pattern could be further integrated in the protein sensing devices. Presented in this work DLW-based microfabrication technique and the possibilities for further PDA surface post-functionalization empowers advanced applications of this material in single-molecule bioassays, sensors and other complex microdevices. T2 - MNE EUROSENSORS CY - Leuven, Belgium DA - 19.09.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-56421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Hallier, Dorothea C. A1 - Dietrich, P. M. A1 - Radnik, Jörg T1 - In-situ monitoring of water dependent DNA and protein radiation damage by near-ambient-pressure XPS N2 - X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - ICRR 2023 CY - Montreal, Canada DA - 26.08.2023 KW - DNA KW - XPS KW - Proteins KW - Protein KW - G5P KW - Base damage KW - Base loss KW - Cancer treatment KW - DEA KW - DET KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Dosimetry KW - ESCA KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Hydrated DNA KW - Hydrated electron KW - Hydrated electrons KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionisation KW - Ionization KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Particle scattering KW - Prehydrated electron KW - Presolvated electron KW - Quasi-direct damage KW - ROS KW - Radiation damage KW - Radiation therapy KW - Radical KW - Radiolysis KW - Radiotherapy KW - Reactive oxygen species KW - Simulation KW - Single-strand break (SSB) KW - Single-stranded DNA-binding proteins KW - TOPAS KW - TOPAS-nbio KW - TopasMC KW - Xray photo electron spectrocopy PY - 2023 AN - OPUS4-58214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Kim, C.S. A1 - Ruh, S. W. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Mata-Salazar, J. A1 - Juarez-Garcia, J.M. A1 - Cortazar-Martinez, O. A1 - Herrera-Gomez, A. A1 - Hansen, P.E. A1 - Madesen, J.S. A1 - Senna, C.A. A1 - Archanjo, B.S. A1 - Damasceno, J.C. A1 - Achete, C.A. A1 - Wang, H. A1 - Wang, M. A1 - Windover, D. A1 - Steel, E. A1 - Kurokawa, A. A1 - Fujimoto, T. A1 - Azuma, Y. A1 - Terauchi, S. A1 - Zhang, L. A1 - Jordaan, W.A. A1 - Spencer, S.J. A1 - Shard, A.G. A1 - Koenders, L. A1 - Krumrey, M. A1 - Busch, I. A1 - Jeynes, C. T1 - Thickness measurement of nm HfO2 films JF - Metrologia N2 - A pilot study for the thickness measurement of HfO2 films was performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study was to ensure the equivalency in the measurement capability of national metrology institutes for the thickness measurement of HfO2 films. In this pilot study, the thicknesses of six HfO2 films with nominal thickness from 1 nm to 4 nm were measured by X-ray Photoelectron Spectroscopy (XPS), X-ray Reflectometry(XRR), X-ray Fluorescence Analysis (XRF), Transmission Electron Spectroscopy (TEM), Spectroscopic Ellipsometry (SE) and Rutherford Backscattering Spectrometry (RBS). The reference thicknesses were determined by mutual calibration of a zero-offset method (Medium Energy Ion Scattering Spectroscopy (MEIS) of KRISS) and a method traceable to the length unit (the average thicknesses of three XRR data except the thinnest film). These reference thicknesses are traceable to the length unit because they are based on the traceability of XRR. For the thickness measurement by XPS, the effective attenuation length of Hf 4f electrons was determined. In the cases of XRR and TEM, the offset values were determined from a linear fitting between the reference thicknesses and the individual data by XRR and TEM. The amount of substance of HfO2, expressed as thickness of HfO2 films (in both linear and areal density units), was found to be a good subject for a CCQM key comparison. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM. KW - Thickness measurements KW - nm films KW - X-ray Photoelectron Spectroscopy KW - Mutual calibration PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08016 SN - 0026-1394 VL - 58 IS - 1a SP - 08016 PB - IOP Publishing Lt. CY - Bristol AN - OPUS4-54175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohammadifar, E. A1 - Ahmadi, V. A1 - Gholami, M.F. A1 - Oehrl, A. A1 - Kolyvushko, O. A1 - Nie, C. A1 - Donskyi, Ievgen A1 - Herziger, S. A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Böttcher, C. A1 - Rabe, J.P. A1 - Osterrieder, K. A1 - Azab, W. A1 - Haag, R. A1 - Adeli, M. T1 - Graphene-Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions JF - Advanced Functional Materials N2 - 2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes Simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus Inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes Simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus Inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts. KW - 2D Materials KW - Graphene template KW - Multivalency KW - Polyglycerol KW - Virus inhibition PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527726 DO - https://doi.org/10.1002/adfm.202009003 VL - 31 IS - 32 SP - 2009003 PB - Wiley VCH AN - OPUS4-52772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gawek, Marcel A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Radnik, Jörg A1 - Schönhals, Andreas T1 - Energy Dependent XPS Measurements on Thin Films of a Poly(vinyl methyl ether)/Polystyrene Blend in Dependence on Film Thickness – Concentration Profile on a Nanometer Resolution to Understand the Behavior of Nanofilms JF - Soft Matter N2 - The composition of the surface layer in dependence from the distance of the polymer/air interface in thin films with thicknesses below 100 nm of miscible polymer blends in a spatial region of a few nanometers is not investigated completely. Here, thin films of the blend poly vinyl methyl ether) (PVME)/polystyrene (PS) with a composition of 25/75 wt% are investigated by Energy Resolved X-ray Photoelectron Spectroscopy (ER-XPS) at a synchrotron storage ring using excitation energies lower than 1 keV. By changing the energy of the photons the information depth is varied in the range from ca. 1 nm to 10 nm. Therefore, the PVME concentration could be estimated in dependence from the distance of the polymer/air interface for film thicknesses below 100 nm. Firstly, as expected for increasing information depth the PVME concentration decreases. Secondly, it was found that the PVME concentration at the surface has a complicated dependence on the film thickness. It increases with decreasing film thickness until 30 nm where a maximum is reached. For smaller film thicknesses the PVME concentration decreases. A simplified layer model is used to calculate the effective PVME concentration in the different spatial regions of the surface layer. KW - Energy dependent XPS KW - Soft X-ray KW - Thin films PY - 2021 DO - https://doi.org/10.1039/d1sm00656h VL - 17 IS - 29 SP - 6985 EP - 6994 PB - The Royal Chemical Society AN - OPUS4-53039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrOx films revealed under realistic OER conditions N2 - Hydrogen production via water electrolysis will be an essential cornerstone in development of sustainable, fossil-free fuel and chemical production on a global scale. The activity and stability of each catalyst is highly dependent on the properties of the coating, i.e., phase composition, crystallinity, accessible surface area, and many other factors. The key to developing improved catalysts is a better understanding of the relationships between their performance, stability, and physicochemical properties. However, these relationships can be complex and are also strongly influenced by the reaction environment. Therefore, operando analysis of the catalyst material during catalysis at realistic potentials and current densities is highly desirable. However, many analytical techniques cannot be applied in liquid environments at realistic potentials and current densities. We propose environmental ellipsometric analysis in a dedicated electrochemical flow cell as a method to evaluate gas evolution reactions operando under realistic working conditions. Figure 1 illustrates schematically the developed technique. Key factors to success are highly active model-type catalysts, a suitable sample environment, and a deep understanding of the appropriate model development, as well as concise cross validation with numerous other analytical techniques. The method was developed and validated by analyzing a calcination series (300 – 600 °C) of mesoporous templated IrOx films ex-situ and operando under oxygen evolution reaction (OER) conditions. The employed environmental electrochemical spectroscopic ellipsometric (ECSE) analysis revealed during OER the change of optical and electronic properties, i.e. the dielectric functions, resistivity and band-to-band transitions (p-d band transitions). Film thickness and porosity were validated by means of scanning electron microscopy (SEM), X-ray reflectometry (XRR) or ellipsometric porosimetry (EP), electrical and electronic properties by means of conductivity measurements, X-ray photoelectron spectroscopy (XPS) or UV-Vis-NIR absorption spectroscopy. The electronic structures of the catalysts from valence electron energy loss spectra (VEELS) derived from ε1 and ε2 from SE measurements reveal a direct correlation with electrochemical activities in OER. In the presentation reversible and irreversible potential-dependent changes of the catalyst properties during operation will be discussed along with the dynamics of gas formation, transport and dissolution at different potentials. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Ectrocatalysis KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis KW - Oxygen evolution reaction KW - Spectroscopic ellipsometry PY - 2021 AN - OPUS4-53915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Singh, Chandan A1 - Riedel, Soraya A1 - Konthur, Zoltán A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Schenk, J. A1 - Schneider, Rudolf T1 - Functionalized Titanium Carbide Nanosheets based Biosensor for Detection of the SARS-CoV-2 Nucleocapsid Protein N2 - MXenes are a new family of two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides discovered in 2011. Among many reported family members, titanium carbide is the most widely studied and explored due to the optimized synthesis conditions and promising characteristics like good mechanical strength, solution processability, and excellent conductivity. Here, we report the development of an electrochemical biosensor involving the amine-functionalized Few-Layered-Titanium Carbide Nanosheets and monoclonal antibodies against the SARS-CoV-2 nucleocapsid protein (anti-SARS-CoV-2 mAb) to design a point-of-care device for detection of the SARS-CoV-2 nucleocapsid protein (SARS-CoV-2 NP) antigen. T2 - SALSA's Make and Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - MXenes KW - Titanium Carbide Nanosheets KW - Biosensors KW - Electrochemistry PY - 2022 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. AN - OPUS4-55856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - López de Ipina, J.-M. A1 - Arevalillo, A. A1 - Martín, A. A1 - Caillard, B. A1 - Marcoulaki, E. A1 - Aguerre- Charol, O. A1 - van Duuren-Stuurman, B. A1 - Hodoroaba, Vasile-Dan A1 - Viitanen, A.-K. A1 - Witters, H. A1 - Vercauteren, S. A1 - Persson, K. A1 - Bard, D. A1 - Evans, G. A1 - Jensen, K.A. A1 - Himly, M. A1 - Scalbi, S. A1 - Papin, A. A1 - Le Bihan, O. A1 - Kanerva, T. A1 - Tirez, K. A1 - Frijns, E. A1 - Niga, P. A1 - Eleftheriadis, K. A1 - Travlos, A. A1 - Geppert, M. A1 - Himly, M. A1 - Radnik, Jörg A1 - Kuchenbecker, Petra A1 - Resch-Genger, Ute A1 - Fraboulet, I. A1 - Bressot, C. A1 - Rissler, J. A1 - Gaucher, R. A1 - Binotto, G. A1 - Krietsch, Arne A1 - Braun, A. A1 - Abenet, S. A1 - Catalan, J. A1 - Verstraelen, S. A1 - Manier, N. A1 - Manzo, S. A1 - Fransman, S. A1 - Queron, J. A1 - Charpentier, D. A1 - Taxell, D. A1 - Säämänen, A. A1 - Brignon, J.-M. A1 - Jovanovic, A. A1 - Bisson, M A1 - Neofytou, P. T1 - EC4Safenano - Catalogue of Services N2 - The publicly available document encapsulates the first version of the Catalogue of Services of the future EC4Safenano Centre (CoS 2019). The CoS 2019 is structured in 12 Service Categories and 27 Service Topics, for each of the 12 categories considered. This architecture configures a 12 x 27 matrix that allows ordering the potential EC4Safenano offer in 324 types of services/groups of services. Each type of service/group of services is described, in a simple and friendly way, by means of a specific service sheet: the EC4Safenano - Service Data Sheet (EC4-SDS). These EC4-SDSs allow structuring and summarizing the information of each service, providing the customer with a concise view of characteristics of the service and also the contact details with the service provider. The CoS 2019 deploys a map of services consisting of a set of 100 EC4-SDSs, covering 7 of the 12 Service Categories and 17 of the 27 Service Topics. The harmonization of services is visualized as a future necessary step in EC4Safenano, in order to strengthen the offer and provide added value to customers with a growing offer of harmonized services in future versions of the CoS. The information contained in this document is structured in 3 main sections, as follows: • Catalogue structure. This section describes in short the main characteristics of the CoS 2019. • Catalogue content. This section represents the core part of the document and encapsulates the set of 100 SDSs displaying the offer proposed by the CoS 2019. • Online Catalogue. This section describes the resources implemented by EC4Safenano to facilitate the on-line consultation of the CoS 2019 by customers and other interested parties. KW - Nano-safety KW - Analytical services KW - Nanomaterials KW - Catalogue of services KW - EC4SafeNano KW - European Centre PY - 2021 UR - https://ec4safenano.eu-vri.eu/Public/Guidance SP - 1 EP - 72 PB - EU-VRi – European Virtual Institute for Integrated Risk Management CY - Stuttgart, Germany AN - OPUS4-52943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dieter A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Impact of Boehmite nanoparticles on the curing behaviour and thermal properties of cycloaliphatic-epoxy oligosiloxane hybrid N2 - UV-curing coatings are nowadays widely used due to their unique advantages. High-quality coatings can be obtained at short curing times and low temperatures so that thermal stress to the substrate is minimised. Photocured Cycloaliphatic-Epoxy Oligosiloxane (CEO) resin was reported to be used as encapsulation material for organic electronics. However, further reinforcement of CEO film properties is desired to achieve requested device lifetime. In this work we introduced Boehmite nanoparticles (BA) into CEO matrix in order to modify the film properties and study the main changes of the material behaviour with regard to its photocuring kinetics, thermal stability and glass transition. Particular interest was focused on the role of particle surface in nanocomposite properties. Hence, BA particles without (HP14) and with organic surface modifier (OS1) at different loadings (up to 10 wt%) were applied in this study. Morphology investigation with SEM operated in transmission mode showed good BA dispersion forming network-like structure. At the same time, distribution of particles differed for HP14 and OS1 as a result of different interaction in CEO-solvent-particles system. CEO structure obtained via non-hydrolytic sol-gel reaction was verified by 13C and 29Si NMR. In situ monitoring of film curing was performed using RT-IR spectroscopy. No significant modification of final convention degree with particle incorporation was observed in contrast to considerable decrease of curing efficiency reported previously for similar system by Esposito et al.,2008. Further, cured hybrid nanocomposite films were analysed by TGA and DSC, which revealed impact of surface modifier on film thermal properties. T2 - E-MRS CY - Warsaw, Poland DA - 15.09.2018 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - DSC KW - TGA KW - UV-curing PY - 2018 AN - OPUS4-47643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Stockmann, Jörg Manfred A1 - Knigge, Xenia A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute A1 - Madkour, S. A1 - Schönhals, Andreas A1 - Reed, B. A1 - Clifford, C. A1 - Shard, A. T1 - (hard) x ray photoelectron spectroscopy as tool in nano-analytics N2 - Selected samples are used to show, that photoelectron spectroscopy is an important tool for measuring nano-objects, especially for determing the chemical composition and structure on the nanosacle. XPS with different energies offers new possibilities in depth-profiling. T2 - SFB 1073 Colloquium CY - Göttingen, Germany DA - 22.02.2024 KW - X-ray photoelectron spectroscopy KW - Core-shell nanoparticle KW - Graphene related 2D materials PY - 2024 AN - OPUS4-59589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Howe, T. A1 - Vyas, N. A1 - Reed, B. P. A1 - Pollard, A. J. A1 - Clifford, C. A. T1 - Reliable Chemical Characterization Protocols for Industrial Graphene-Related Materials N2 - Since its isolation, graphene has received growing attention from academia and industry due to its unique properties. Promising opportunities for applications are discussed in different field like electronics and optoelectronics, detection, and sensing devices, biosystems or chemical and environmental corrosion inhibition. Here, functionalization with elements like oxygen, nitrogen or fluorine can broaden the application, for example in composite materials. However, lack of generally accepted operation procedures hinders the commercialization, the so-called “what is my material” barrier. Therefore, first efforts were done to develop common, reliable, and reproducible ways to characterize the morphological and chemical properties of the industrially produced material. In this contribution, our efforts in the development of reliable chemical characterizations protocols for functionalized graphene are presented. An ISO standard for the chemical characterization of graphene-related (GRM) is under development with X-ray photoelectron spectroscopy (XPS) having a prominent role. With its information depth of around 10 nm, which is the similar length scale as the thickness of particles of 2D materials consisting of a few monolayers, XPS seems to be highly suitable for the quantitative analysis of (functionalized) GRM. Thereby, different sample preparation methods like pressing the powders onto adhesive tapes, into recesses, or into solid pellets result in inconsistencies in the quantification. Furthermore, different morphologies like stacks of graphene layers (left figure) or irregular particles (right figure) lead to different analysis results for the chemical composition. For the validation of the quantification with XPS and the further development of standards an international interlaboratory comparison was initiated under the head of the “Versailles Project on Advanced Materials and Standards” (VAMAS). First results are reported showing the suitability of the protocols. Finally, the XPS results are compared with the elemental composition results obtained after quantification with energy-dispersive X-ray spectroscopy (EDS) as a fast analytical method which is usually combined with electron microscopy. T2 - nanoSAFE 2023 CY - Grenoble, France DA - 05.06.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison KW - VAMAS PY - 2023 AN - OPUS4-57652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Howe, T. A1 - Vyas, N. A1 - Reed, B.P. A1 - Pollard, A.J. A1 - Clifford, C.A. T1 - Reliable chemical characterization of industrial graphene related materials N2 - International standards describing reliable protocols will facilitate the commercialization of graphene and related 2D materials. One physico-chemical key property next to flake size and thickness is the chemical composition of the material. Therefore, an ISO standard is under development with X-ray photoelectron spectroscopy having a prominent role. With its information depth of around 10 nm which is the similar length scale as the thickness as of particles of 2D materials consisting of a few monolayer XPS seems to be highly suitable for this purpose. Different sample preparation methods like pressing the powders onto adhesive tapes, into recesses, or into solid pellets result in inconsistencies in the quantification. For the validation of the quantification with XPS an interlaboratory comparison was initiated under the auspice of the “Versailles Project on Advanced Materials and Standards” (VAMAS). First results confirm that the sample preparation method (pellet vs. powder) influences the quantification results clearly. Considering this effect, a good agreement of the results from the different participants were observed. Similar results were observed for raw, N- and F-functionalized graphene. T2 - Graphene CY - Manchester, England, UK DA - 27.06.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison KW - VAMAS PY - 2023 AN - OPUS4-57895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Chemello, Giovanni A1 - Radnik, Jörg T1 - Accurate Measurement of Size of Graphene Oxide Flakes by Scanning Electron Microscopy (SEM) N2 - Accurate characterisation of the morphology (size) and chemistry of graphene-related 2D materials (GR2M) is key in understanding their extraordinary functionalities. Hence, not only the tailoring of these functionalities aiming at applications of increased-performance becomes possible, but also the correlation of the physico-chemical properties with the understanding of the potential toxicity eventually enables a safe and sustainable development of the GR2M for new applications. Whilst AFM and Raman Spectroscopy are recommended to measure the thickness of GO flakes, Scanning Electron Microscopy (SEM) is the most suited method to assess their lateral size, which varies between tens of µm down to below 100 nm. In this paper, procedures for the accurate determination of lateral size of graphene oxide (GO) flakes by SEM are presented. The prerequisite for accurate flake size analysis is the proper sample preparation, i.e. deposition of ideally isolated flakes on a substrate, with the flakes being unfolded, non-overlapped, parallel with the substrate, and having a high coverage density. Examples of optimum image caption conditions and image analysis procedures will be presented. The size descriptors and their measurement are described in the context of the corresponding analysis approach: i) length and width of the flakes with a quick and rough, but robust procedure, and ii) exact contouring of the flakes as part of a highly accurate, but more time-consuming measurement approach. The possibility of application of automated image analysis is discussed as the alternative to the manual flakes analysis. T2 - Graphene 2023 CY - Manchester, UK DA - 27.07.2023 KW - Graphene oxide KW - SEM KW - Size KW - Standardisation PY - 2023 UR - https://www.grapheneconf.com/2023/index.php AN - OPUS4-57910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Knigge, Xenia A1 - Al-Sabbgh, Dominik A1 - Hodoroaba, Vasile-Dan T1 - XPS, HAXPES, XRD and SEM datasets of functionalized graphene nanoplateletes N2 - The datasets from (Hard Energy) X-ray photoelectron spectroscopy, X-ray diffraction and Scanning Electron Microsopy are related to the publication G. Chemello, X. Knigge, D. Ciornii, B.P. Reed, A.J. Pollard, C.A. Clifford, T. Howe, N. Vyas, V.-D. Hodoroaba, J. Radnik "Influence of the morphology on the functionalization of graphene nanoplatelets analyzed by comparative photoelectron spectroscopy with soft and hard X-rays" Advanced Materials Interfaces (2023), DOI: 10.1002/admi.202300116. KW - Graphene related 2D materials KW - X-ray photoelectron spectroscopy KW - Hard-energy X-ray photoelectron spectroscopy KW - Scanning electron microscopy KW - Powder X-ray diffraction PY - 2023 DO - https://doi.org/10.5281/zenodo.7956497 PB - Zenodo CY - Geneva AN - OPUS4-57898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Ababei, G. A1 - Panne, Ulrich T1 - Photocatalysis of γ-cyclodextrin-functionalised Fe3O4 nanoparticles for degrading Bisphenol A in polluted waters JF - Environmental Chemistry N2 - The efficiency, relatively low cost and eco-friendly nature of hydrogen peroxide-assisted photocatalysis treatment procedures are significant advantages over conventional techniques for wastewater remediation. Herein, we evaluate the behaviour of g-cyclodextrin (g-CD) immobilised on either bare or chitosan (CS)–functionalised Fe3O4 nanoparticles, for photodegrading Bisphenol A (BPA) in ultrapure water and in real wastewater samples. The BPA removal efficiencies with Fe3O4/g-CD and Fe3O4/CS/g-CD were compared with those of Fe3O4/b-CD, and were monitored under UVA irradiation at near-neutral pH. The addition of H2O2 at low concentrations (15 mmol L-1) significantly increased BPA photodegradation in the presence of each nanocomposite. The highest catalytic activity was shown by both Fe3O4/g-CD and Fe3O4/CS/g-CD nanocomposites (,60 and 27%BPA removal in ultrapure water and real wastewater effluent, respectively). Our findings reveal the superior performance of g-CD-functionalised Fe3O4 relative to that of Fe3O4/b-CD. The use of CD-based nanocomposites as photocatalytic materials could be an attractive option in the pre- or post-treatment stage of wastewaters by advanced oxidation processes before or after biological treatment. KW - Photooxidation KW - Sonochemical synthesis KW - Wastewater PY - 2019 DO - https://doi.org/10.1071/EN18181 SN - 1448-2517 VL - 16 IS - 2 SP - 125 EP - 136 PB - CSIRO Publishing CY - Clayton South AN - OPUS4-48316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Ciftci, G. C. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - High precision micropatterning of polydopamine by Multiphoton Lithography JF - Advanced Materials N2 - Mussel-inspired polydopamine (PDA) initiated a multifunctional modification route that leads to the generation of novel advanced materials and their applications. However, existing PDA deposition techniques still exhibit poor spatial control, have a very limited capability of micropatterning and do not allow to locally tune PDA topography. Herein, we demonstrate PDA deposition based on Multiphoton Lithography (MPL) that enables full spatial and temporal control with nearly total freedom of patterning design. Using MPL, we achieve 2D microstructures of complex design with pattern precision of 0.8 μm without the need of a photomask or stamp. Moreover, this approach permits adjusting the morphology and thickness of the fabricated microstructure within one deposition step, resulting in a unique tunability of materials properties. The chemical composition of PDA is confirmed and its ability for protein enzyme immobilization is demonstrated. This work presents a new methodology for high precision and complete control of PDA deposition, enabling PDA incorporation in applications where fine and precise local surface functionalization is required. Possible applications include multicomponent functional elements and devices in microfluidics or lab-on-a-chip systems. KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2022 DO - https://doi.org/10.1002/adma.202109509 VL - 34 IS - 18 SP - e2109509 PB - Wiley online library AN - OPUS4-54535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tu, Z. A1 - Donskyi, Ievgen A1 - Qiao, H. A1 - Zhu, Z. A1 - Unger, Wolfgang A1 - Hackenberger, C. P. R. A1 - Chen, W. A1 - Adeli, M. A1 - Haag, R. T1 - Graphene Oxide-Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple-Drug Resistance JF - Advanced Functional Materials N2 - Multidrug resistance resulting from a variety of defensive pathways in Cancer has become a global concern with a considerable impact on the mortality associated with the failure of traditional chemotherapy. Therefore, further research and new therapies are required to overcome this challenge. In this work, a cyclic R10 peptide (cR10) is conjugated to polyglycerol-covered nanographene oxide to engineer a nanoplatform for the surmounting of multidrug resistance. The nuclear translocation of the nanoplatform, facilitated by cR10 peptide, and subsequently, a laser-triggered release of the loaded doxorubicin result in efficient anticancer activity confirmed by both in vitro and in vivo experiments. The synthesized nanoplatform with a combination of different features, including active nucleus-targeting, highloading capacity, controlled release of cargo, and photothermal property, provides a new strategy for circumventing multidrug resistant cancers. KW - Graphen Oxide KW - Nanoplatform KW - Cancer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510061 DO - https://doi.org/10.1002/adfm.202000933 VL - 30 IS - 35 SP - 2000933 PB - Wiley VCH AN - OPUS4-51006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - How to perform reliable xps-measurements? N2 - Reliable measurements are a great challenge in X-ray photoelectron spectroscopy. It will be shown, how to check the performance and calibration of the instrument, the charge compensation, quantification, fitting, and depth profiling. T2 - Course for PhD students at SFB 1073 CY - Göttingen, Germany DA - 23.02.2024 KW - X-ray photoelectron spectroscopy KW - Reproducibility crisis KW - Reliability PY - 2024 AN - OPUS4-59590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Photoelectron spectroscopy N2 - A short introduction into the basics of Photoelectron Spectroscopy with the focus on surface sensitivity and applications is presented. T2 - Industrietreffen im Forschungs- und Innovationszentrum (FIZ) der BMW Group CY - Munich, Germany DA - 09.01.2018 KW - XPS KW - ESCA KW - Surface analytics PY - 2018 AN - OPUS4-43737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Verestiuc, L. A1 - Panne, Ulrich T1 - Functionalized magnetic nanoparticles: Synthesis, characterization, catalytic application and assessment of toxicity JF - Scientific Reports N2 - Cost-effective water cleaning approaches using improved Treatment technologies, for instance based on catalytic processes with high activity catalysts, are urgently needed. The aim of our study was to synthesize efficient Fenton-like photo-catalysts for rapid degradation of persistent organic micropollutants in aqueous medium. Iron-based nanomaterials were chemically synthesized through simple procedures by immobilization of either iron(II) oxalate (FeO) or iron(III) citrate (FeC) on magnetite (M) nanoparticles stabilized with polyethylene glycol (PEG). Various investigation techniques were performed in order to characterize the freshly prepared catalysts. By applying advanced oxidation processes, the effect of catalyst dosage, hydrogen peroxide concentration and UV-A light exposure were examined for Bisphenol A (BPA) conversion, at laboratory scale, in mild conditions. The obtained results revealed that BPA degradation was rapidly enhanced in the presence of low-concentration H2O2, as well as under UV-A light, and is highly dependent on the surface characteristics of the catalyst. Complete photo-degradation of BPA was achieved over the M/PEG/FeO catalyst in less than 15 minutes. Based on the catalytic performance, a hierarchy of the tested catalysts was established: M/PEG/FeO > M/PEG/FeC > M/PEG. The results of cytotoxicity assay using MCF-7 cells indicated that the aqueous samples after treatment are less cytotoxic. KW - Bisphenol A KW - Magnetic nanocatalyst KW - Endocrine disruptor KW - Nanoparticle KW - Photodegradation KW - Fenton PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448297 DO - https://doi.org/10.1038/s41598-018-24721-4 SN - 2045-2322 VL - 8 SP - Article 6278, 1 EP - 11 PB - Springer Nature CY - London AN - OPUS4-44829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -