TY - CONF A1 - Sachse, René A1 - Bernsmeier, Denis A1 - Hertwig, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, Ralph T1 - Spectroscopic ellipsometry for the determination of thickness and porosity of mesoporous metal oxide films N2 - Thin mesoporous metal oxide films are versatile and attractive candidates for several energy applications like photovoltaics, electrolysis or batteries. Due to their high surface area and ordered pore structure, mesoporous metal oxides demonstrate higher activities. The performance of the porous films is affected by properties like size and shape of the mesopores as well as the crystallinity of the framework. The exact determination and metrological evaluation of the complex morphology of thin mesoporous films requires a new analytical approach employing to combined data of different analytical methods. In this contribution we present a novel evaluation procedure for spectroscopic ellipsometry (SE) to analyse thin mesoporous iridium oxide films. Mesoporous iridium oxide films were prepared via dip-coating of a solution containing a triblock-copolymer as structure directing agent and an iridium precursor in ethanol. Deposited films were calcined in air at temperatures between 300 and 600 °C. Their morphology was studied with SEM and an electron probe microanalysis (EPMA) and correlated via SE with a Bruggeman effective medium approximation (BEMA). The developed SE model described the film thickness as well as the porosity. ... The contribution will assess in detail the novel approach to analyse the morphology and porosity of thin metal oxide films with spectroscopic ellipsometry. Moreover, the advantages of the new developed approach will be discussed as well as combination of datasets from multiple measurements to development new methods for innovative energy technologies. T2 - 30. Deutsche Zeolith-Tagung gemeinsam mit dem Jahrestreffen der ProcessNet-Fachgruppe Adsorption CY - Christian-Albrechts-Universität zu Kiel, Germany DA - 28.02.2018 KW - Mesoporous materials KW - Iridium oxide films KW - Electro catalyst KW - Spectroscopic ellipsometry KW - Thin film metrology KW - Multi-sample analysis PY - 2018 AN - OPUS4-45134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Hertwig, Andreas A1 - Kraehnert, Ralph T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrO IrOxfilms revealed under realistic OER conditions N2 - Rising energy demand and the impending climate change require the development of a sustainable, fossil-free fuel and chemical production on a global scale. Hydrogen production via water electrolysis will be a fundamental cornerstone in this endeavor. The activity and stability of respective electrode coatings strongly depends on the coating's properties, i.e. phase composition, crystallinity, electrical conductivity, accessible surface, wettability and many other factors. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physicochemical properties. However, those relations can be complex, and are strongly influenced also by the reaction environment. Hence, operando analysis of the catalyst material during catalysis at realistic potentials and current densities is highly desirable. Yet, many analytical techniques cannot be applied in liquid environments at realistic potentials and current densities. We propose environmental ellipsometric analysis in a dedicated electrochemical flow cell as a new method to evaluate gas evolution reactions operando under realistic working conditions. Figure 1 illustrates schematically the developed technique. Key factors to success are highly active model-type catalysts with template-controlled porosity, a suitable sample environment, a deep understanding of the spectroscopic method and respective model development, as well as concise cross validation with numerous other analytical techniques. The method was developed and validated by analyzing a calcination series (300 - 600°C) of mesoporous templated IrOx films ex-situ and operando under oxygen evolution reaction (OER) conditions. The employed environmental electrochemical spectroscopic ellipsometric analysis (ECSE) revealed during OER the change of optical and electronic properties, i.e. the dielectric functions (real ε1 and imaginary part ε2), electrical and electronic properties such as resistivity (ρ) and band-to-band transitions (p-d band transitions). Film thickness and porosity were validated by means of scanning electron microscopy (SEM), X-ray reflectometry (XRR) or ellipsometric porosimetry (EP), electrical and electronic properties by means of conductivity measurements, X-ray photoelectron spectroscopy (XPS) or UV-Vis-NIR absorption spectroscopy. The electronic structures of the catalysts from valence electron energy loss spectra (VEELS) derived from the real (ε1) and imaginary part (ε2) of the dielectric function from SE measurements reveal a direct correlation with electrochemical activities in OER. In the presentation reversible and irreversible potential-dependent changes of the catalyst properties during operation will be discussed along with the dynamics of gas formation, transport and dissolution at different potentials. T2 - 54. Jahrestreffen deutscher Katalytiker CY - Online meeting DA - 16.03.2021 KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis PY - 2021 AN - OPUS4-52928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Hertwig, Andreas A1 - Kraehnert, Ralph T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrO IrOxfilms revealed under realistic OER conditions N2 - Rising energy demand and the impending climate change require the development of a sustainable, fossil-free fuel and chemical production on a global scale. Hydrogen production via water electrolysis will be a fundamental cornerstone in this endeavor. The activity and stability of respective electrode coatings strongly depends on the coating's properties, i.e. phase composition, crystallinity, electrical conductivity, accessible surface, wettability and many other factors. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physicochemical properties. However, those relations can be complex, and are strongly influenced also by the reaction environment. Hence, operando analysis of the catalyst material during catalysis at realistic potentials and current densities is highly desirable. Yet, many analytical techniques cannot be applied in liquid environments at realistic potentials and current densities. We propose environmental ellipsometric analysis in a dedicated electrochemical flow cell as a new method to evaluate gas evolution reactions operando under realistic working conditions. Figure 1 illustrates schematically the developed technique. Key factors to success are highly active model-type catalysts with template-controlled porosity, a suitable sample environment, a deep understanding of the spectroscopic method and respective model development, as well as concise cross validation with numerous other analytical techniques. The method was developed and validated by analyzing a calcination series (300 - 600°C) of mesoporous templated IrOx films ex-situ and operando under oxygen evolution reaction (OER) conditions. The employed environmental electrochemical spectroscopic ellipsometric analysis (ECSE) revealed during OER the change of optical and electronic properties, i.e. the dielectric functions (real ε1 and imaginary part ε2), electrical and electronic properties such as resistivity (ρ) and band-to-band transitions (p-d band transitions). Film thickness and porosity were validated by means of scanning electron microscopy (SEM), X-ray reflectometry (XRR) or ellipsometric porosimetry (EP), electrical and electronic properties by means of conductivity measurements, X-ray photoelectron spectroscopy (XPS) or UV-Vis-NIR absorption spectroscopy. The electronic structures of the catalysts from valence electron energy loss spectra (VEELS) derived from the real (ε1) and imaginary part (ε2) of the dielectric function from SE measurements reveal a direct correlation with electrochemical activities in OER. In the presentation reversible and irreversible potential-dependent changes of the catalyst properties during operation will be discussed along with the dynamics of gas formation, transport and dissolution T2 - E MRS 2021 SPRING MEETING CY - Online meeting DA - 31.05.2021 KW - Spectroscopic ellipsometry KW - Ectrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis PY - 2021 AN - OPUS4-52929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco Vélez, Juan Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrO IrOxfilms revealed under realistic OER conditions N2 - In the face of rising energy demand and the impending climate change the development of a sustainable, fossil-free fuel and chemical production is of global importance. One possible goal is the development of electrochemical conversion processes using catalysts. Porous materials play an important role in such energy applications. The activity and stability of each catalyst is highly dependent on the properties of the coating, i.e., phase composition, crystallinity, accessible surface area, and many other factors. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physico-chemical properties. However, the complex morphology of such catalysts constitutes a challenge even for modern analytical techniques. Spectroscopic ellipsometry (SE) is a versatile method for studying material properties by using appropriate models (e.g., film thickness, optical and electronic properties). Ellipsometric models need to be validated in order to produce accurate results. In a first step, the model for the ellipsometric fit studies of a calcination series of mesoporous iridium oxide films (300 – 600 °C) was investigated and validated with respect to their material properties.[4] The information on electronic structure of the catalysts shows a direct correlation with electrochemical activities. The development of an environmental electrochemical cell offers the possibility of investigations under operando conditions. Thus, changes in optical and electronic properties can be induced and monitored during the electrocatalytic oxygen evolution reaction. T2 - 9th International Conference on Spectroscopic Ellipsometry CY - Beijing, China DA - 22.05.2022 KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis KW - Oxygen evolution reaction KW - Spectroscopic ellipsometry PY - 2022 AN - OPUS4-54915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrOx films revealed under realistic OER conditions N2 - Hydrogen production via water electrolysis will be an essential cornerstone in development of sustainable, fossil-free fuel and chemical production on a global scale. The activity and stability of each catalyst is highly dependent on the properties of the coating, i.e., phase composition, crystallinity, accessible surface area, and many other factors. The key to developing improved catalysts is a better understanding of the relationships between their performance, stability, and physicochemical properties. However, these relationships can be complex and are also strongly influenced by the reaction environment. Therefore, operando analysis of the catalyst material during catalysis at realistic potentials and current densities is highly desirable. However, many analytical techniques cannot be applied in liquid environments at realistic potentials and current densities. We propose environmental ellipsometric analysis in a dedicated electrochemical flow cell as a method to evaluate gas evolution reactions operando under realistic working conditions. Figure 1 illustrates schematically the developed technique. Key factors to success are highly active model-type catalysts, a suitable sample environment, and a deep understanding of the appropriate model development, as well as concise cross validation with numerous other analytical techniques. The method was developed and validated by analyzing a calcination series (300 – 600 °C) of mesoporous templated IrOx films ex-situ and operando under oxygen evolution reaction (OER) conditions. The employed environmental electrochemical spectroscopic ellipsometric (ECSE) analysis revealed during OER the change of optical and electronic properties, i.e. the dielectric functions, resistivity and band-to-band transitions (p-d band transitions). Film thickness and porosity were validated by means of scanning electron microscopy (SEM), X-ray reflectometry (XRR) or ellipsometric porosimetry (EP), electrical and electronic properties by means of conductivity measurements, X-ray photoelectron spectroscopy (XPS) or UV-Vis-NIR absorption spectroscopy. The electronic structures of the catalysts from valence electron energy loss spectra (VEELS) derived from ε1 and ε2 from SE measurements reveal a direct correlation with electrochemical activities in OER. In the presentation reversible and irreversible potential-dependent changes of the catalyst properties during operation will be discussed along with the dynamics of gas formation, transport and dissolution at different potentials. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Ectrocatalysis KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis KW - Oxygen evolution reaction KW - Spectroscopic ellipsometry PY - 2021 AN - OPUS4-53915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Kotil, L. A1 - Hodoroaba, Vasile-Dan A1 - Bernsmeier, Denis A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Spectroscopic ellipsometric analysis of elemental composition and porosity of mesoporous iridium-titanium mixed oxide thin films for electrocatalytic splitting of water N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge for modern analytical techniques and requires approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by spectroscopic ellipsometry (SE). Mesoporous iridium oxide - titanium oxide (IrOx-TiOx) films were prepared via dip-coating of a solution containing a triblock-copolymer as structure-directing agent, an iridium precursor as well as a titanium precursor in ethanol. Deposited films with different amounts of iridium (0 wt%Ir to 100 wt%Ir) were synthesized and calcined in air. The thin films were analyzed with SE using the Bruggeman effective medium approximation (BEMA) for modelling. The results were compared with electron probe microanalysis (EPMA) as part of a combined SEM/EDS/STRATAGem Analysis. T2 - 8th International conference on spectroscopic ellipsometry (ICSE-8) CY - Barcelona, Spain DA - 26.05.2019 KW - Mesoporous iridium-titanium mixed oxides KW - Thin films KW - Spectroscopic ellipsometry KW - Oxygen evolution reaction KW - EPMA KW - Ellipsometric porosimetry PY - 2019 AN - OPUS4-48387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Hertwig, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Krähnert, R. T1 - Multi-method analysis of pore-controlled mesoporous oxide materials N2 - Determining the porosity of catalytic layers is crucial for quality assurance. We present results of a multi-method study to determine thickness, porosity, dielectric function and other properties of pure and mixed iridium and titanium oxide layers used in electrocatalytic water splitting. T2 - European Optical Society Biennial Meeting (EOSAM) 2018 CY - Delft, The Netherlands DA - 08.10.2018 KW - Multi-method analysis KW - Mesoporous oxide materials KW - Electro catalytic water splitting KW - Electron probe X-ray microanalysis (EPMA) KW - Spectroscopic ellipsometry (SE) KW - Optical porosimetry PY - 2018 AN - OPUS4-46740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas A1 - Matjacic, L. A1 - McMahon, G. A1 - Kotil, L. A1 - Bernsmeier, D. A1 - Kraehnert, R. T1 - Analysis of elemental composition and porosity of mesoporous iridium titanium mixed oxide thin films for energy application by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. T2 - Microscopy & Microanalysis 2019 Meeting CY - Portland, OR, USA DA - 04.08.2019 KW - Mesoporous mixed metal oxide films KW - SEM/EDS/STRATAGem KW - EPMA KW - Ellipsometry KW - NanoSIMS PY - 2019 AN - OPUS4-48767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Hertwig, Andreas A1 - Kraehnert, R. A1 - Hodoroaba, Vasile-Dan T1 - Analysis of elemental composition and porosity of mesoporous IrOx-TiOx thin films by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. T2 - EMAS 2019 - 16th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS CY - Trondheim, Norway DA - 19.05.2019 KW - Electron probe microanalysis (EPMA) KW - Iridium-titanium mixed oxides KW - Spectroscopic ellipsometry KW - Mesoporous thin films PY - 2019 AN - OPUS4-48769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hertwig, Andreas A1 - Kraehnert, R. A1 - Hodoroaba, Vasile-Dan T1 - Analysis of mesoporous iridium oxide thin films by the combined methodical approach SEM/EDS/STRATAGem N2 - For the determination of porosity of Ir oxide thin films, electron probe microanalysis (EPMA) can be used as part of a combined SEM/EDS/STRATAGem analysis. The mass deposition (in μg cm-2) of films was calculated with the analysis software STRATAGem via k-values measured with EDS. The average density of coated films was obtained from the mass deposition and the film thickness as measured by the cross-section SEM. The porosity was calculated by dividing the average film density by the bulk (theoretical) density of the film material. Film porosities were counterchecked by spectroscopic ellipsometry (SE) using the Bruggeman effective medium approximation (BEMA). The results obtained by both analytical approaches/methods used, SEM/EDS/STRATAGem and SE were in good agreement. KW - Porous thin films KW - Iridium oxide KW - Electron probe microanalysis (EPMA) KW - Spectroscopic ellipsometry PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/analysis-of-mesoporous-iridium-oxide-thin-films-by-the-combined-methodical-approach-semedsstratagem/7607018338B542D8B8C4D944392781EF DO - https://doi.org/10.1017/S1431927618004300 SN - 1431-9276 SN - 1435-8115 VL - 24 IS - S1 (August) SP - 762 EP - 763 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas A1 - Kotil, L. A1 - Kraehnert, R. T1 - Analysis of elemental composition and porosity of mesoporous iridium titanium mixed oxide thin films for energy application by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. KW - Electron probe microanalysis (EPMA) KW - Iridium-titanium mixed oxides KW - Spectroscopic ellipsometry KW - Mesoporous thin films KW - NanoSIMS PY - 2019 DO - https://doi.org/10.1017/S1431927619009589 SN - 1431-9276 (Print) SN - 1435-8115 (Online) VL - 25 IS - S2 (August) SP - 1770 EP - 1771 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-48768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Multilevel effective material approximation for modeling ellipsometric measurements on complex porous thin films N2 - Catalysts are important components in chemical processes because they lower the activation energy and thus determine the rate, efficiency and selectivity of a chemical reaction. This property plays an important role in many of today’s processes, including the electrochemical splitting of water. Due to the continuous development of catalyst materials, they are becoming more complex, which makes a reliable evaluation of physicochemical properties challenging even for modern analytical measurement techniques and industrial manufacturing. We present a fast, vacuum-free and non-destructive analytical approach using multi-sample spectroscopic ellipsometry to determine relevant material parameters such as film thickness, porosity and composition of mesoporous IrOx–TiOy films. Mesoporous IrOx–TiOy films were deposited on Si wafers by sol–gel synthesis, varying the composition of the mixed oxide films between 0 and 100 wt%Ir. The ellipsometric modeling is based on an anisotropic Bruggeman effective medium approximation (a-BEMA) to determine the film thickness and volume fraction of the material and pores. The volume fraction of the material was again modeled using a Bruggeman EMA to determine the chemical composition of the materials. The ellipsometric fitting results were compared with complementary methods, such as scanning electron microscopy (SEM), electron probe microanalysis (EPMA) as well as environmental ellipsometric porosimetry (EEP). KW - Electrochemical catalysts KW - Mixed metal oxide KW - Multi-sample analysis KW - Spectroscopic ellipsometry KW - Thin mesoporous films PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551026 DO - https://doi.org/10.1515/aot-2022-0007 SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 (Topical issue: Ellipsometry) SP - 137 EP - 147 PB - De Gruyter CY - Berlin AN - OPUS4-55102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Moor, Maëlle A1 - Kraehnert, Ralph A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas T1 - Ellipsometry-based approach for the characterization of mesoporous thin films for H2 technologies N2 - Porous thin layer materials are gaining importance in different fields of technology and pose a challenge to the accurate determination of materials properties important for their function. In this work, we demonstrate a hybrid measurement technique using ellipsometry together with other independent methods for validation. Ellipsometry provides information about the porosity of different mesoporous films (PtRuNP/OMC = 45%; IrOx = 46%) as well as about the pore size (pore radius of ca. 5 nm for PtRuNP/OMC). In addition, the electronic structure of a material, such as intraband transitions of a mesoporous IrOx film, can be identified, which can be used to better understand the mechanisms of chemical processes. In addition, we show that ellipsometry can be used as a scalable imaging and visualization method for quality assurance in production. These require accurate and traceable measurements, with reference materials playing an important role that include porosity and other related properties. We show that our novel analytical methods are useful for improving analytical work in this entire field. KW - Porous materials KW - Electrolysis KW - Spectroscopic ellipsometry KW - Hybrid metrology measurement KW - Electron microscopy PY - 2021 DO - https://doi.org/10.1002/adem.202101320 SP - 1 EP - 17 PB - Wiley-VCH AN - OPUS4-53960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Pfüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Assessing optical and electrical properties of highly active IrOx catalysts for the electrochemical oxygen evolution reaction via spectroscopic ellipsometry N2 - Efficient water electrolysis requires highly active electrodes. The activity of corresponding catalytic coatings strongly depends on material properties such as film thickness, crystallinity, electrical conductivity, and chemical surface speciation. Measuring these properties with high accuracy in vacuum-free and nondestructive methods facilitates the elucidation of structure−activity relationships in realistic environments. Here, we report a novel approach to analyze the optical and electrical properties of highly active oxygen evolution reaction (OER) catalysts via spectroscopic ellipsometry (SE). Using a series of differently calcined, mesoporous, templated iridium oxide films as an example, we assess the film thickness, porosity, electrical resistivity, electron concentration, electron mobility, and interband and intraband transition energies by modeling of the optical spectra. Independently performed analyses using scanning electron microscopy, energy-dispersive X-ray spectroscopy, ellipsometric porosimetry, X-ray reflectometry, and absorption spectroscopy indicate a high accuracy of the deduced material properties. A comparison of the derived analytical data from SE, resonant photoemission spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy with activity measurements of the OER suggests that the intrinsic activity of iridium oxides scales with a shift of the Ir 5d t2g sub-level and an increase of p−d interband transition energies caused by a transition of μ1-OH to μ3-O species. KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive ambient analysis KW - Intrinsic OER activity KW - Complementary methodology and metrology PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516288 DO - https://doi.org/10.1021/acscatal.0c03800 SN - 2155-5435 VL - 10 IS - 23 SP - 14210 EP - 14223 PB - American Chemical Society AN - OPUS4-51628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Wang, Shu A1 - Radnik, Jörg A1 - You, Yi A1 - Resch-Genger, Ute T1 - Assessing the protective effects of different surface coatings on NaYF4:YB3+, Er3+, upconverting nanoparticles in buffer and DMEM N2 - We studied the dissolution behavior of β NaYF4:Yb(20%), Er(2%) UCNP of two different sizes in biologically relevant media i.e., water (neutral pH), phosphate buffered saline (PBS), and Dulbecco’s modified Eagle medium (DMEM) at different temperatures and particle concentrations. Special emphasis was dedicated to assess the influence of different surface functionalizations, particularly the potential of mesoporous and microporous silica shells of different thicknesses for UCNP stabilization and protection. Dissolution was quantified electrochemically using a fluoride ion selective electrode (ISE) and by inductively coupled plasma optical emission spectrometry (ICP OES). In addition, dissolution was monitored fluorometrically. These experiments revealed that a thick microporous silica shell drastically decreased dissolution. Our results also underline the critical influence of the chemical composition of the aqueous environment on UCNP dissolution. In DMEM, we observed the formation of a layer of adsorbed molecules on the UCNP surface that protected the UCNP from dissolution and enhanced their fluorescence. Examination of this layer by X ray photoelectron spectroscopy (XPS) and mass spectrometry (MS) suggested that mainly phenylalanine, lysine, and glucose are adsorbed from DMEM. These findings should be considered in the future for cellular toxicity studies with UCNP and other nanoparticles and the design of new biocompatible surface coatings. KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515984 DO - https://doi.org/10.1038/s41598-020-76116-z SN - 2045-2322 VL - 10 IS - 1 SP - 19318-1 EP - 19318-11 PB - Springer Nature CY - London AN - OPUS4-51598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Salge, T. A1 - Wäsche, Rolf A1 - Hodoroaba, Vasile-Dan T1 - Advanced light element and low energy X-ray analysis of a TiB2 – TiC – SiC ceramic material using EDS spectrum imaging N2 - The accurate EDS microanalysis of light elements such as boron and carbon by spectrum imaging will be demonstrated using a sintered hard ceramic material composed of the three major phases titanium boride (TiB2), titanium carbide (TiC), silicon carbide (SiC) and minor phases, sub-μm in size. The combination of these three materials leads to improved mechanical and tribological properties. Silicon carbide is a material used for mechanical seals. It has the disadvantage of reduced failsafe running functions, causing increased wear when running dry. The added titanium components (TiC and TiB2) improve the failsafe running functions. This technology has already been transferred to industrial applications. KW - EDS KW - Spectrum imaging KW - Ceramic KW - Phase analysis KW - Light elements PY - 2018 UR - https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/X-rayDiffraction_ElementalAnalysis/Microanalysis_EBSD/LabReports/App_eds_10_LE_keramik_Rev1_1_lores.pdf SP - 1 EP - 5 CY - Berlin AN - OPUS4-44622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sattari, S. A1 - Beyranvand, S. A1 - Soleimani, K. A1 - Rassoli, K. A1 - Salahi, P. A1 - Donskyi, Ievgen A1 - Shams, A. A1 - Unger, Wolfgang A1 - Yari, A. A1 - Farjanikish, G. A1 - Nayebzadeh, H. A1 - Adeli, M. T1 - Boronic Acid-Functionalized Two-Dimensional MoS2 at Biointerfaces N2 - While noncovalent interactions at two-dimensional nanobiointerfaces are extensively investigated, less knowledge about covalent interactions at this interface is available. In this work, boronic acid-functionalized 2D MoS2 was synthesized and its covalent multivalent interactions with bacteria and nematodes were investigated. Polymerization of glycidol by freshly exfoliated MoS2 and condensation of 2,5-thiophenediylbisboronic acid on the produced platform resulted in boronic acid-functionalized 2D MoS2. The destructive interactions between 2D MoS2 and bacteria as well as nematodes were significantly amplified by boronic acid functional groups. Because of the high antibacterial and antinematodal activities of boronic acid-functionalized 2D MoS2, its therapeutic efficacy for diabetic wound healing was investigated. The infected diabetic wounds were completely healed 10 days after treatment with boronic acid-functionalized 2D MoS2, and a normal structure for recovered tissues including different layers of skin, collagen, and blood vessels was detected. KW - XPS KW - Boronic acid-functionalized 2D MoS2 KW - Covalent interactions KW - Bacteria KW - Nanobiointerfaces PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.0c00776 VL - 36 IS - 24 SP - 6706 EP - 6715 PB - ACS American Chemical Society AN - OPUS4-51024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schaepe, Kaija A1 - Jungnickel, H. A1 - Heinrich, Thomas A1 - Tentschert, J. A1 - Luch, A. A1 - Unger, Wolfgang ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Secondary ion mass spectrometry N2 - This chapter provides an introduction in secondary ion mass spectrometry as one of the leading surface chemical analysis and imaging techniques with molecular specificity in the field of material sciences. The physical basics of the technique are explained along with a description of the typical instrumental setups and their modes of operation. The application paragraph specifically focuses on nanoparticle analysis by SIMS in terms of surface spectrometry, imaging, analysis in organic and complex media, and depth profiling. A review of the existing literature is provided, and selected studies are showcased. Limitations and pitfalls as well as current technical developments of SIMS application in nanoparticle surface chemical analysis are equally discussed. KW - Time-of-flight secondary ion mass spectrometry KW - Surface chemical analysis KW - Imaging KW - Nanomaterials KW - Nanoparticles KW - Core-shell PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00025-0 SP - 481 EP - 509 PB - Elsevier CY - Amsterdam AN - OPUS4-50187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaepe, Kaija A1 - R. Bhandari, D. A1 - Werner, J. A1 - Henss, A. A1 - Pirkl, A. A1 - Kleine-Boymann, M. A1 - Rohnke, M. A1 - Wenisch, S. A1 - Neumann, E. A1 - Janek, J. A1 - Spengler, B. T1 - Imaging of lipids in native human bone sections using TOF-secondary ion mass spectrometry, atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization orbitrap mass spectrometry, and orbitrap-secondary ion mass spectrometry N2 - A method is described for high-resolution label-free molecular imaging of human bone tissue. To preserve the lipid content and the heterogeneous structure of osseous tissue, 4 μm thick human bone sections were prepared via cryoembedding and tape-assisted cryosectioning, circumventing the application of organic solvents and a decalcification step. A protocol for comparative mass spectrometry imaging (MSI) on the same section was established for initial analysis with time-of-flight secondary ion mass spectrometry (TOF-SIMS) at a lateral resolution of 10 μm to <500 nm, followed by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization (AP-SMALDI) Orbitrap MSI at a lateral resolution of 10 μm. This procedure ultimately enabled MSI of lipids, providing the lateral localization of major lipid classes such as glycero-, glycerophospho-, and sphingolipids. Additionally, the applicability of the recently emerged Orbitrap-TOF-SIMS hybrid system was exemplarily examined and compared to the before-mentioned MSI methods. KW - ToF-SIMS KW - MALDI KW - Mass spectrometry imaging KW - Lipids KW - Osteoporosis KW - Bone KW - Surface analysis PY - 2018 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.8b00892 DO - https://doi.org/10.1021/acs.analchem.8b00892 SN - 0003-2700 SN - 1520-6882 VL - 90 IS - 15 SP - 8856 EP - 8864 PB - ACS Publ. CY - Washington, DC AN - OPUS4-45730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schiek, Manuela A1 - Minenkov, Alexey A1 - Hollweger, Sophia A1 - Duchoslav, Jiri A1 - Erdene-Ochir, Otgonbayar A1 - Weise, Matthias A1 - Ermilova, Elena A1 - Hertwig, Andreas T1 - Optical constants of In2O3-SnO2 (Indium tin oxide, ITO) N2 - Optical constants of In2O3-SnO2 (Indium tin oxide, ITO) Minenkov et al. 2024: on glass; n,k 0.191–1.69 µm Optical constants of In2O3-SnO2 (Indium tin oxide, ITO) Minenkov et al. 2024: on Si wafer, top; n,k 0.191–1.69 µm Optical constants of In2O3-SnO2 (Indium tin oxide, ITO) Minenkov et al. 2024: on Si wafer, bottom; n,k 0.191–1.69 µm KW - Indium Tin Oxide KW - Optical constants KW - Magnetron Sputtering KW - Electrochemical Degradation KW - Spectroscopic Ellipsometry PY - 2024 UR - https://refractiveindex.info/?shelf=other&book=In2O3-SnO2&page=Minenkov-glass UR - https://refractiveindex.info/?shelf=other&book=In2O3-SnO2&page=Minenkov-wafer-top UR - https://refractiveindex.info/?shelf=other&book=In2O3-SnO2&page=Minenkov-wafer-bottom PB - Refractiveindex.info AN - OPUS4-59766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Hodoroaba, Vasile-Dan T1 - Correlative Analysis by Raman and other Micro & Nanospectroscopic Imaging Techniques N2 - In the present talk the basics of the Raman spectroscopy and particularly of Raman microscopy are explained. Advantages and disadvantages of the method are highlighted through selected case studies. In the second part of the lecture examples of correlative imaging with electron, X-ray, ion and optical microscopies from micro- to the nanoscale are highlighted. T2 - Charisma School on Raman Harmonisation CY - Turin, Italy DA - 19.10.2022 KW - Raman KW - Correlative Imaging KW - Microscopy KW - Hyperspectral imaging PY - 2022 UR - https://amdgroup.inrim.it/events/vamas-sc-meeting-47/program-sc47 AN - OPUS4-56094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt-Grund, R. A1 - Sturm, C. A1 - Hertwig, Andreas T1 - Ellipsometry and polarimetry - Classical measurement techniques with always new developments, concepts, and applications N2 - Ellipsometry is a matured experimental method, whose roots reach back into the early phase of modern optics itself. It is often attributed to be invented by Paul Drude in the last decade of the 19th century, but similar techniques had already been applied for years before Drude started his work. With this Special Issue about ellipsometry and related techniques, we hope to bring more attention to this method and advance and propagate it to be used by a broader community. We have collected a good mixture of articles: some texts are more in the line of users’ tutorial and best practice guides; others are intended to show recent developments of the method. With this collection, we also hope to show the generally rapidly expanding possibilities of ellipsometry and polarimetry to draw attention of new users and previously unrelated communities to this valuable tool. KW - Ellipsometry KW - Polarimetry KW - Surfaces KW - Thin films KW - Optical analysis PY - 2022 DO - https://doi.org/10.1515/aot-2022-0025 SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 (Topical issue: Ellipsometry) SP - 57 EP - 58 PB - De Gruyter CY - Berlin AN - OPUS4-55467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Eckert, J. G. A1 - Lutowski, Marc A1 - Hertwig, Andreas A1 - Hidde, Gundula A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Luminescent, nanoparticle-loaded polymer microparticles - comparing synthesis routes N2 - Our comparison showed that the route used for the synthesis of luminescent, NP-loaded PSMPs can play a significant role for the luminescence properties, as well as the number of accessible SFGs, and hence subsequent functionalization. This should be considered for future applications. T2 - Bunsen-Tagung 2023 CY - Berlin, Germany DA - 05.06.2023 KW - Fluorescence KW - Polymerization KW - Microbeads KW - Quantum dots KW - Comparison PY - 2023 AN - OPUS4-57628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Eckert, J. G. A1 - Lutowski, Marc A1 - Geißler, Daniel A1 - Hertwig, Andreas A1 - Hidde, Gundula A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads N2 - Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 μm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials. KW - Optical spectroscopy KW - Particle KW - Optical assay KW - IR spectroscopy KW - Fluorescence KW - Quantum yield KW - Quality assurance KW - Nano KW - Synthesis KW - Surface chemistry KW - Quantification KW - Method KW - Conductometry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581502 DO - https://doi.org/10.1038/s41598-023-38518-7 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 15 PB - Springer Nature CY - London AN - OPUS4-58150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schusterbauer, Robert A1 - Sahre, Mario A1 - Mrkwitschka, Paul A1 - John, Elisabeth A1 - Lange, Thorid A1 - Zurutuza, A. A1 - Jones, E. A1 - Donskyi, I. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Correlative chemical imaging to reveal the nature of different commercial graphene materials N2 - Since the original report in 2004 by Novoselov and Geim, Graphene gained incredible attention due to its fascinating properties. In the past 20 years, the synthesis and functionalization of graphene has evolved significantly[3]. Different synthesis techniques were developed which led to other graphenerelated materials such as graphene oxide (GO) or elemental-doped graphene. Further chemical functionalization can enhance but also alter or reduce specific properties of the graphene. To reveal the nature of these materials a proper physico‑chemical characterization with different analytical techniques is crucial. Single-layer GO flakes kindly provided by Graphenea (Spain) were prepared for systematic image analysis. These flakes were disposed on an alignment-marked SiO2 substrate and correlatively imaged by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy. The high lateral resolution and/ or extreme surface sensitivity of the mentioned techniques is necessary to explore monolayers. The ToF-SIMS images match well with the SEM and AFM images and provide information about the chemistry. With 2D Raman spectroscopy it is possible to differentiate between the number of stacked single-layer flakes. This is visualized in a 3D image (Figure b). Well-defined GO flakes could be used as a reference material for imaging of graphene-like structures but also of other types of 2D materials. In addition to these monolayer GO flakes, commercial graphene-containing inks (Haydale) with a more complex morphology were also correlatively imaged. ToF-SIMS and SEM images were merged to identify the origin of different chemical fragments. The findings correlate closely with the expectation that the specific functionalizations (with fluorine and nitrogen as marker elements) are present only on the graphene flakes as presumed from the SEM images. Energy-dispersive X-ray spectroscopy (EDX) supports these results, yet with a much lower sensitivity compared to ToF-SIMS. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Graphene oxide flakes KW - ToF-SIMS KW - SEM KW - Raman KW - Correlative imaging PY - 2024 AN - OPUS4-60681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schusterbauer, Robert A1 - Sahre, Mario A1 - Mrkwitschka, Paul A1 - John, Elisabeth A1 - Lange, Thorid A1 - Zurutuza, A. A1 - Jones, E. A1 - Donskyi, I. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Correlative chemical imaging to reveal the nature of different commercial graphene materials N2 - Since the original report in 2004 by Novoselov and Geim, Graphene gained incredible attention due to its fascinating properties. In the past 20 years, the synthesis and functionalization of graphene has evolved significantly[3]. Different synthesis techniques were developed which led to other graphenerelated materials such as graphene oxide (GO) or elemental-doped graphene. Further chemical functionalization can enhance but also alter or reduce specific properties of the graphene. To reveal the nature of these materials a proper physico‑chemical characterization with different analytical techniques is crucial. Single-layer GO flakes kindly provided by Graphenea (Spain) were prepared for systematic image analysis. These flakes were disposed on an alignment-marked SiO2 substrate and correlatively imaged by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy. The high lateral resolution and/ or extreme surface sensitivity of the mentioned techniques is necessary to explore monolayers. The ToF-SIMS images match well with the SEM and AFM images and provide information about the chemistry. With 2D Raman spectroscopy it is possible to differentiate between the number of stacked single-layer flakes. This is visualized in a 3D image (Figure b). Well-defined GO flakes could be used as a reference material for imaging of graphene-like structures but also of other types of 2D materials. In addition to these monolayer GO flakes, commercial graphene-containing inks (Haydale) with a more complex morphology were also correlatively imaged. ToF-SIMS and SEM images were merged to identify the origin of different chemical fragments. The findings correlate closely with the expectation that the specific functionalizations (with fluorine and nitrogen as marker elements) are present only on the graphene flakes as presumed from the SEM images. Energy-dispersive X-ray spectroscopy (EDX) supports these results, yet with a much lower sensitivity compared to ToF-SIMS. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Correlative imaging KW - ToF-SIMS KW - SEM KW - Graphene oxide flakes KW - Raman PY - 2024 AN - OPUS4-60680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schutter, Jan David A1 - Eberhardt, Karl A1 - Elert, Anna Maria A1 - Radnik, Jörg A1 - Geißler, Daniel A1 - Özcan Sandikcioglu, Özlem T1 - Synthesis and characterization of lipopolysaccharide (LPS) anchored polystyrene microparticles as a synthetic model system for attachment studies N2 - Outer membrane lipopolysaccharides (LPS) play a crucial role in determining attachment behavior and pathogenicity of bacteria. The aim of this study was to develop a simple procedure for anchoring bacterial lipopolysaccharides to polystyrene (PS) microparticles as a model system for in situ attachment studies. By using a swellcapture methodology, commercially available LPS of Pseudomonas aeruginosa (strain ATCC 27316 serotype 10.22) was anchored onto PS microparticles in a proof-of-concept study. A detailed chemical and morphological characterization has proven the success of LPS incorporation. It was shown that the coverage and structure of the LPS film was concentration dependent. The procedure can easily be adapted to LPS of other bacterial strains to generate a synthetic model toolkit for attachment studies. KW - Bacterial lipopolysaccharides KW - Pseudomonas aeruginosa KW - Polystyrene microparticles KW - Swell-capture KW - Biomimicry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579818 DO - https://doi.org/10.1016/j.colsurfb.2023.113301 SN - 0927-7765 VL - 226 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-57981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seeburg, Dominik A1 - Liu, Dongjing A1 - Radnik, Jörg A1 - Atia, Hanan A1 - Pohl, Marga-Martina A1 - Schneider, Matthias A1 - Martin, Andreas A1 - Wohlrab, Sebastian T1 - Structural changes of highly active Pd/MeOx (Me = Fe, Co, Ni) during catalytic methane combustion N2 - Fe2O3, Co3O4 and NiO nanoparticles were prepared via a citrate method and further functionalized with Pd by impregnation. The pure oxides as well as Pd/Fe2O3, Pd/Co3O4, and Pd/NiO (1, 5 and 10 wt % Pd) were employed for catalytic methane combustion under methane lean (1 vol %)/oxygen rich (18 vol %, balanced with nitrogen) conditions. Already, the pure metal oxides showed a high catalytic activity leading to complete conversion temperature of T100 ≤ 500 °C. H2-TPR (Temperature-programmed reduction) experiments revealed that Pd-functionalized metal oxides exhibited enhanced redox activity compared to the pure oxides leading to improved catalytic combustion activity at lower temperatures. At a loading of 1 wt % Pd, 1Pd/Co3O4 (T100 = 360 °C) outperforms 1Pd/Fe2O3 (T100 = 410 °C) as well as 1Pd/NiO (T100 = 380 °C). At a loading of 10 wt % Pd, T100 could only be slightly reduced in all cases. 1Pd/Co3O4 and 1Pd/NiO show reasonable stability over 70 h on stream at T100. XPS (X-ray photoelectron spectroscopy) and STEM (Scanning transmission electron microscopy) investigations revealed strong interactions between Pd and NiO as well as Co3O4, respectively, leading to dynamic transformations and reoxidation of Pd due to solid state reactions, which leads to the high long-term stability. KW - Methane total oxidation KW - Methane removal KW - Carbon dioxide KW - X-ray photoelectron spectroscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-439412 DO - https://doi.org/10.3390/catal8020042 SN - 2073-4344 VL - 8 IS - 2 SP - Article 42, 1 EP - 13 PB - MDPI AN - OPUS4-43941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Shard, A. G. A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Introduction N2 - The purpose of this book is to provide a comprehensive collection of analytical methods that are commonly used to measure nanoparticles, providing information on one, or more, property of importance. The chapters provide up-to-date information and guidance on the use of these techniques, detailing the manner in which they may be reliably employed. Within this chapter, we detail the rationale and context of the whole book, which is driven by the observation of a low level of reproducibility in nanoparticle research. The aim of the book is to encourage awareness of both the strengths and weaknesses of the various methods used to measure nanoparticles and raise awareness of the range of methods that are available. The editors of the book have, for many years, been engaged in European projects and standardization activities concerned with nanoparticle analysis and have identified authors who are experts in the various methods included within the book. This has produced a book that can be used as a definitive guide to current best practice in nanoparticle measurement. KW - Nanoparticles KW - Size distribution KW - Shape KW - Chemistry KW - Coating KW - Concentration KW - Standards KW - Charge KW - Characterisation PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00001-8 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-50166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Singh, Chandan A1 - Riedel, Soraya A1 - Konthur, Zoltán A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Schenk, J. A1 - Schneider, Rudolf T1 - Functionalized Titanium Carbide Nanosheets based Biosensor for Detection of the SARS-CoV-2 Nucleocapsid Protein N2 - MXenes are a new family of two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides discovered in 2011. Among many reported family members, titanium carbide is the most widely studied and explored due to the optimized synthesis conditions and promising characteristics like good mechanical strength, solution processability, and excellent conductivity. Here, we report the development of an electrochemical biosensor involving the amine-functionalized Few-Layered-Titanium Carbide Nanosheets and monoclonal antibodies against the SARS-CoV-2 nucleocapsid protein (anti-SARS-CoV-2 mAb) to design a point-of-care device for detection of the SARS-CoV-2 nucleocapsid protein (SARS-CoV-2 NP) antigen. T2 - SALSA's Make and Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - MXenes KW - Titanium Carbide Nanosheets KW - Biosensors KW - Electrochemistry PY - 2022 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. AN - OPUS4-55856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Singh, Chandan A1 - Riedel, Soraya A1 - Konthur, Zoltán A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Schenk, J. A. A1 - Schneider, Rudolf T1 - Functionalized Ti3C2Tx nanosheets based biosensor for point-of-care detection of SARS-CoV‑2 antigen N2 - MXenes are considered a promising class of two-dimensional materials with extraordinary physical and electrochemical properties. Distinguished features like high specific surface area and outstanding electrical conductivity make them suitable for electrochemical biosensing applications. Here, we report the development of a biosensor involving the functionalized MXene−titanium carbide nanosheets (Ti3C2Tx-NS) and monoclonal antibodies against the SARS-CoV-2 nucleocapsid protein (anti-SARS-CoV-2 mAb) to design a point-of-care device for detection of the SARS-CoV-2 nucleocapsid protein (SARS-CoV-2 NP) antigen. Few-layered titanium carbide nanosheets (denoted as FL-Ti3C2Tx-NS) have been synthesized using a single-step etching and delamination method and characterized using optical and electron microscopy techniques revealing the suitability for immunosensing applications. Binding studies revealed the excellent affinity between the biosensor and the SARS-CoV-2 NP. Electrochemical detection of SARS-CoV-2 NP is performed using differential pulse voltammetry and read by a smartphone-based user interface. The proposed FL-Ti3C2Tx-NS based biosensor offers the detection of SARS-CoV-2 NP with a limit of detection of 0.91 nM in a wide detection range in spiked saliva samples. Additionally, there is no cross-reactivity in the presence of potential interferants like SARS-CoV-2 spike glycoprotein and bovine serum albumin. These findings demonstrate the potential of MXenes in developing a rapid and reliable tool for SARS-CoV-2 NP detection. While we report the biosensing of SARS-CoV-2 NP, our system also paves the way for the detection of other SARS-CoV-2 antigens like spike protein or other biomolecules based on antigen−antibody interactions. KW - Antigen testing KW - Few-layered titanium carbide nanosheets KW - SARS-CoV-2 nucleocapsid protein KW - Label-free detection KW - Electrochemical immunosensor PY - 2023 DO - https://doi.org/10.1021/acsaenm.2c00118 SN - 2771-9545 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. VL - 1 IS - 1 SP - 495 EP - 507 PB - American Chemical Society CY - Washington, DC AN - OPUS4-56931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sobol, Oded T1 - Hydrogen assisted cracking and transport studied by ToF-SIMS and data fusion with HR-SEM N2 - For almost 150 years it is known that hydrogen has a deleterious effect on the mechanical properties of metallic components. Nowadays, the problem of hydrogen assisted degradation is highly relevant in energy related fields due to the massive use of steel as a structural component in these applications and its sensitivity to hydrogen. Since the discovery of hydrogen assisted cracking (HAC), researchers studied intensively and suggested possible explanations and mechanisms in order to define how hydrogen is affecting the material. In general, it is considered that hydrogen changes the mechanical properties more in terms of ductility (deformation capacities) than in strength (load capacities). Hydrogen concentration is one of three crucial factors in the degradation process, together with the microstructure of the material and the internal/external mechanical load. The relatively high concentration of hydrogen resulting in this loss of ductility can originate during production or before service (e.g. welding processes) and during service (i.e. catholically protected systems to eliminate corrosion processes in sour environments). In parallel to the theoretical work, tremendous efforts were, and are still, invested in searching for a proper method to elucidate, map and quantify the hydrogen in the microstructure, which is the basis for this work. For steels, the focus is mainly on the observations of diffusion processes and the interaction of hydrogen with the microstructure in regions with high local stresses/strains (for example around evolving cracks). The challenge for reaching this goal arises from the fact that accurate indication of hydrogen by means of position, unlike heavier atoms, can be made only by mass spectrometry or by interaction with another element (e.g. silver decoration, special coating and resonant nuclear reaction by nitrogen). In addition to this, the difficulty recording the hydrogen behavior while it rapidly diffuses through the material, leaving only the unpredicted failure, should be taken into account. Although using powerful characterization methods, models and computational simulations, the key to defining the mechanisms behind HAC is still under debate and not fully understood. The relationship between material and hydrogen is determined by three factors, i.e., the material structure and microstructure – determining the physical properties, the mechanical load applied on the material and the hydrogen concentration. It is well known that in order to have a complete definition of HAC these three factors must be examined locally with the minimal scale and the maximal resolution reachable. The major gap is the lack in such a characterization method or a technique by which one has the ability to detect and observe the hydrogen in the metallic microstructure. The commonly used techniques nowadays are capable of characterization of the microstructure without the ability to observe the hydrogen distribution. Global hydrogen concentration and localized hydrogen observation are possible by some techniques which are incapable of indicating a change in the structure or microstructure therefore a comprehensive overview can be gained only by combining several methods. In the presented research, secondary ion mass spectrometry (SIMS) was adopted as the main tool to detect and locally map the hydrogen distribution in two types of duplex stainless steel grades: EN 1.4462 (standard 2205 duplex stainless steel) and EN 1.4162 (2101 lean duplex stainless steel). The term duplex stainless steel (DSS) refers to the austenitic-ferritic microstructure of the steel where the combination of physical and mechanical properties of the two phases is achieved. The DSS was selected as a case study for this work due to the wide use of this grade in many energy and the lack of knowledge on hydrogen behavior in two-phase containing microstructures. ToFSIMS was exploited in-situ and ex-situ in three experimental approaches during or following an electrochemical charging procedure. This type of hydrogen charging was selected as it simulated a procedure of cathodic protection of most sub-water oil and gas extraction and delivery systems. The experimental procedures were: 1. Ex-situ charging followed by ToF-SIMS imaging for basic understanding of hydrogen distribution. 2. Ex-situ charging followed by in-situ mechanical loading to obtain information on hydrogen behavior around a propagating crack. 3. In-situ permeation of hydrogen through a steel membrane inside the ToF-SIMS to obtain information on diffusion behavior of hydrogen in a two-phase microstructure. The comprehensive view of the effect of hydrogen on steel was gained by using supplementary methods, such as high resolution scanning electron microscopy (HR-SEM), focused ion beam (FIB) and electron back-scattered diffraction (EBSD). The state of the art in this work lies in applying both: in-situ experimental approaches and data treatment of the ToF-SIMS raw data. The data treatment includes the combination of data from several sources (data fusion). The results for the ex-situ charging followed by static sample imaging and data fusion showed that when the analyzed surface is directly exposed to the electrolyte the degradation is pronounced differently in the ferrite, austenite and interface. The degradation mechanisms in the ferrite and austenite were reflected by the formation of cracks on the surface of both, where a high concentration of hydrogen was obtained. This result supports the assumption that hydrogen is attracted to highly deformed regions. The advantage of using in-situ charging/permeation in comparison to ex-situ charging is that the effect of hydrogen on the ferrite and austenite phases when the hydrogen is evolving from within the microstructure is realized, in comparison to when the analyzed surface is initially exposed directly to the electrolyte. In both experiments the ferrite was observed as a fast diffusion path for the hydrogen. The faster diffusion of hydrogen through the ferrite is expected due to the higher diffusion coefficient, however, a direct proof for the diffusion sequence in this scale was never shown. Most significant results were achieved by the ‘core’ experiments of this research. These experiments included the design of a novel dynamic mechanical loading device to apply an external load during SIMS imaging of a hydrogen precharged-notched sample. For the first time it was shown that plastic deformation induced by applying a mechanical load is resulting in a redistribution of hydrogen locally around the notch. T3 - BAM Dissertationsreihe - 160 KW - Duplex stainless steels KW - Hydrogen assisted cracking KW - Time-of-Flight secondary ion mass spectrometry KW - Data fusion PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447331 SN - 1613-4249 VL - 160 SP - I EP - 180 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-44733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Observations of the deuterium distribution and the structural changes in standard and lean duplex stainless steels by ToF-SIMS and EBSD N2 - Duplex (DSS) and austenitic stainless steels (ASS) are frequently used in many energy related applications. The duplex grade is considered to have outstanding mechanical properties as well as good corrosion resistance. The austenitic phase combines high ductility, even at low temperatures, with sufficient strength, and therefore such materials are applied in storage and transport of high-pressure hydrogen. During service in acidic environments large amounts of hydrogen can ingress into the microstructure and induce many changes in the mechanical properties of the steel. Embrittlement of steels by hydrogen remains unclear even though this topic has been intensively studied for several decades. The reason for that lies in the inability to validate the proposed theoretical models in the sub-micron scale. Among the very few available methods nowadays, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) enables a highly accurate mapping of hydrogen in the microstructure in a spatial resolution below 100 nm. In the present work ToF-SIMS was used as a main tool in order to investigate the effect of deuterium on a duplex microstructure of lean and standard DSSs during and after the electrochemical charging process. Electrochemical charging simulates the service of a component in acidic environments under conditions of cathodic protection that are commonly applied to prevent corrosion reactions. ToF-SIMS after multivariate data analysis (MVA) was combined with high resolution topographic images and electron back-scattered diffraction (EBSD) data to characterize the structural changes. It was observed that the ferritic phase was affected almost identical in all steels whereas in the austenitic phase significant differences were obtained in the lean duplex in comparison to the standard DSS. The obtained results have been compared to similar investigations on a AISI 304L austenitic stainless steel. The advantage of the combined techniques is reflected by the ability to correlate the hydrogen distribution in the microstructure and the resulted phase transformation. T2 - Third International Conference on Metals & Hydrogen CY - Ghent, Belgien DA - 29.05.2018 KW - Data-fusion KW - ToF-SIMS KW - PCA KW - DSS KW - LDX KW - EBSD PY - 2018 AN - OPUS4-45094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Hydrogen assisted cracking phenomena in duplex stainless steels elucidated by in- and ex-situ ToF-SIMS experiments N2 - In the presented research, the high potential and abilities of secondary ion mass spectrometry (ToF-SIMS) to detect and locally map the hydrogen distribution in two types of duplex stainless steels are shown. The research validates certain proposed mechanisms by combining ToF-SIMS with high-resolution scanning electron microscopy and electron-backscattered diffraction. The combination of data from several techniques on the same region was conducted in this field for the first time by applying data treatment of the ToF-SIMS raw data and data fusion approach. This powerful combination of methods allows reviewing of the occurring processes related to hydrogen assisted cracking. The step beyond the state of the art in this field was gained here by developing permeation and mechanical loading experiments within the ToF-SIMS during chemometric imaging of the hydrogen distribution in the microstructure. The research presents the necessary correlation between the hydrogen distribution and the resulted structural changes, the diffusion behavior in a duplex microstructure and stress induced diffusion of hydrogen by applying external load at the microscale. T2 - 6th WMRIF Early Career Scientist Summit CY - NPL Teddington UK DA - 18.06.2018 KW - ToF-SIMS KW - Duplex stainless steel KW - LDX KW - EBSD KW - Data-fusion PY - 2018 AN - OPUS4-46865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - BAM’s role in materials science and hydrogen in metals: TOF-SIMS imaging N2 - Due to its low mass and high diffusivity in presence of compositional, thermal and mechanical gradients, hydrogen within a metallic microstructure can result in severe loss in ductility even at low concentrations and might lead eventually to a catastrophic and unpredictable failure of structural components during service. In this context, hydrogen mapping at the microscale is still considered among the most important challenges on the pathway towards a better understanding of the hydrogen transport and assisted cracking phenomena in metals, specifically in structural components, e.g. steels. Among the very few available techniques to localize hydrogen at the microscale, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. Based on the assumption that deuterium influence the microstructure similarly to hydrogen, in the following contribution ToF-SIMS was applied as the main technique to detect and locally map the deuterium distribution in several alloys: lean 2101 and standard 2205 duplex stainless steel (DSS), AISI 304L austenitic stainless steel and titanium 6Al-4V alloy. These alloys were selected as case studies in this work due to the wide use of them in many applications and environments which frequently provide critical conditions for hydrogen absorption and assisted degradation. The innovative design of in-situ and ex-situ experiments enabled us to elucidate the permeation, transport and trapping of deuterium in the microstructure in sub-micron resolution for the first time. In addition to the novel experimental setups, further progress was gained by applying computational multivariate data analysis (MVA) on the raw data and data fusion with high resolution structural characterization methods (scanning electron microscopy and electron back-scattered diffraction – SEM/EBSD). This combination allowed us to correlate the deuterium distribution and the influence on the microstructure. T2 - 4th Symposium on Innovative Measurement and Analysis for Structural Materials CY - Tokyo, Japan DA - 13.11.2018 KW - ToF-SIMS KW - Duplex stainless steel KW - Austenitic stainless steel KW - Principal Component Analysis KW - Data-fusion PY - 2018 UR - https://unit.aist.go.jp/tia-co/project/SIP-IMASM/sympo/2018/index.html AN - OPUS4-46867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Röhsler, Andreas A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Sputtering derived artefacts in austenitic steel during Time-of-Flight Secondary Ion Mass Spectrometry analyses N2 - Among the very few techniques to localize hydrogen (H) at the microscale in steels, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. The necessity to detect hydrogen stems from its deleterious effects in metals, that are often used as structural components and to obtain better understanding of the underlying metallurgical mechanisms of hydrogen embrittlement (HE) which are still unclear. Austenitic stainless steels are nowadays commonly used in a wide variety of application, from hydrogen transport and storage facilities to petrochemical and offshore applications where they are exposed to aggressive environments and therefore prone to HE. One of the greater risks in the austenitic class is the embrittlement of the material due to the instability of the γ austenite and its transformation into a brittle α martensitic phase. This transformation takes place due to the local stresses that are induced by the uptake of hydrogen during service. Nonetheless, it was shown that this transformation can occur as an artefact during SIMS analysis itself where Cs-sputtering is necessary not only to remove surface contaminations but mainly to enhance H/D secondary ion yield. In the following contribution we show the influence of different sputtering conditions on AISI 304L austenitic stainless steel in order to distinguish the artefact from the hydrogen induced transformation. The material was charged electrochemically in a deuterium based electrolyte. Deuterium (D) must be in these experiments as a replacement for hydrogen which cannot be used because adsorbed hydrogen superimposes hydrogen originating from charging the sample in the SIMS images. ToF-SIMS analyses were conducted by ToF SIMS IV (IONTOF GmbH, Münster, Germany). The experiments were carried out on deuterium charged and non-charged samples. The structural characterization was carried out by SEM and EBSD examinations before and after charging, both with a Leo Gemeni 1530VP field-emission scanning electron microscope and a Zeiss Supra 40 instrument (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The results showed that the use of 1keV Cs+ beam induces stacking faults while higher sputter beam energies results in γ→α transformation. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Austenitic steel KW - Hydrogen KW - ToF-SIMS KW - Artefact PY - 2018 AN - OPUS4-46701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sordello, F. A1 - Prozzi, M. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Pellegrino, F. T1 - Increasing the HER efficiency of photodeposited metal nanoparticles over TiO2 using controlled periodic illumination N2 - Although the use of noble metal catalysts can increase the efficiency of hydrogen evolution reaction, the process is still limited by the characteristics of the metal-hydrogen (M−H) bond, which can be too strong or too weak, depending on the metal employed. Studies revealed that the hydrogen affinity for the metal surface (i.e. H absorption/desorption) is regulated also by the potential at the metal nanoparticles. Through controlled periodic illumination (CPI) of a series of metal/TiO2 suspensions, here we demonstrated that an increase of the HER efficiency is possible for those photodeposited metals which have a Tafel slope below 125 mV. Two possible explanations are here reported, in both of them the M−H interaction and the metal covering level play a prominent role, which also depend on the prevailing HER mechanism (Volmer-Heyrovsky or Volmer-Tafel). KW - Controlled periodic illumination KW - Hydrogen evolution reaction KW - Titanium dioxide KW - Photoreforming KW - Volcano plot KW - Sabatier KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589875 DO - https://doi.org/10.1016/j.jcat.2023.115215 VL - 429 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-58987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steiner, S. A1 - Heldt, J. A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Frömeling, T. T1 - Influence of oxygen vacancies on core-shell formation in solid solutions of (Na,Bi)TiO3 and SrTiO3 N2 - Solid solutions of (Na,Bi)TiO3 (NBT) and SrTiO3 (ST) are materials of interest for high-strain or high-energy density capacitor applications. Often, they exhibit chemical heterogeneity and develop core-shell structures during regular solid-state synthesis with an NBT-rich core. In this case, the NBT forms first so that the strontium needs to diffuse into the material to reach chemical homogeneity. Depending on the presence of core-shell structures, the electrical properties can vary drastically. In this work, we rationalize the effect of variations in oxygen vacancy concentration by Fe-acceptor and Nb-donor doping. It can be shown that a diffusion couple of strontium and oxygen is responsible for chemical homogenization and that the oxygen vacancy content can control the formation of a core-shell structure. KW - Lead-free ceramics KW - Bismuth titanates KW - Core-shell structures KW - Diffusion/diffusivity KW - Ferroelectricity/ferroelectric materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525988 DO - https://doi.org/10.1111/jace.17845 SP - 1 EP - 10 PB - Wiley Periodicals LLC, John Wiley & Sons, Inc. AN - OPUS4-52598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Weimann, T. A1 - Bütefisch, S. T1 - A new XPS test material for more reliable surface analysis of microstructures N2 - Small-area XPS analysis is one of the most popular and powerful methods for analysing the surface of features in the micro-range. When measuring microstructures, the ques-tion arises whether the measuring point is really located at the point intended to be ana-lysed. Information in a measured spectrum might originate within the field of view (FoV) on the surface of the sample, from outside the FoV, or even from inherent contamination. To ensure that small structures can be measured correctly regardless of user and instru-ment, certain instrument and sample settings must be known and selected correctly: beam and aperture size as well as the aperture settings and the approximate dimensions of the structure to be analysed. This is the only way to ensure that the information in the spectrum originates only from the FoV on the analysed structure. To test the performance of the XPS instruments, a dedicated test material was developed that consists of a gold surface on which 8 circles and 8 squares of chrome are incorpo-rated using a masking process, so that the Au substrate and the Cr structure surfaces are in the same surface plane. In order to be able to test as many as possible instruments from different manufacturers, the structures have been designed with a size ranging from 300 µm down to 7 µm. The layout of the test material has been optimised in regard of the handling. The structures are arranged along lines instead of a circumference, marking arrows around the smaller structures (≤50 µm) are added, and the lithography mask is optimised regarding edge and diffraction effects. Furthermore, the manufacturing process was changed from electron-beam deposition to mask lithography due to costs reasons. The structures on the test material were measured with a metrological SEM to determine their accurate dimensions and check the repeatability of the manufacturing process. XPS investigations with a Kratos AXIS Ultra DLD and an ULVAC-Phi Quantes demonstrates the suitability of this new test material for measuring the analysed area. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Small-area XPS KW - Test material KW - Field of view KW - Imaging PY - 2024 AN - OPUS4-60539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - Reference material for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces. For evaluating the quality of such microstructures, it is crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. The aperture has a major influence on the signal-contribution from the outside. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize the FoV: The signal-contribution from the outside is reduceable down to lower than 50 %, when the aperture is 30 % of the structure dimension for our Kratos AXIS Ultra DLD system. T2 - Kratos User's Meeting 2020 CY - Online meeting DA - 21.09.2020 KW - Small-area XPS KW - Field of View KW - Imaging XPS KW - Reference Material PY - 2020 AN - OPUS4-51412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - New Test Specimen for the Determination of the Field of View of Small-Area XPS N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces. For evaluating the quality of such microstructures, it is crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. The aperture has a major influence on the signal-contribution from the outside. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize the FoV: The signal-contribution from the outside is reduceable down to lower than 50 %, when the aperture is 30 % of the structure dimension for our Kratos AXIS Ultra DLD system. T2 - Kratos User's Meeting 2020 CY - Online meeting DA - 21.09.2020 KW - Small Area XPS KW - Reference Material KW - Imaging XPS KW - Field of View PY - 2020 AN - OPUS4-51413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - A new reference material for the determination of the Field of View of Small Area XPS N2 - Small Area Photoelectron Spectroscopy (XPS) is a powerful tool for investigating small surface features. It is often unclear, if the signal in the spectrum is an unwanted contamination of the Field of View (FoV) or is it originated from outside. The reason is, that XPS-spectra are affected by beam shapes. Scheithauer proposed to measure Pt apertures of different diameters and normalize the Pt4f count rate by a second measurement on the Pt metal. New reference materials were developed and tested in the VAMAS TWA2 A22 Project. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Reference material KW - Small Area XPS KW - Selected Area XPS KW - Small Spot XPS KW - Field of Analysis PY - 2019 AN - OPUS4-49236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - A new test specimen for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces, and so forth. For evaluating the quality of such microstructures, it is often crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. To address this issue, the d80/20 parameter of a line scan across a chemical edge is often used. However, the typical d80/20 parameter does not give information on contributions from the long tails of the X-ray beam intensity distribution or the electron-optical system as defined by apertures. In the VAMAS TWA2 A22 project “Applying planar, patterned, multi-metallic samples to assess the impact of analysis area in surface-chemical analysis,” new test specimen was developed and tested. The here presented testing material consists of a silicon wafer substrate with an Au-film and embedded Cr circular and square spots with decreasing dimensions from 200 μm down to 5 μm. The spot sizes are traceable to the length unit due to size measurements with a metrological SEM. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize, as an example, the FoV of a Kratos AXIS Ultra DLD XPS instrument. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Field of view KW - Reference material KW - Selected area XPS KW - Small-area XPS KW - Small-spot XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509902 DO - https://doi.org/10.1002/sia.6831 SN - 1096-9918 VL - 52 IS - 12 SP - 890 EP - 894 PB - John Wiley & Sons Ltd AN - OPUS4-50990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Streeck, C. A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Beckhoff, B. T1 - Qualifying calibration samples for advanced thin film materials characterisation N2 - In this article the question of the certification of calibration samples for the characterisation of advanced thin film materials is addressed within the framework of reliable process control or quality management purposes. Reference measurement techniques can be used in order to address the gap in appropriate certified reference materials (CRMs) for thin film analyses. They allow for qualifying out-of-production samples originating from an operating production line as calibration samples. As a template for this procedure, CIGS [Cu(In,Ga)Se2] layers, that are absorber layers for high efficiency thin-film solar cells, have been used for establishing and validating reference-free X-ray fluorescence (XRF) analysis and Auger-electron spectroscopy (AES) as reference measurement techniques. The focus was on determining the average mole fractions in the CIGS layers obtaining results traceable to the SI unit system. Reference-free XRF is physically traceable and is based upon radiometrically calibrated instrumentation and knowledge of atomic fundamental data. Sputter-assisted AES can be established as a chemically traceable method after careful calibration using a certified reference material (CRM) based on a total number counting method. KW - CIGS KW - X-ray fluorescence (XRF) KW - Auger-electron spectroscopy (AES) PY - 2018 UR - https://www.spectroscopyeurope.com/article/qualifying-calibration-samples-advanced-thin-film-materials-characterisation VL - 30 IS - 1 SP - 11 EP - 14 PB - John Wiley & Sons Ltd CY - Chichester, West Sussex PO19 8SQ, UK AN - OPUS4-44260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Swaraj, Sufal A1 - Müller, Anja A1 - Sparnacci, Katia A1 - Unger, Wolfgang T1 - Core-shell nanoparticles investigated with scanning transmission X-ray microscopy N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a sharp interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, investigated at the HERMES beamline is presented for demonstration. This STXM based methodology yields particle dimensions in good agreement with the scanning electron microscopy (SEM) results (deviation equal or less than 10%). Extension of this methodology to core-shell nanoparticles with inorganic core and organic shell will also be presented and the challenges encountered will be highlighted. T2 - 13th SOLEIL Users' Meeting CY - Saint-Aubin, France DA - 18.01.2018 KW - STXM KW - SEM KW - PTFE KW - PS KW - Core-shell nanoparticles KW - Polymers PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Donskyi, Ievgen A1 - Cuellar-Camacho, J. L. A1 - Cheng, C. A1 - Schwibbert, Karin A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Gorbushina, Anna A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized 2D nanomaterials with switchable binding to investigate graphene–bacteria interactions N2 - Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, the mechanism of multivalent interactions at the graphene–pathogen interface is not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene’s structure is necessary to study the mechanism of these interactions. In this work, different graphene derivatives and also zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined exposure, in terms of polymer coverage and functionality, and isoelectric points. Then, the switchable interactions of these nanomaterials with E. coli and Bacillus cereus were investigated to study the validity of the generally proposed “trapping” and “nano-knives” mechanisms for inactivating bacteria by graphene derivatives. It was found that the antibacterial activity of graphene derivatives strongly depends on the accessible area, i.e. edges and basal plane of sheets and tightness of their agglomerations. Our data clearly confirm the authenticity of “trapping” and “nano-knives” mechanisms for the antibacterial activity of graphene sheets. KW - XPS KW - Graphene KW - Graphene–bacteria interaction PY - 2018 DO - https://doi.org/10.1039/c8nr01347k SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 20 SP - 9525 EP - 9537 PB - RSC CY - London AN - OPUS4-45084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Terborg, R. A1 - Hodoroaba, Vasile-Dan A1 - Kim, K.J. T1 - Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA N2 - Electron probe microanalysis (EPMA)is a non-destructive technique which assumes a sample of homogenous (bulk) chemical composition and can, therefore, not be used for thin film samples. However, in combination with one of the possible thin film software packages, STRATAGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by the Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). In 2021, a new and open source thin film evaluation programme called BADGERFILM has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BADGERFILM software package and compared the resulting composition and thickness with the results of the established STRATAGEM software and other reference methods. With the current evaluation, the BADGERFILM software shows good agreement with the composition and thickness calculated by STRATAGEM and provided by the KRISS. These results between two well-known layered material systems analysed with available conventional EMPA approaches (STRATAGEM and direct thickness measurement by TEM) and a new one (BADGERFILM) proves that reliable non-destructive thin film analysis is possible. In this way, we validate the performance of the new software, which is not at all self-explanatory for such complex quantification algorithms lying behind the final quantified results. T2 - EMAS 2023 - 17th European Workshop on Modern Developments and Applications in Microbeam Analysis CY - Krakow, Poland DA - 07.05.2023 KW - Thin films KW - BADGER film KW - Electron probe microanallysis (EPMA) KW - FeNi thin film KW - Al2O3 thin films PY - 2023 UR - https://www.microbeamanalysis.eu/events/event/60-emas-2023-17th-european-workshop-on-modern-developments-and-applications-in-microbeam-analysis AN - OPUS4-57484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Terborg, R. A1 - Hodoroaba, Vasile-Dan A1 - Kim, K. J. T1 - Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA N2 - Electron Probe Microanalysis (EPMA) provides a non-destructive approach in the dedicated thin film analysis mode with the commercial StrataGem software. Recently, the open-source programme BadgerFilm by Moy and Fournelle became available. Similarly to StrataGem, it is based on the algorithm of Pouchou and Pichoir and needs intensity ratios of the unknown sample and standards (k-values). We have evaluated the k-values measured for the FeNi and SiGe film systems using the BadgerFilm software package and compared the thickness and composition with the results obtained with the established StrataGem software and other reference methods. The thicknesses of the SiGe films obtained by the BadgerFilm software agree within 20% with the StrataGem and TEM results; the elemental compositions BadgerFilm-StrataGEM agree within 2% with one exception (9%). T2 - Microscopy and Microanalysis 2022 CY - Portland, OR, USA DA - 31.07.2022 KW - Thin films KW - Thickness KW - Elemental composition KW - FeNi KW - SiGe KW - BadgerFilm KW - Electron Probe Microanalysis (EPMA) PY - 2022 AN - OPUS4-55522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Terborg, R. A1 - Hodoroaba, Vasile-Dan T1 - Analysis of the elemental composition and thickness of a Fe-Ni film on Si using Bruker ESPRIT and SAMx STRATAGem N2 - Quantitative analysis of a bulk sample requires that the composition of the sample is homogeneous over the analyzed volume. For inhomogenous samples the calculation of the matrix effects is not correct and this can lead to wrong results in the element concentrations. For samples containing a layer structure a different quantitative evaluation has to be applied. This can be provided with the standard-based analysis in ESPRIT in combination with the STRATAGem software. KW - Thin film analysis KW - SEM/EDX KW - EPMA KW - k-values PY - 2018 UR - https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/eds-wds-ebsd-sem-micro-xrf-and-sem-micro-ct/quantax-eds-for-sem/applications/layer-analysis.html SP - 1 EP - 4 CY - Berlin AN - OPUS4-44594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Kim, K. J. A1 - Hodoroaba, Vasile-Dan T1 - Elemental composition and thickness determination of thin films by electron probe microanalysis N2 - Electron probe microanalysis (EPMA) applies to solid samples of homogenous (bulk) chemical composition and can usually not be applied to structures which are inhomogeneous in the micrometer range such as thin film systems down to a few nm. However, in combination with the established thin film software Stratagem, the thickness as well as the elemental composition of thin films on a substrate can be determined. This has been recently successfully demonstrated for Fe-Ni on Si and Si-Ge on Al2O3 thin film systems. For both systems five samples of different elemental composition and a reference were produced and characterised by inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM) as reference values. Last year, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we reevaluated the data acquired for the Fe-Ni and Si-Ge systems using the BadgerFilm software package and compared the obtained elemental compositions and thickness values with the results of the Stratagem software and the reference methods. The conclusion is that the BadgerFilm software shows good agreement with the elemental composition and thickness calculated by Stratagem (mostly <2% for both composition and thickness) and with the reference values for two representative thin film systems (<1%–2% for composition and <10%–20% for thickness). KW - Elemental composition KW - EPMA KW - Film thickness KW - Thin films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576368 DO - https://doi.org/10.1002/sia.7183 SN - 0142-2421 VL - 55 SP - 496 EP - 500 PB - Wiley AN - OPUS4-57636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Kim, K. J. A1 - Hodoroaba, Vasile-Dan T1 - Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA N2 - The thickness of thin films can be measured by various methods, e.g., profilometry, ellipsometry, atomic force microscopy (AFM), or X-ray reflectometry. For the additional determination of thin film composition, techniques like X-ray photoelectron spectroscopy (XPS) or mass spectrometry-based techniques can be used. An alternative non-destructive technique is electron probe microanalysis (EPMA). This method assumes a sample of homogenous (bulk) chemical composition, so that it cannot be usually applied to thin film samples. However, in combination with the thin film software StrataGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). These samples were used for an international round robin test. In 2021, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BadgerFilm software package and compared the resulting composition and thickness with the results of the established StrataGEM software and other reference methods. With the current evaluation, the BadgerFilm software shows good agreement with the composition and thickness calculated by StrataGEM and as the reference values provided by the KRISS. KW - Thin films KW - Elemental composition KW - Film thickness KW - EPMA (Electron Probe Microanalysis) PY - 2022 DO - https://doi.org/10.1017/S143192762200318X VL - 28 IS - Suppl. 1 SP - 672 EP - 673 PB - Cambridge University Press AN - OPUS4-55437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Procop, Mathias T1 - Theoretical calculation and experimental determination of x-ray production efficiencies for copper, zirconium, and tungsten N2 - The X-ray intensities of the K-, L- and M-lines of copper, zirconium and tungsten have been measured with an energy-dispersive X-ray spectrometer of known efficiency as function of photon energy. X-ray production efficiencies were determined from the measured intensities for Kα- and L-series of Cu and Zr and for the L- and M-series of W. These data were compared to calculated X-ray production efficiencies based on the widely used matrix correction models of Pouchou and Pichoir (XPP) and Bastin (PROZA96). Our results indicate that a replacement of the stopping power in the PROZA96 algorithm by expressions of Joy and Jablonski has only a minor influence on the calculated X-ray production efficiencies. In contrast, the modifications of the ionization cross-section show a stronger effect. We replaced the ionization cross-sections for K lines of the PROZA96 algorithm with different models. The results for L- and M-Lines are different. For the L-lines of Cu the original XPP and PROZA96 models show the best agreement while using the Bote cross-sections result in an overestimation. For the Zr-L and W-L1, -L2, -L3 X-ray production efficiencies, the Bote cross-sections lead to a significant improvement compared to all other models. The original XPP model represents the best agreement for the M5 efficiencies but underestimates the M4 efficiencies. There is no superior model or modification because the parameter sets in the models need to be aligned to each other. However, using the ionization cross-sections of Bote, which are based on quantum mechanical calculations, show promising results in many cases. KW - X-ray production efficiency KW - EPMA KW - Copper KW - Zirconium KW - Tungsten PY - 2023 DO - https://doi.org/10.1093/micmic/ozad067.110 SN - 1435-8115 VL - 29 IS - Supplement 1 SP - 245 EP - 246 PB - Oxford University Press CY - Oxford AN - OPUS4-58339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Hodoroaba, Vasile-Dan A1 - Rurack, Knut T1 - Design, Synthesis and Application of Polymer Core/Mesoporous Silica Shell Particles as Promising Tools for Multiplexed Assays N2 - The simultaneous detection of different analytes has gained increasing importance in recent years, especially in the fields of environmental and health monitoring. Particularly suitable formats for multiplexing are bead-based assays. The beads employed need to fulfil size and density requirements important for instance for flow cytometry and shall exhibit an as high as possible surface area for anchoring capture probes to allow for low limits of detection. Core/shell particles are ideally suited in this sense because of their modularity in design and adaptability for various (bio)analytical assays. Here, polystyrene particles coated with different kinds of mesoporous silica shells are presented, possessing distinctly higher surface areas in comparison to non-porous core/shell particles. Different factors such as pH and amount and type of mediator salt used during shell preparation were evaluated with shell inspection by scanning/transmission scanning electron microscopy (SEM/tSEM) being key to architecture control of the monodisperse particles. For a cytometric model assay, the optimized core/shell particles were functionalized with capture oligonucleotides for DNA detection. After covalent attachment of single-stranded DNA to the silane-modified silica surface, a hybridisation assay using labelled t-DNA complementary strands was carried out to demonstrate particle performance, showing how tailoring of the shell’s surface area controls sensitivity and dynamic range of the assay. Finally, a multiplex assay for the determination of DNA from different human papilloma virus (HPV) lines was developed. Using our optimized particles, we were able to detect down to 10 amolμl‒1, which is an improvement of one order of magnitude compared to assays using non-porous particles reported in the literature. In addition, multiplexed detection could successfully be demonstrated. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Core−shell particles KW - Bead-based assay KW - Flow cytometry KW - Multiplex PY - 2019 AN - OPUS4-48082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Braun, Ulrike A1 - Pfeifer, Dietmar A1 - Sturm, Heinz T1 - Reinforced UV curable cycloaliphatic epoxy oligosiloxane resin nanocomposite for coating applications N2 - Coating materials are nowadays often required to deliver not only sufficient barrier performance and suited optical appearance but a broad range of other functional properties. The incorporation of inorganic nanoparticles (NPs) is known to improve many key characteristics and provide new functionalities in polymer materials. Presented work aims to prepare and characterize an organic-inorganic coating material designed to bring together advantageous properties of hybrid materials and reinforcement effect delivered from the inorganic NPs embedment. Siloxane-based hybrid resins hold great advantages as coating materials as their properties can be tuned between those of polymers and those of glasses, thus, the compositions with superior thermal and mechanical properties can be achieved. We used Cycloaliphatic Epoxy Oligosiloxane (CEOS) resin as a polymeric matrix where the network formation was achieved by UV induced cationic polymerisation. Boehmite Alumina (BA) nanoparticles were added to CEOS resin as a reinforcing agent and resultant material was processed into films either by bar-coating or by spin-coating depending on further characterization procedure. Two different types of BA NPs, hydrophilic and organophilic, were used in order to assess the impact of particles surface on the resin characteristics. CEOS synthesis by condensation reaction was confirmed using 13C and 29Si NMR. Changes in CEOS photocuring process, resulting from particles incorporation, were monitored by real-time IR spectroscopy. At the same time, the thermal behaviour was evaluated by DSC and TGA methods. Morphology of the coatings was investigated by means of SEM operated in transmission mode. It was observed that BA presence increased the epoxy conversion degree and glass transition temperature. Material formulations providing best film characteristics were determined with regard to the particle type and loading. Compared to the hydrophilic nanoparticles, organophilic BA NPs yield superior overall performance of the foils. T2 - HYMA Conference CY - Sitges, Spain DA - 11.03.2019 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - Photocuring PY - 2019 AN - OPUS4-47641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia T1 - Micropatterning of mussel-inspired materials - Empower selective functionality N2 - Surface-modification platforms that are universally applicable are vital for the development of new materials, surfaces, and nanoparticles. Mussel-inspired materials (MIMs) are widely used in various fields because of their strong adhesive properties and post-functionalization reactivity. However, conventional MIM coating techniques have limited deposition selectivity and lack structural control, which has limited their use in microdevices that require full control over deposition. To overcome these limitations, we developed a micropatterning technique for MIMs using multiphoton lithography, which does not require photomasks, stamps, or multistep procedures. This method enables the creation of MIM patterns with micrometer resolution and full design freedom and paves the way for innovative applications of MIMs in various multifunctional systems and microdevices, such as microsensors, MEMS, and microfluidics. T2 - BioCHIP Berlin - International Forum on Biochips and Microfabrication CY - Berlin, Germany DA - 28.05.2024 KW - Mussel inspired materials KW - Multiphoton lithography KW - Two photon polymerisation PY - 2024 AN - OPUS4-60254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dieter A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Impact of Boehmite nanoparticles on the curing behaviour and thermal properties of cycloaliphatic-epoxy oligosiloxane hybrid N2 - UV-curing coatings are nowadays widely used due to their unique advantages. High-quality coatings can be obtained at short curing times and low temperatures so that thermal stress to the substrate is minimised. Photocured Cycloaliphatic-Epoxy Oligosiloxane (CEO) resin was reported to be used as encapsulation material for organic electronics. However, further reinforcement of CEO film properties is desired to achieve requested device lifetime. In this work we introduced Boehmite nanoparticles (BA) into CEO matrix in order to modify the film properties and study the main changes of the material behaviour with regard to its photocuring kinetics, thermal stability and glass transition. Particular interest was focused on the role of particle surface in nanocomposite properties. Hence, BA particles without (HP14) and with organic surface modifier (OS1) at different loadings (up to 10 wt%) were applied in this study. Morphology investigation with SEM operated in transmission mode showed good BA dispersion forming network-like structure. At the same time, distribution of particles differed for HP14 and OS1 as a result of different interaction in CEO-solvent-particles system. CEO structure obtained via non-hydrolytic sol-gel reaction was verified by 13C and 29Si NMR. In situ monitoring of film curing was performed using RT-IR spectroscopy. No significant modification of final convention degree with particle incorporation was observed in contrast to considerable decrease of curing efficiency reported previously for similar system by Esposito et al.,2008. Further, cured hybrid nanocomposite films were analysed by TGA and DSC, which revealed impact of surface modifier on film thermal properties. T2 - E-MRS CY - Warsaw, Poland DA - 15.09.2018 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - DSC KW - TGA KW - UV-curing PY - 2018 AN - OPUS4-47643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dieter A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Influence of Boehmite nanofiller on the properties of cycloaliphatic-epoxy oligosiloxane resin coatings N2 - Organic-inorganic nanostructured materials have drawn much attention over the past decade, particularly due to their versatile and outstanding properties. Possessing the properties between those of polymers and those of glasses, siloxane-based resins are non-toxic, easy to synthesize and process hybrid materials, that hold a promising potential in the field of advanced coatings. Photocurable resins are nowadays widely used as coatings due to their unique advantages. In particular, cationic ring-opening curing is not inhibited by oxygen, leads to low degree of shrinkage and superior adhesion. The most important, it enables production of high-quality coatings within short exposure times without applying temperature, thus, minimizing the presence of the thermal stress in the substrate. Photocured Cycloaliphatic-Epoxy Oligosiloxane (CEO) resin was reported to be used as encapsulation material for organic electronics. However, further reinforcement of CEO properties is desired to achieve requested device lifetime. One of the common approaches to improve material characteristics is by embedding inorganic nanoparticles into polymer matrix. It has been shown that the resulted nanocomposites exhibit enhanced functional properties included but not limited by optical, mechanical, thermal and barrier ones. In this work we focused on the incorporation of Boehmite nanoparticles (BA) into CEO matrix as a tool to strengthen the film properties and to study the main changes occurred in the material behavior with regard to its photocuring kinetics, thermal stability and glass transition. Particular interest was focused on the role of particle surface in nanocomposite properties. Hence, BA particles without (HP14) and with organic surface modifier (OS1) at different loadings (up to 10 wt%) were applied in this study. Morphology investigation with SEM operated in transmission mode showed good BA dispersion forming network-like structure. At the same time, distribution of particles differed for HP14 and OS1 as a result of different interaction in CEO-solvent-particles system. CEO structure obtained via non-hydrolytic sol-gel reaction was verified by 13C and 29Si NMR. In situ monitoring of film curing was performed using RT-IR spectroscopy. A slight increase of final convention degree with particle incorporation was observed in contrast to the considerable decrease of curing efficiency reported previously for similar system. Further, the cured hybrid nanocomposite films were analyzed by TGA and DSC, which revealed impact of surface modifier on thermal stability and glass transition temperature. T2 - Kyiv Conference on Analytical Chemistry: Modern Trends CY - Kyiv, Ukraine DA - 17.09.2018 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - Photocuring PY - 2018 AN - OPUS4-47642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Benemann, Sigrid A1 - Pfeifer, Dietmar A1 - Sturm, Heinz T1 - Novel Boehmite-embedded organic/inorganic hybrid nanocomposite: cure behaviour, morphology and thermal properties N2 - Hybrid materials have attracted growing interest during the last decade, particularly due to their extraordinary properties. Cycloalyphatic-epoxy oligosiloxane (CEO) resin was shown to be a good candidate as a barrier material for the encapsulation purposes. Incorporation of inorganic nanoparticles such as Boehmite (BA) into polymers was observed to modify their specific characteristics, in particular, thermal, thermo-oxidative and barrier ones. In this work, novel BA-embedded organic inorganic hybrid nanocomposite material was engineered by combining the advantageous properties of hybrid polymers and nanoparticle enhancement effect. Impacts of particles on the photocuring kinetics, degree of crosslinking and the resultant changes in the thermal properties of the cured films were investigated. CEO synthesis via condensation reaction was confirmed by 1H and 29Si NMR. The particle distribution within the films was verified by SEM including transmission mode coupled with EDX elemental analysis. Photocuring kinetics and thermal properties of the films were studied by in situ FTIR spectroscopy and DSC with TGA, respectively. T2 - Deutschen Physikalischen Gesellschaft CY - Berlin, Germany DA - 11.03.2018 KW - Boehmite KW - Nanocomposite KW - Cycloalyphatic epoxy oligosiloxane KW - CEO PY - 2018 AN - OPUS4-44520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cinar Ciftci, G. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Direct laser writing of mussel inspired polydopamine N2 - Polydopamine (PDA) is one of the simplest and most versatile approaches for forming an excellent binding exterior to confer new functionalities to nearly any material surface. Inspired by nature, it mimics the behavior of mussels and can be easily deposited on virtually all types of inorganic and organic substrates, including superhydrophobic surfaces. Moreover, PDA exhibits high potential for surface modification and diversified secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. PDA has undergone significant expansion in its applications and is one of the most attractive areas within the materials field. Nevertheless, PDA integration in microdevices is still constrained by poor spatial and temporal control of excited deposition methods. Herein, we demonstrate a novel maskless approach for PDA micropatterning based on Direct Laser Writing that overcomes present limitations. The pattern is formed upon exposure of the dopamine solution by light produced by tightly-focused fs NIR laser that scans substrate surface accordingly to the selected pattern design. Neither strong oxidants, metal ions nor adjusting pH to alkaline is required by this technique to perform dopamine polymerization. Our method achieves the PDA micropatterns with the spatial resolution of 0.8 µm, at least an order of magnitude smaller than what is possible with other PDA microplanning techniques. Some examples of PDA patterns are shown in Figure 1. The here introduced PDA deposition technique will uniquely unravel applications of polydopamine and other catecholamine-based mussel-inspired materials in various multifunctional systems and microdevices (e.g., MEMS elements, microfluidics). The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. Moreover, the morphology and thickness of PDA microstructure can be controlled by the laser power and scanning velocity revealing the possibility of fabricating the structures with gradient. In most of the applied conditions the increase of the laser intensity and decrease of the scanning velocity would lead to the thicker PDA pattern. Different morphologies from smooth and bulky-like to grain like has been obtained. PDA was produced in the presence of tris buffer, phosphate buffer and DI water only. We also tested the effect of the solution pH applying pH 6.0, 7.0 and 8.5. Furthermore, the effect of antioxidants and purging of the solution with oxygen and nitrogen was investigated. Summarizing, we could see that the structures could be produced in all the given conditions, however their thickness and quality, morphology and roughness would differ. We did not observe negative impact of the antioxidants and nitrogen purging on the performance of PDA build up indicating that the PDA formation mechanism is different to common autooxidation. The current mechanism is based on the interaction of dopamine molecules with the photoinitiator added to solution as active to DLW laser light component. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. We also performed facile posts-modification of the PDA surface with protein enzymes like trypsin that was confirmed by XPS. Obtained bioactive pattern could be further integrated in the protein sensing devices. Presented in this work DLW-based microfabrication technique and the possibilities for further PDA surface post-functionalization empowers advanced applications of this material in single-molecule bioassays, sensors and other complex microdevices. T2 - MNE EUROSENSORS CY - Leuven, Belgium DA - 19.09.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-56421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cinar Ciftci, G. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Direct laser surface micropatterning with polydopamine N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) is one of the simplest and most versatile approaches to confer new functionalities to nearly any material surface. Moreover, PDA exhibits high potential for surface modification and diversified secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. PDA has undergone significant expansion in its applications and is one of the most attractive areas within the materials field. Nevertheless, PDA integration in microdevices is still constrained by poor spatial and temporal control of excited deposition methods. Herein, we demonstrate a novel maskless approach for PDA micropatterning based on Direct Laser Writing (DLW) that overcomes present limitations. The pattern is formed upon exposure of the dopamine solution by light produced by tightly-focused fs NIR laser that scans substrate surface accordingly to the selected pattern design. Neither strong oxidants, metal ions nor adjusting pH to alkaline is required by this technique. Our method achieves the PDA micropatterns with the spatial resolution of 0.8 µm, at least an order of magnitude smaller than what is possible with other PDA microplanning techniques. The here introduced PDA deposition technique will uniquely unravel applications of polydopamine and other catecholamine-based mussel-inspired materials in various multifunctional systems and microdevices (e.g., MEMS elements, microfluidics). Adjustment of MPL parameters revealed that the morphology and thickness of resulted PDA microstructures can be controlled by altering the laser power and its scanning velocity. As a result, it also enables the production of micropatterns with structural gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. To ensure post-modification potential of MPL deposited PDA we demonstrated one-step deposition of micropatterns with trypsin. Obtained bio-functionalised surface can be further applied as a protein sensing active microelement. Presented in this work DLW-based microfabrication technique and the possibilities for further PDA surface post-functionalization empowers advanced applications of this material in single-molecule bioassays, sensors and other complex microdevices. T2 - Swiss ePrint 2022 CY - Buchs, Switzerland DA - 05.09.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-56422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cifci, G. C. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Polydopamine micropatterning for selective substrate bio-functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) exhibits strong adhesion to nearly any kind of organic or inorganic surface and shows high ability for surface post-modification and secondary reactions. As a result, PDA has been widely used as a base adlayer to enable versatile surface chemistry and functionalization. It has shown great potential in wide range of applications including biomedical field (e.g., drug delivery, adhesives, photothermal therapy, bone and tissue engineering, cell adhesion, biosensing). However, implementation of PDA in microdevices is still hindered by insufficient spatial and temporal control of excited deposition methods. In this work we present a novel approach to fabricate tunable micropatterned substrates where mussel-inspired chemistry provides base for various surface modification [2]. Current approach applies Multiphoton Lithography (MPL) to initiate local PDA formation, and, therefore, does not require use of microstamp or photomask. As a result, the microstructures of complex designs can be produced with the spatial resolution down to 0.8 μm (Figure 1). The desired design can be easily altered by adjusting the stl model or the fabrication code. Unlike the conventional deposition of PDA based on dopamine auto-oxidation, our method does not require presence of strong oxidants, metal ions or alkaline pH. Herein-demonstrated deposition approach will significantly facilitate applications of polydopamine and other mussel-inspired materials in microdevices and high-resolution active microcomponents (e.g., in MEMS and microfluidics). Adjustment of MPL parameters revealed that the morphology and thickness of resulted PDA microstructures can be controlled by altering the laser power and its scanning velocity. As a result, it also enables the production of micropatterns with structural gradient. Apart from the glass substrate, we performed PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. We tested different composition of dopamine solution for its ability of PDA buildup. Solutions containing Tris buffer, phosphate buffer or DI water only as well as different pH (6.0, 7.0 and 8.5) could be successfully applied for high-precision PDA micropatterning. Moreover, the effect of antioxidants and purging of the solution with oxygen and nitrogen was investigated. In all cases, no decrease of deposition efficiency was observed. The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. To ensure post-modification potential of MPL deposited PDA we demonstrated one-step deposition of micropatterns with trypsin. Obtained bio-functionalised surface can be further applied as a protein sensing active microelement. T2 - Laser Precision Microfabrication CY - Dresden, Germany DA - 07.06.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-55064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Ciftci, G. C. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - High precision micropatterning of polydopamine by Multiphoton Lithography N2 - Mussel-inspired polydopamine (PDA) initiated a multifunctional modification route that leads to the generation of novel advanced materials and their applications. However, existing PDA deposition techniques still exhibit poor spatial control, have a very limited capability of micropatterning and do not allow to locally tune PDA topography. Herein, we demonstrate PDA deposition based on Multiphoton Lithography (MPL) that enables full spatial and temporal control with nearly total freedom of patterning design. Using MPL, we achieve 2D microstructures of complex design with pattern precision of 0.8 μm without the need of a photomask or stamp. Moreover, this approach permits adjusting the morphology and thickness of the fabricated microstructure within one deposition step, resulting in a unique tunability of materials properties. The chemical composition of PDA is confirmed and its ability for protein enzyme immobilization is demonstrated. This work presents a new methodology for high precision and complete control of PDA deposition, enabling PDA incorporation in applications where fine and precise local surface functionalization is required. Possible applications include multicomponent functional elements and devices in microfluidics or lab-on-a-chip systems. KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2022 DO - https://doi.org/10.1002/adma.202109509 VL - 34 IS - 18 SP - e2109509 PB - Wiley online library AN - OPUS4-54535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Ghasem Zadeh Khorasani, Media A1 - Hodoroaba, Vasile-Dan A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Versatile role of boehmite particles in epoxy-based nanocomposites N2 - Thermosetting materials are gaining increasing attention in many structural composite applications. However, the incorporation of inorganic nanoparticles (NPs) into polymer matrix is a promising approach to enhance their functional characteristics, and thus, to enable the development of thermosets advanced application. It has been shown that Boehmite Alumina (BA) used as nanofillers can improve different parameters of polymers. This NPs can be easily tailored enabling desirable interactions with a big range of polymers. However, the overall effect of nanofiller depends on many factors, therefore, making it hard to predict the resulted performance of nanocomposites. In the current contribution we would like to discuss the impact of Boehmite NPs on two different epoxy resin nanocomposite systems with the focus on the possible influence mechanisms of this nanofiller. As the first system, UV curable Cycloaliphatic-Epoxy Oligosiloxane (CEOS) resin/Boehmite nanocomposites were investigated by FTIR, TGA, DSC and T-SEM. It was observed that incorporation of BA leads to the reinforcement of glass transition (Tg) and overall thermal stability indicating the attractive interactions between BA and CEOS network. In addition, an increase in epoxy conversion of CEOS was concluded for nanocomposites assuming that particles are involved in UV polymerisation processes. The second epoxy/Boehmite nanocomposite is based on the bisphenol-A-diglycidyl ether (DGEBA) cured with methyl tetrahydrophtalic acid anhydride (MTHPA). Thermomechanical as well as nanomechanical properties of this material were investigated by DMTA and IR spectroscopy and the advanced Intermodulation AFM, respectively. In contrast to the first system, it was found that BA leads to a decrease of Tg and crosslink density of the polymer while the young’s modulus of the composite and local stiffness of polymer matrix increase significantly. As a result, the versatile role of Boehmite was detected depending on the investigated systems. Based on the obtained results, the parameters indicating property-efficient epoxy/Boehmite system are suggested. T2 - HYMA Conference CY - Sitges, Spain DA - 11.03.2019 KW - Epoxy KW - Boehmite KW - Curing KW - Nanocomposite PY - 2019 AN - OPUS4-47640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dietmar A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Boehmite Nanofillers in Epoxy Oligosiloxane Resins: Influencing the Curing Process by Complex Physical and Chemical Interactions N2 - In this work, a novel boehmite (BA)-embedded organic/inorganic nanocomposite coating based on cycloaliphatic epoxy oligosiloxane (CEOS) resin was fabricated applying UV-induced cationic polymerization. The main changes of the material behavior caused by the nanofiller were investigated with regard to its photocuring kinetics, thermal stability, and glass transition. The role of the particle surface was of particular interest, thus, unmodified nanoparticles (HP14) and particles modified with p-toluenesulfonic acid (OS1) were incorporated into a CEOS matrix in the concentration range of 1–10 wt.%. Resulting nanocomposites exhibited improved thermal properties, with the glass transition temperature (Tg) being shifted from 30 °C for unfilled CEOS to 54 °C (2 wt.% HP14) and 73 °C (2 wt.% OS1) for filled CEOS. Additionally, TGA analysis showed increased thermal stability of samples filled with nanoparticles. An attractive interaction between boehmite and CEOS matrix influenced the curing. Real-time infrared spectroscopy (RT-IR) experiments demonstrated that the epoxide conversion rate of nanocomposites was slightly increased compared to neat resin. The beneficial role of the BA can be explained by the participation of hydroxyl groups at the particle surface in photopolymerization processes and by the complementary contribution of p-toluenesulfonic acid surface modifier and water molecules introduced into the system with nanoparticles. KW - Real-time infrared spectroscopy KW - Boehmite KW - Nanocomposite KW - Cationic photocuring KW - Cycloaliphatic epoxy oligosiloxane KW - Epoxy conversion degree PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479628 DO - https://doi.org/10.3390/ma12091513 VL - 12 IS - 9 SP - 1513 PB - MDPI AN - OPUS4-47962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Knigge, Xenia A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Maskless Micropatterning of Polydopamine for versatile surface functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA has been shown as one of the most versatile platforms for altering the properties and incorporating new functionalities to nearby any material surface despite its nature. Rich chemistry of PDA enables broad variety of surface modification and diverse secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. Despite high potential of polydopamine, the lack of deposition control and precision in existed methods limits their applications in microdevices and miniaturized functional systems like, for example, MEMS, microfluidic and sensorics. Herein, we demonstrate a novel maskless approach for surface micropatterning with polydopamine based on Multiphoton Lithography that overcomes present limitations. Neither strong oxidants, metal ions nor adjustment of pH to alkaline is required by this technique. The spatial resolution down to 0.8 µm has been achieved which is at least an order of magnitude smaller than shown by other existed methods. We are able to control the morphology and thickness of the micropattern by altering fabrication parameters allowing structure gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. Post-modification of polydopamine micropatterns with protein enzyme like trypsin is demonstrated to highlight its sensing potential. Presented in this work microfabrication technique empowers advanced applications of mussel-inspired materials in single-molecule bioassays, sensors and other complex microdevices. T2 - International Conference on Precision Engineering and Sustainable Manufacturing CY - Okinawa, Japan DA - 18.07.2023 KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2023 AN - OPUS4-58878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tu, Z. A1 - Donskyi, Ievgen A1 - Qiao, H. A1 - Zhu, Z. A1 - Unger, Wolfgang A1 - Hackenberger, C. P. R. A1 - Chen, W. A1 - Adeli, M. A1 - Haag, R. T1 - Graphene Oxide-Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple-Drug Resistance N2 - Multidrug resistance resulting from a variety of defensive pathways in Cancer has become a global concern with a considerable impact on the mortality associated with the failure of traditional chemotherapy. Therefore, further research and new therapies are required to overcome this challenge. In this work, a cyclic R10 peptide (cR10) is conjugated to polyglycerol-covered nanographene oxide to engineer a nanoplatform for the surmounting of multidrug resistance. The nuclear translocation of the nanoplatform, facilitated by cR10 peptide, and subsequently, a laser-triggered release of the loaded doxorubicin result in efficient anticancer activity confirmed by both in vitro and in vivo experiments. The synthesized nanoplatform with a combination of different features, including active nucleus-targeting, highloading capacity, controlled release of cargo, and photothermal property, provides a new strategy for circumventing multidrug resistant cancers. KW - Graphen Oxide KW - Nanoplatform KW - Cancer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510061 DO - https://doi.org/10.1002/adfm.202000933 VL - 30 IS - 35 SP - 2000933 PB - Wiley VCH AN - OPUS4-51006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Metrology for spatially resolved chemical analysis at the micro and nanometre scales Surface Analysis Working Group (SAWG) - Report for 16th Meeting (2017/18) N2 - Following the 2017 meeting, progress with the Key Comparison CCQM-K153 related to the BET specific surface lead by UNIIM and the Pilot Study P-190 “Thickness Measurement of nm HfO2 Films” lead by KRISS will be discussed. The 16th meeting of SAWG will focus on •survey on CMC claims submitted with reference to K-129 and K-136. •the overall and SAWG specific aspects of the CCQM Strategy process, •a consideration of comparisons on convention methods as recommended by the CCQM Plenary Meeting 2017, •the 2019 CCQM Workshop and paper(s) for Metrologia’s Special Issue, •discussion of future comparisons. T2 - 24th meeting of the CCQM 2018 CY - Paris, France DA - 19.04.2018 KW - Surface chemical analysis KW - Metrology KW - Inter-laboratory comparisons PY - 2018 AN - OPUS4-44998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Ehlert, Christopher A1 - Donskyi, Ievgen A1 - Girard-Lauriault, P.-L. A1 - Lippitz, Andreas A1 - Illgen, Rene A1 - Haag, R. A1 - Adeli, M. T1 - Chemical modification of graphene and carbon nano tubes as viewed by xps and nexafs spectroscopies with dft spectra simulation N2 - Graphene is a two-dimensional carbon network with unique properties. However, its low solubility, poor reactivity and the limited accessibility of a well-defined basal plane are major challenges for applications. An ideal method to overcome these problems is the covalent attachment of functional molecules to its surface which enable further reactive modifications for specific applications. There are several technologies for surface functionalization of graphene and related CNT materials. To get control on the functionalization process and to optimize the performance of the modified surfaces analytical tools for surface chemical characterization are required. X-ray absorption (NEXAFS) and photoelectron spectroscopy (XPS) have been identified to be rather powerful here [1-3]. Specifically, NEXAFS spectroscopy underpinned by quantum chemical spectrum simulations [4] is unique in a way to address changes of aromaticity and defect formation at the graphene surface during functionalization. For relevant surface modification technologies, we present examples on how NEXAFS and XPS can do a good job. All presented modifications aim on the production of platforms for defined functional 2D nanomaterials, as for example multifunctional hybrid architectures. In detail, we investigated: • A wet chemical method for covalent functionalization of graphene sheets by a one-pot nitrene [2+1] cycloaddition reaction under mild conditions. Here a reaction between 2,4,6-trichloro-1,3,5-triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine-functionalized graphene sheets. • Graphene and carbon nanotube functionalized by Vacuum-Ultraviolet (VUV) induced photochemical or r.f. cw low pressure plasma processes to introduce amino, hydroxy or brominated functionalities. To underpin finger-print information delivered by C K-edge NEXAFS we studied the effects of selected point and line defects as well as chemical modifications for a single graphene layer model by density functional theory based spectrum simulations. References [1] P.-L. Girard-Lauriault et al., Appl. Surf. Sci., 258 2012 8448-8454, DOI: 10.1016/j.apsusc.2012.03.012 [2] A. Lippitz et al., Surf. Sci., 611 2013 L1-L7, DOI: 10.1016/j.susc.2013.01.020 [3] A. Faghani et al., Angew. Chemie (International ed.), 56 2017 2675-2679, DOI:10.1002/anie.201612422 [4] C. Ehlert, et al., Phys.Chem.Chem.Phys., 16 2014 14083-14095, DOI: 10.1039/c4cp01106f T2 - AVS 65th INTERNATIONAL SYMPOSIUM CY - Long Beach, CA, USA DA - 21.10.2018 KW - Graphene KW - Plasma KW - Nitrene [2+1] cycloaddition KW - XPS KW - NEXAFS PY - 2018 AN - OPUS4-46468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Acquiring and Documenting Reproducible Spectra, Depth Profiles and Images: XPS, AES and SIMS N2 - In this talk sample prep/handling, instrument calibration and data acquisition methods with examples from XPS, Auger and SIMS will be addressed in terms of their contributions to the reproducibility of data delivered by the methods. Active parties in the field are VAMAS TWA 2 “Surface chemical analysis” (http://www.vamas.org/twa2/index.html), ISO/TC 201 “Surface chemical analysis” (https://www.iso.org/committee/54618.html) and the Surface Analysis Working Group (SAWG) at the International Meter Convention (https://www.bipm.org/en/ committees/cc/wg/sawg.html). The tools to improve the reproducibility of spectra, depth profiles and images at these international platforms are inter-laboratory comparisons, validated SOPs, standards and certified reference materials (CRM) as well as uncertainty budgets and establishment of traceability chains. The last point is of specific importance because all the methods, XPS, Auger and SIMS, are not primary methods. To address quantitative XPS, AES and SIMS results of relevant inter-laboratory comparisons organized by SAWG considering measurands as alloy surface composition and thickness of thin films will be introduced. These comparisons delivered results which are viewed to be benchmarking, some of them resulted in ISO/TC 201 standards. For quantitative XPS and AES the principal outline of an uncertainty budget will be discussed together with the audience. Another issue of quantitative XPS which definitely needs consideration are valid methods for a determination of the transmission function of the instruments and even for the emission angle in the respective experiments. Concerning the field of depth profiling it has to be investigated together with the audience whether the ISO (or ASTM) standards we have are sufficient to guarantee comparable results. Having in mind the number of different sputter ion species available today and range of samples of interest (metals, semiconductors, organic films) this might be questionable. And, how do depth profiling by AR-XPS and variable excitation energy XPS compete here? For imaging surface chemical analysis, the characterization of the imaging system is an issue to be investigated. Here the determination of lateral resolution is a relevant topic. Finally, the future needs to develop metrology for new applications e.g., ambient-pressure XPS, bio samples, and core-shell nanoparticles, will be issues raised for a discussion with the audience. T2 - 17th Topical Conference on Quantitative Surface Analysis (QSA 17) CY - Long Beach, CA, USA DA - 21.10.2018 KW - Depth Profiles and Images KW - X-ray Photoelectron Spectroscopy (XPS) KW - Auger Electron Spectroscopy (AES) KW - SIMS KW - Reproducible Spectra PY - 2018 AN - OPUS4-46470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang T1 - International standardization and metrology as tools to address the comparability and reproducibility challenges in XPS measurements N2 - The status of standardization related to x-ray photoelectron spectroscopy (XPS, ESCA) at ASTM International (Subcommittee E42.03) and ISO (TC 201) is presented and commented upon in a structured manner. The survey also identifies other active bodies, here VAMAS Technical Working Area 2 and the Surface Analysis Working Group at the International Meter Convention, contributing to prestandardization Research and metrology of XPS and reports their specific activities. It is concluded that existing standardization is delivering good practices in the use of XPS and has a high potential to avoid the recently observed erroneous use, misapplications, and misinterpretation by new and inexperienced users of the method—which seems to be the main reason for the “reproducibility crisis” in the field of XPS applications. A need for a more proactive publicizing of international documentary standards by experienced XPS users, specifically those who are involved in standardization, is identified. Because the existing portfolio of standards addressing the use of XPS is not complete, future standardization projects planned or already ongoing are mentioned. The way the standardization bodies are identifying future needs is shortly explained. KW - Standardisation KW - Comparability KW - Reproducibility KW - XPS KW - VAMAS KW - Metrology PY - 2020 DO - https://doi.org/10.1116/1.5131074 VL - 38 IS - 2 SP - 021201-1 EP - 021201-8 PB - AVS AN - OPUS4-50560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Müller, Anja A1 - Heinrich, Thomas A1 - Kunz, Valentin A1 - Nymark, P. A1 - Radnik, Jörg T1 - Chemical characterization of nanoparticles by PCA-assisted ToF-SIMS: a) Core-shell character, b) transformation and c) grouping studies N2 - This talk was given within the scope of the SIMS-22 conference in October 2019 in Kyoto (Japan). It deals with the surface analytical investigation of nanoparticles by PCS-assisted ToF-SIMS. This technique is applicable to core-shell nanoparticles, in order to distinguish a complete encapsulation from an incomplete encapsulation of the core by the shell material. Furthermore, the depletion process of organic nanoparticle coatings caused by UV-weathering is investigated. Finally, the significance of grouping studies for nanomaterials research and risk assessment is demonstrated. T2 - The 22nd International Conference on Secondary Ion Mass Spectrometry (SIMS-22) CY - Kyoto, Japan DA - 20.10.2019 KW - Nanoparticles KW - ToF-SIMS KW - Principal component analysis (PCA) PY - 2019 AN - OPUS4-50075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Metrology for spatially resolved chemical analysis at the micro and nanometre scales Surface Analysis Working Group (SAWG) - Report for 17th Meeting (2018/19) N2 - The SAWG was established as an ad-hoc working group in 2003 before being established as a permanent working group. The first comparison was in 2007. Dr Unger recalled the terms of reference for the group, which paralleled those of the CCQM itself, with a focus on spatially resolved chemical surface analysis at the micro- and nano-scale. The group also had a remit to act as a forum for exchange of information on research and development of surface analysis, establish contact with relevant stakeholders and promote the development of SI traceable chemical surface measurements. The group currently had participants from 18 institutes, although five had not sent participants to recent meetings. Reporting progress on studies, Dr Unger said that P-190CCQM-K-157 (measurement of HfO2 in thin film) had been completed, and the subsequent K-157 approved is ongoing and that for CCQM-K153 (Measurement of Specific Adsorption of N2 and Kr on nonporous SiO2 at liquid nitrogen temperature by BET) was at the draft B was completed stageand distributed to CCQM WG chairpersons for approval. Dr Unger reported that CCQM-K-153 had covered measurement of specific absorption of nitrogen or krypton on nonporous silica at liquid nitrogen [ambient] temperature. This included an application of the BET method, a standard method for determination of surface area. This fitted into the ‘nonporous’ region of the SAWG measurement space, which included microporous, mesoporous and microporous regions. Of these regions, CCQM-K136 and CCQM-K153 demonstrated capability in meso- and microporous media respectively. CCQM-K153 involved two measurands; amount of absorbed gas at liquid nitrogen temperature, expressed as specific absorption, and the BET surface area. Specific absorption could in principle be traceable to the SI; BET was operationally defined. Five institutes participated. A detailed uncertainty budget was available for both measurands. Results had been excellent, with all laboratories agreeing well within their uncertainties and all in agreement with the reference value. Reporting on CCQM P190, Dr Unger described the study objective measurand (amount of substance of HfO2 in a thin film), samples and methods. After showing transmission electron microscope images obtained in the study, he briefly reviewed the conclusions. The study identified a need to handle carbon contamination, harmonise the XPS measurement protocol, determine emission angle and identify a consensus value for attenuation length. These conclusions had informed the design of the proposed ongoing K157 study approved at the 24th Meeting of te CCQM. The group planned a number of comparisons for the next three years: 2019: A pilot study on the amount of substance in a thin organic layer (previously approved). 2020: CCQMK-157, Measurement of the amount of substance of HfO2; A Key comparison on specific gas adsorption on microporous samples and a Pilot study on Homogeneous surface composition of an ionic liquid. 2021: A key comparison measuring the amount of substance in a thin organic layer. Dr Unger additionally described a recently proposed pilot study to examine chemical composition in a deep nanoscale layer. This was important for the electronics industry. Four participants had expressed interest. The measurand will be the amount of Ir(ppy)2(acac) in a thin organic layer within an organic layer stack on a silicon substrate. He also reported that SAWG had started work on characterisation of graphene material grown by chemical vapour decomposition (CVD). The work would examine coverage on the substrate, number of layers, level of disorder, uncertainty budgets associated with the measurement, and data analysis. A link to VAMAS Technical Work Area 41 “Graphene and Related 2D Materials“ would also be established. Looking forward, Dr Unger said the group had established a task group on application of Raman spectroscopy. This had important applications but was currently seen as qualitative. He presented the terms of reference for the task group for approval by the CCQM. Dr Unger reviewed the SAWG activities that have progressed the state of the art in measurement science. He listed the past and ongoing comparisons that had addressed new and challenging measurement problems, and drew attention to a number of key publications in surface analysis. He additionally described stakeholder engagement activities, including collaboration with VAMAS, input to ISO TC 201, contributions to Euramet projects, and contributions to two recent stakeholder workshops. T2 - 25th meeting of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM) CY - Paris, France DA - 11.04.2019 KW - Surface chemical analysis KW - Metrology KW - International Meter Convention PY - 2019 AN - OPUS4-48020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Fujimoto, T. T1 - The Surface Analysis Working Group at the Consultative Committee for Amount of Substance, Metrology in Chemistry and Biology: A successful initiative by Martin Seah N2 - Dr Martin Seah, NPL, was the initiator, founder, and first chairman of the Surface Analysis Working Group (SAWG) at the Consultative Committee for Amount of Substance, Metrology in Chemistry and Biology (CCQM) at the Bureau International des Poids et Mesures (BIPM), the international organization established by the Metre Convention. This tribute letter summarizes his achievements during his chairmanship and his long-running impact on the successful work of the group after his retirement. KW - CCQM (Consultative Committee for Amount of Substance) KW - Metrology in Chemistry and Biology KW - Martin Seah KW - Metrology KW - Quantitative surface chemical analysis KW - Surface Analysis Working Group PY - 2021 DO - https://doi.org/10.1002/sia.7033 SN - 0142-2421 VL - 54 IS - 4 SP - 314 EP - 319 PB - John Wiley & Sons Ltd AN - OPUS4-53714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Kjaervik, Marit T1 - New work item proposal for a technical report for ISO/TC 201 WG 4 “Surface characterization of biomaterials”: Surface chemical analysis – Surface chemical analysis of cells and biofilms N2 - The proposed ISO Technical Report provides a description of a variety of physical methods of analytical chemistry by which bacteria and biofilms can be analysed. The state of the art, sample requirements and strengths associated with each method are identified. T2 - 27th Plenary Meeting of ISO/TC 201 CY - Cancun, Mexico DA - 2018-09-20 KW - Surface chemical analysis of biofilms KW - XPS KW - Fourier-Transform Infrared Spectroscopy KW - 3D nano SIMS KW - Raman-spectroscopy PY - 2018 AN - OPUS4-46214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Senoner, M. A1 - Stockmann, Jörg M. A1 - Fernandez, V. A1 - Fairley, N. A1 - Passiu, C. A1 - Spencer, N. D. A1 - Rossi, A. T1 - Summary of ISO/TC 201 International Standard ISO 18516:2019 Surface chemical analysis - Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres and its implementation for imaging laboratory X-ray photoelectron spectrometers (XPS) N2 - ISO 18516:2019 Surface chemical analysis—Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres revises ISO 18516:2006 Surface chemical analysis—Auger electron spectroscopy and X-ray photoelectron spectroscopy—Determination of lateral resolution. It implements three different methods delivering parameters useful to express the lateral resolution: (1) the straight edge method, (2) the narrow line method and (3) the grating method. The theoretical background of these methods is introduced in ISO/TR 19319:2013 Surface chemical analysis—Fundamental approaches to determination of lateral resolution and sharpness in beam-based methods. The revised International Standard ISO 18516 delivers standardized procedures for the determination of the (1) effective lateral resolution by imaging of square-wave gratings, the (2) lateral resolution expressed as the parameter D12–88 characterizing the steepness of the sigmoidal edge spread function (ESF) determined by imaging a straight edge and (3) the lateral resolution expressed as the full width of half maximum of the line spread function (LSF), wLSF, determined by imaging a narrow line. The last method also delivers information on the shape of the LSF, which characterizes an individual imaging instrument. Finally, the implementation of all three standardized methods in the field of imaging laboratory X-ray photoelectron spectroscopy (XPS) is shortly presented. This part of the letter is based on the use of a new test sample developed at ETH Zurich, Switzerland. This test sample displays a micrometre scaled pattern motivated by the resolving power of recent imaging XPS instruments. KW - Grating method KW - Imaging AES KW - Imaging SIMS KW - Imaging XPS KW - Lateral resolution KW - Narrow line method KW - Noise in image KW - Resolution criterion KW - Straight edge method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536330 DO - https://doi.org/10.1002/sia.7025 SN - 1096-9918 VL - 54 IS - 4 SP - 320 EP - 327 PB - Wiley CY - Chichester AN - OPUS4-53633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Stockmann, Jörg M. A1 - Senoner, Mathias A1 - Weimann, T. A1 - Bütefisch, S. A1 - Passiu, C. A1 - Spencer, N. D. A1 - Rossi, A. T1 - Introduction to lateral resolution and analysis area measurements in XPS N2 - Imaging and small-spot (small area) XPS have become increasingly important components of surface chemical analysis during the last three decades, and its use is growing. Some ambiguity in the use of terminology, understanding of concepts, and lack of appropriate reference materials leads to confusing and not always reproducible data. In this paper, it is shown that by using existing knowledge, appropriate test specimens, and standardized approaches, problems of comparability and such reproducibility issues recently observed for XPS data reported in the scientific literature can be overcome. The standardized methods of ISO 18516:2019, (i) the straight-edge, (ii) the narrow-line, and (iii) the grating method, can be used to characterize and compare the lateral resolution achieved by imaging XPS instruments and are described by reporting examples. The respective measurements are made using new test specimens. When running an XPS instrument in the small-spot (small area) mode for a quantitative analysis of a feature of interest, the question arises as to what contribution to the intensity originates from outside the analysis area. A valid measurement approach to control the intensity from outside the nominal analysis area is also described. As always, the relevant resolution depends on the specific question that needs to be addressed. The strengths and limitations of methods defining resolution are indicated. KW - Imaging XPS KW - Lateral resolution KW - Analysis area measurements KW - Small-spot XPS PY - 2020 DO - https://doi.org/10.1116/6.0000398 VL - 38 IS - 5 SP - 053206 AN - OPUS4-51394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Unger, Wolfgang A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Auger electron spectroscopy N2 - An introduction in the application of Auger Electron Spectroscopy to surface chemical analysis of nanoparticles is given. Auger Electron Spectroscopy is a mature method in the field of surface chemical analysis. The chapter addresses the physical basis of the method, the principal design of recent instruments together with modes of operation and options for the presentation of spectra, as well as different approaches for qualitative (including identification of chemical species) and quantitative surface analysis of elements. An application paragraph on surface chemical analysis of nanoparticles by AES or SAM introduces the different measurement approaches and sample preparation strategies applied by analysts. The analysis of nanoparticle ensembles, the so-called selected point analysis where a narrow primary electron beam is centered on an individual nanoparticle, and chemical mapping of individual nanoparticles (or a line scan across) are addressed. Existing literature is reviewed and informative case studies presented. Limitations and pitfalls in the application of AES in surface chemical analysis of nanoparticles are also addressed. KW - Auger Electron Spectroscopy KW - Surface chemical analysis KW - Imaging surface chemical analysis KW - Nanoparticles KW - Nanotechnology PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00020-1 SP - 373 EP - 395 PB - Elsevier CY - Amsterdam AN - OPUS4-50119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Vladár, A. E. A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Characterization of nanoparticles by scanning electron microscopy N2 - In this chapter sample preparation, image acquisition, and nanoparticle size and shape characterization methods using the scanning electron microscope (SEM) in reflective and transmitted working modes are described. These help in obtaining reliable, highly repeatable results. The best solutions vary case-by-case and depend on the raw (powdered or suspension) nanoparticle material, the required measurement uncertainty and on the performance of the SEM. KW - Nanoparticles KW - Sample preparation KW - Electron microscopy KW - SEM KW - Size measurement KW - Shape KW - Threshold PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00002-X SP - 7 EP - 27 PB - Elsevier CY - Amsterdam AN - OPUS4-50120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vlajića, M. A1 - Unger, Wolfgang A1 - Bruns, J. A1 - Rueck-Braun, K. T1 - Photoswitching of fulgimides in different environments on silicon surfaces N2 - Reversible light-modulation of fulgimide based monolayers on Si(1 1 1) and Si(1 0 0) was investigated using ATR-FTIR spectroscopy. Fulgimide monolayers were prepared from neat COOH-terminated SAMs on Si(1 1 1) obtained from methyl undec-10-enoate, (1:1)-diluted COOH-terminated monolayers on Si(1 1 1), and GPTMS monolayers on Si(1 0 0). The epoxy-terminated monolayer on oxidized Si(1 0 0) was characterized with ellipsometry, XPS, as well as contact angle measurements, and ATR-FTIR spectroscopy revealed a strong influence of toluene water content on reproducible high-quality monolayer formation. The results of this study show that environmental polarity has a strong influence on fulgimide imide IR band locations and read-out options for the two photostationary states PSS(365 nm), containing E/Z- and C-isomers, and PSS(545 nm), with solely the E/Zisomers. Neat COOH-terminated monolayers on flat Si(1 1 1) have the Advantage of high functional Group concentration, orientation and stability, and an upright arrangement of fulgimide head groups. KW - Surface functionalization KW - Photoswitchable monolayers KW - ATR-FTIR spectroscopy KW - XPS PY - 2019 DO - https://doi.org/10.1016/j.apsusc.2018.09.159 SN - 0169-4332 SN - 1873-5584 VL - 465 SP - 686 EP - 692 PB - Elsevier B.V. AN - OPUS4-46276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voss, Heike A1 - Knigge, Xenia A1 - Knapic, D. A1 - Weise, Matthias A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Müller, Kai A1 - Wasmuth, Karsten A1 - Baumgartner, W. A1 - Krüger, Jörg A1 - Heitz, J. A1 - Hassel, A. W. A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Picosecond laser processing of hierarchical micro-nanostructures on Ti-alloy upon pre- and post-anodization N2 - Recent publications indicate that the order of electrochemical anodization (before or after the laser-processing step) plays an important role for the response of boneforming osteoblasts – an effect that can be utilized for improving permanent dental- or removable bone-implants. For exploring these different surface functionalities, multi-method chemical and structural characterizations were performed for two different characteristic micro-spikes covered by nanometric laserinduced periodic surface structures (LIPSS) on Ti-6Al-4V upon irradiation with nearinfrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 66 & 80 kHz pulse repetition rate) at two distinct sets of laser fluence and beam scanning parameters. This involves morphological and topographical investigations by scanning electron microscopy (SEM) and white light interference microscopy (WLIM), near-surface chemical analysis by X-ray photoelectron spectroscopy (XPS) and hard X-ray photoelectron spectroscopy (HAXPES), as well as structural material examination via X-ray diffraction (XRD) measurements. The results allow to qualify the laser ablation depth, assess the spike geometry and surface roughness parameters, and provide detailed insights into the near-surface oxidation that may cause the different cell growth behavior for pre- or post-anodized medical implants. T2 - E-MRS Spring Meeting 2023 CY - Strasbourg, France DA - 29.05.2023 KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Laser-induced periodic surface structures (LIPSS) KW - Ti6Al4V alloy KW - Hierarchical micro-nanostructures KW - Ultrashort laser processing PY - 2023 AN - OPUS4-60344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, Heike A1 - Knigge, Xenia A1 - Knapic, D. A1 - Weise, Matthias A1 - Sahre, Mario A1 - Hertwig, Andreas A1 - Sacco, A. A1 - Rossi, A. M. A1 - Radnik, Jörg A1 - Müller, Kai A1 - Wasmuth, Karsten A1 - Krüger, Jörg A1 - Hassel, A. W. A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Picosecond laser processing of hierarchical micro–nanostructures on titanium alloy upon pre- and postanodization: morphological, structural, and chemical effects N2 - Recent publications indicate that the order of electrochemical anodization (before or after the laser processing step) plays an important role for the response of bone-forming osteoblasts—an effect that can be utilized for improving permanent dental or removable bone implants. For exploring these different surface functionalities, multimethod morphological, structural, and chemical characterizations are performed in combination with electrochemical pre- and postanodization for two different characteristic microspikes covered by nanometric laser-induced periodic surface structures on Ti–6Al–4V upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ≈1 ps pulse duration, 67 and 80 kHz pulse repetition frequency) at two distinct sets of laser fluence and beam scanning parameters. This work involves morphological and topographical investigations by scanning electron microscopy and white light interference microscopy, structural material examinations via X-ray diffraction, and micro-Raman spectroscopy, as well as near-surface chemical analyses by X-ray photoelectron spectroscopy and hard X-ray photoelectron spectroscopy. The results allow to qualify the mean laser ablation depth, assess the spike geometry and surface roughness parameters, and provide new detailed insights into the near-surface oxidation that may affect the different cell growth behavior for pre- or postanodized medical implants. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Hierarchical micro-nanostructures KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Ti-6Al-4V alloy KW - X-ray photoelectron spectroscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601962 DO - https://doi.org/10.1002/pssa.202300920 SN - 1862-6319 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-60196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Häusler, I. A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan A1 - Emmerling, Franziska A1 - Reiss, P. A1 - Resch-Genger, Ute T1 - One-Pot Heat-Up Synthesis of ZnSe Magic-Sized Clusters Using Thiol Ligands N2 - The synthesis of two new families of ZnSe magic-sized clusters (MSCs) is achieved using the thiol ligand 1-dodecanethiol in a simple one-pot heat-up approach. The sizes of the MSCs are controlled with the thiol ligand concentration and reaction temperature. KW - ZnSe KW - Magic-sized cluster KW - Dodecanethiol KW - Semiconductor nanocrystals KW - One-pot synthesis PY - 2022 DO - https://doi.org/10.1021/acs.inorgchem.2c00041 VL - 61 IS - 19 SP - 7207 EP - 7211 PB - ACS Publications CY - Washington, DC (USA) AN - OPUS4-54880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - von der Au, Marcus A1 - Dietrich, P. M. A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy N2 - This work presents the determination of the corrosion characteristics of CrCoNi (medium entropy alloy) and CrMnFeCoNi (high entropy alloy) in 0.1 M NaCl and 0.1 M H2SO4. The morphology and chemical composition of the oxide layers formed on CrCoNi and CrMnFeCoNi were comparatively analyzed by scanning Kelvin probe microscopy (SKPFM) and scanning electron microscopy (SEM) and supported with chemical analysis by means of inductively coupled plasma mass spectrometry (ICP-MS) and X-Ray photoelectron spectroscopy (XPS). The analysis of the 3p core level peaks showed that the oxide layer (native and after anodic passivation) on CrCoNi consisted mainly of Cr oxides, while the oxide layer on CrMnFeCoNi was primarily composed of a mixture of Cr and Fe oxides. In addition, XPS was utilized to assess the oxide layer thicknesses. These results were compared to the thicknesses obtained by means of electrochemical impedance spectroscopy (EIS), with both approaches yielding values up to about 4 nm depending on the electrolyte and the alloy. Cyclic polarization measurements indicated superior corrosion resistance of CrCoNi in both aqueous environments compared to CrMnFeCoNi, as well as to AISI 304 stainless steel. KW - Medium entropy alloy KW - High entropy alloy KW - SKPFM KW - XPS KW - Passivation KW - Corrosion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559902 DO - https://doi.org/10.1016/j.apsusc.2022.154171 SN - 0169-4332 VL - 601 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-55990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolff, M. A1 - Wonneberger, R. A1 - Freiberg, K.E. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Giebeler, L. A1 - Koitzsch, A. A1 - Kunz, C. A1 - Weber, H. A1 - Hufenbach, J.K. A1 - Müller, F.A. A1 - Gräf, S. T1 - Formation of laser-induced periodic surface structures on Zr-based bulk metallic glasses with different chemical composition N2 - Bulk metallic glasses (BMG) are amorphous metal alloys known for their unique physical and mechanical properties. In the present study, the formation of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on the Zr-based BMGs Zr46Cu46Al8, Zr61Cu25Al12Ti2, Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) and Zr57Cu15.4Al10Ni12.6Nb5 (Vit106) was investigated as a function of their different chemical composition. For this purpose, LIPSS were generated on the sample surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz). The surface topography was characterized by scanning electron microscopy and atomic force microscopy. Moreover, the impact of LIPSS formation on the structure and chemical surface composition was analyzed before and after fs-laser irradiation by X-ray diffraction and X-ray photoelectron spectroscopy as well as by transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. Despite the different chemical composition of the investigated BMGs, the fs-laser irradiation resulted in almost similar properties of the generated LIPSS patterns. In the case of Zr61Cu25Al12Ti2, Vit105 and Vit106, the surface analysis revealed the preservation of the amorphous state of the materials during fs-laser irradiation. The study demonstrated the presence of a native oxide layer on all pristine BMGs. In addition, fs-laser irradiation results in the formation of laser-induced oxide layers of larger thickness consisting of an amorphous ZrAlCu-oxide. The precise laser-structuring of BMG surfaces on the nanoscale provides a versatile alternative to thermoplastic forming of BMG surfaces and is of particular interest for the engineering of functional material surfaces. KW - Bulk metallic glasses KW - Femtosecond laser KW - Laser-induced periodic surface structures (LIPSS) KW - Chemical analysis KW - Oxidation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581799 DO - https://doi.org/10.1016/j.surfin.2023.103305 SN - 2468-0230 VL - 42 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-58179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Hidde, Gundula A1 - Schenderlein, Matthias A1 - Özcan Sandikcioglu, Özlem T1 - Effect of organic conditioning layers adsorbed on stainless steel AISI 304 on the attachment and biofilm formation of electroactive bacteria Shewanella putrefaciens CN32 N2 - The initial attachment and subsequent biofilm formation of electroactive bac-teriaShewanella putrefaciensCN32 was investigated to clarify the influence oforganic conditioning layers. A selection of macromolecules and self-assembledmonolayers (SAMs) of different chain lengths and functional groups were pre-pared and characterized by means of infrared spectroscopy in terms of theirchemistry. Surface energy and Zeta (ζ-) potential of the conditioning layers wasdetermined with contact angle and streaming current measurements. Amongthe studied surface parameters, a high polar component and a high ratio ofpolar-to-disperse components of the surface energy has emerged as a successfulindicator for the inhibition of the initial settlement ofS. putrefacienson stainlesssteel AISI 304 surfaces. Considering the negative surface charge of planktonicS. putrefacienscells, and the strong inhibition of cell attachment by positivelycharged polyethylenimine (PEI) conditioning layers, our results indicate thatelectrostatic interactions do play a subordinate role in controlling the attach-ment of this microorganism on stainless steel AISI 304 surfaces. For the biofilmformation, the organization of the SAMs affected the local distribution of thebiofilms. The formation of three-dimensional and patchy biofilm networks waspromoted with increasing disorder of the SAMs. KW - Bacterial attachment KW - Conditioning films KW - Self-assembled monolayers KW - Stainless steel PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559887 DO - https://doi.org/10.1002/eng2.12458 VL - 4 IS - 1 SP - 1 EP - 12 PB - Wiley online library AN - OPUS4-55988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Schütter, Jan David A1 - Wagner, R. A1 - Dimper, Matthias A1 - Hodoroaba, Vasile-Dan A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins—Part II: Effect on biofilm formation and microbially influenced corrosion processes N2 - Biofilm formation and microbially influenced corrosion of the iron-reducing microorganism Shewanella putrefaciens were investigated on stainless steel surfaces preconditioned in the absence and presence of flavin molecules by means of XANES (X-ray absorption near-edge structure) analysis and electrochemical methods. The results indicate that biofilm formation was promoted on samples preconditioned in electrolytes containing minute amounts of flavins. On the basis of the XANES results, the corrosion processes are controlled by the iron-rich outer layer of the passive film. Biofilm formation resulted in a cathodic shift of the open circuit potential and a protective effect in terms of pitting corrosion. The samples preconditioned in the absence of flavins have shown delayed pitting and the samples preconditioned in the presence of flavins did not show any pitting in a window of −0.3- to +0.0-V overpotential in the bacterial medium. The results indicate that changes in the passive film chemistry induced by the presence of minute amounts of flavins during a mild anodic polarization can change the susceptibility of stainless steel surfaces to microbially influenced corrosion. KW - Biofilms KW - XANES KW - Microbially influenced corrosion (MIC) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528130 DO - https://doi.org/10.1002/maco.202012192 VL - 72 IS - 6 SP - 983 EP - 994 PB - Wiley AN - OPUS4-52813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Sobol, Oded A1 - Altmann, Korinna A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem T1 - Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins—Part I: Effect on surface chemistry and corrosion behavior N2 - Stainless steel AISI 304 surfaces were studied after a mild anodic polarization for oxide growth in the presence and absence of two derivatives of vitamin B2 (riboflavin and flavin mononucleotide) that can be secreted by metal‐reducing bacteria and act as a chelating agent for iron species. The alterations in oxide chemistry were studied by means of surface‐sensitive techniques such as X‐ray photoelectron spectroscopy and time‐of‐flight secondary ion mass spectrometry analysis. The complementary electrochemical characterization revealed a preferential growth of an oxide/hydroxide iron‐rich film that is responsible for an altered pit initiation and nucleation behavior. These findings suggest that as the corrosion behavior is determined by the interplay of the chemical and electronic properties, only a mild anodic polarization in the presence of redox‐active molecules is able to alter the chemical and electronic structure of the passive film formed on stainless steel AISI 304. This helps to achieve a profound understanding of the mechanisms of microbially influenced corrosion (MIC) and especially the possible effects of the redox‐active biomolecules, as they may play an important role in the corrosion susceptibility of stainless steel surfaces. KW - Corrosion KW - Stainless steel KW - Surface analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528117 DO - https://doi.org/10.1002/maco.202012191 VL - 72 IS - 6 SP - 974 EP - 982 PB - Wiley AN - OPUS4-52811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Kun A1 - Carrod, Andrew J. A1 - Del Giorgio, Elena A1 - Hughes, Joseph A1 - Rurack, Knut A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan A1 - Harrad, Stuart A1 - Pikramenou, Zoe T1 - Luminescence Lifetime-Based Sensing Platform Based on Cyclometalated Iridium(III) Complexes for the Detection of Perfluorooctanoic Acid in Aqueous Samples N2 - Luminescence lifetimes are an attractive analytical method for detection due to its high sensitivity and stability. Iridium probes exhibit luminescence with long excited-state lifetimes, which are sensitive to the local environment. Perfluorooctanoic acid (PFOA) is listed as a chemical of high concern regarding its toxicity and is classified as a “forever chemical”. In addition to strict limits on the presence of PFOA in drinking water, environmental contamination from industrial effluent or chemical spills requires rapid, simple, accurate, and cost-effective analysis in order to aid containment. Herein, we report the fabrication and function of a novel and facile luminescence sensor for PFOA based on iridium modified on gold surfaces. These surfaces were modified with lipophilic iridium complexes bearing alkyl chains, namely, IrC6 and IrC12, and Zonyl-FSA surfactant. Upon addition of PFOA, the modified surfaces IrC6-FSA@Au and IrC12-FSA @Au show the largest change in the red luminescence signal with changes in the luminescence lifetime that allow monitoring of PFOA concentrations in aqueous solutions. The platform was tested for the measurement of PFOA in aqueous samples spiked with known concentrations of PFOA and demonstrated the capacity to determine PFOA at concentrations >100 μg/L (240 nM). KW - Perfluorooctanoic Acid (PFOA) KW - Cyclometalated iridium (III) complexes KW - Luminescent lifetime KW - Optically active surfaces KW - ToF-SIMS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594535 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.3c04289 DO - https://doi.org/10.1021/acs.analchem.3c04289 VL - 96 IS - 4 SP - 1565 EP - 1575 PB - American Chemical Society (ACS) AN - OPUS4-59453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Müller, Bernd R. A1 - Laquai, René A1 - Kupsch, Andreas A1 - Wieder, Frank A1 - Benemann, Sigrid A1 - Wilbig, Janka A1 - Günster, Jens A1 - Bruno, Giovanni T1 - Microstructural characterization of AP40 apatite-wollastonite glass-ceramic N2 - The microstructure of an apatite-wollastonite (code name AP40) glass-ceramic is analyzed in this study by combining 2D microscopy, phase analysis, X-ray absorption and synchrotron X-ray refraction computed tomography (XCT and SXRCT, respectively). It is shown that this combination provides a useful toolbox to characterize the global microstructure in a wide scale range, from sub-micrometer to millimeter. The material displays a complex microstructure comprising a glassy matrix with embedded fluorapatite and wollastonite small crystals. In this matrix, large (up to 200 μm) spike-shaped structures are distributed. Such microstructural features are oriented around a central sphere, thereby forming a structure resembling a sea urchin. A unique feature of SXRCT, in contrast to XCT, is that internal interfaces are visualized; this allows one to show the 3D distribution of these urchins with exceptionally good contrast. Furthermore, it is revealed that the spike-shaped structures are not single crystals, but rather composed of sub-micrometric crystals, which are identified as fluorapatite and diopside phases by SEM-EDX analysis. KW - Glass-ceramic KW - X-ray refraction KW - Computed tomography KW - Microstructure PY - 2023 DO - https://doi.org/10.1016/j.ceramint.2022.12.130 SN - 0272-8842 VL - 49 IS - 8 SP - 12672 EP - 12679 PB - Elsevier Science CY - Amsterdam AN - OPUS4-57452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - NanoWorkshop 2018: Workshop on Reference Nanomaterials N2 - The Scope of the Workshop was to provide a forum for discussion on progress in development, characterisation and application of reference nanomaterials. Results of recently finsihed national and international research projects have been presented. Moreover, the need for future developments have been addressed. Attendees of teh Workshop were expected to be experts from academia, research institutes, regulatory bodies and industry working or interested in the area of reference nanomaterials. The following structure of Workshop was planned: the main focus of the first day was on reference material needs and development, while teh second day was focussed on reference materials characterisation and standardisation. Over 111 participants frm 13 countries and teh European Joint Research Centre have regsitered for the Workshop with 16 platform presentations and 42 poster contributions grouped in 2 sessions and 10 topical areas. A summary of the observations, analysis and conclusions of the Workshop is made including an overview table of links to information on existing reference nanomaterials. KW - Reference Nanomaterials KW - Nanometrology KW - Standardization KW - Nanoparticle Characterization KW - Comparability of Measurement Results KW - Nanomaterial Properties PY - 2019 SN - 78-3-95606-440-1 DO - https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - 2018 SP - 1 EP - 315 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig AN - OPUS4-47861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Characterization of nanoparticles - Measurement processes for nanoparticles N2 - Characterization of Nanoparticles: Measurement Processes for Nanoparticles surveys this fast growing field, including established methods for the physical and chemical characterization of nanoparticles. The book focuses on sample preparation issues (including potential pitfalls), with measurement procedures described in detail. In addition, the book explores data reduction, including the quantitative evaluation of the final result and its uncertainty of measurement. The results of published inter-laboratory comparisons are referred to, along with the availability of reference materials necessary for instrument calibration and method validation. The application of these methods are illustrated with practical examples on what is routine and what remains a challenge. In addition, this book summarizes promising methods still under development and analyzes the need for complementary methods to enhance the quality of nanoparticle characterization with solutions already in operation. KW - Nanoparticles KW - Characterization method KW - Sample preparation KW - Inter-laboratory comparison KW - Standardisation KW - Measurement uncertainty KW - Case studies PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/C2017-0-00312-9 SP - 1 EP - 566 PB - Elsevier CY - Amsterdam AN - OPUS4-50284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Schmidt-Grund, R. ED - Sturm, C. ED - Hertwig, Andreas T1 - Topical issue: Ellipsometry N2 - Ellipsometry is a matured experimental method, whose roots reach back into the early phase of modern optics itself. It is often attributed to be invented by Paul Drude in the last decade of the 19th century, but similar techniques had already been applied for years before Drude started his work. With this Special Issue about ellipsometry and related techniques, we hope to bring more attention to this method and advance and propagate it to be used by a broader community. KW - Spectroscopy KW - Ellipsometry KW - Surfaces KW - Thin films KW - Advanced optics KW - Optical measurement technology PY - 2022 UR - https://www.degruyter.com/journal/key/aot/11/3-4/html#contents SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 SP - 47 EP - 147 PB - De Gruyter CY - Berlin AN - OPUS4-55468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -