TY - CONF A1 - Heinrich, Thomas A1 - Sparnacci, K. A1 - Unger, Wolfgang A1 - Schneider, Markus A1 - Müller, Anja T1 - Chemical Analysis of Core-Shell Nanoparticles using ToF-SIMS and XPS N2 - The analysis of nanomaterials is current an important task - especially in case of risk assessment, as the properties of these material class are not well understood currently. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surfaces chemical composition has to be investigated to get a better understanding and prediction of the nanomaterials' behavior. ToF-SIMS has proven as a powerful tool to determine said chemical composition. Its superior surface sensitivity allows us to study mainly the utmost atomic layer and therefore gives us an idea of the interactions involved. Here, we show first result from the validation of the method for the analysis of polystyrene and gold nanoparticles. ToF-SIMS will be compared to other methods like XPS, T-SEM or REM. Furthermore, principle component analysis (PCA) will be used to detect the influence of different sample preparation performed by an innovative microfluidic device. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - XPS KW - ToF-SIMS KW - Nanoparticles PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-44790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. T1 - Controlled deposition of nanoparticles by electrospray for improved analysis by imaging techniques N2 - Of many experimental techniques for measuring particle sizes and size distributions, electron microscopy (EM) is still considered as the gold standard, especially in the nano range (1–100 nm). Furthermore, high-resolution X-ray spectroscopy (EDX) in conjunction with EM can be applied to individual NPs. Preparation of an EM sample for generic particulate materials is a difficult task. Usually the particles in a suspension are deposited on a support. However, this procedure includes the drying of larger solvent amounts on the substrate itself, and this can affect the spatial distribution of the deposited particles. One possibility to overcome this is the use of an electrospray system, where the suspension of particles is sprayed onto the substrate in charged droplets that are so small that they either dry off on the substrate immediately without affecting the position of particles, or even already during their flight time to the substrate. Additionally, the charging of particles minimizes agglomeration and aggregation, maximizing the collection of the EM grids. The prototype of an electrospray deposition system from RAMEM under its trademark IONER (www.ioner.eu) was tested. Electrospray is theoretically described since a long time, but no dedicated commercial instruments are available for the preparation of TEM grids yet, apart from electrostatic deposition of aerosols.2 Several materials have been sprayed onto TEM grids and the resulting particle distributions were evaluated. Operation parameters such as the sample flow-rate, capillary – substrate distance, electric field strength and sampling period length have been optimized. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and a substantial increase of the number of single particles (suited to automatic analysis). T2 - RSC-NPL Symposium: Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - Electrospray deposition KW - Nanoparticles KW - Electron microscopy PY - 2018 AN - OPUS4-44802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Lessons on measurement of nanoparticle size and shape learnt from NanoDefine N2 - The EC Recommendation on the definition of nanomaterial1, based solely on size of the constituent particles, foresees development of harmonised measurement methods ensuring ‘consistent results across materials and over time’. The EU/FP7 large research project NanoDefine (http://www.nanodefine.eu) has been exclusively dedicated to support the implementation of this EC Recommendation for the European Union’s legislation. For the first time, measurement techniques able to determine the size of nanoparticles have been evaluated systematically on a well-defined set of quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. Particularly based on the analytical performance of the measurement techniques as tested on the challenging real-world particulate materials, it was possible to formulate recommendations for use of a new tiered approach consisting of screening and confirmatory techniques. Thus, a consistent framework of guidance for nanomaterial identification according to the EC Definition has been issued in form of the NanoDefiner e-tool (https://labs.inf.fh-dortmund.de/NanoDefiner), with a transparent decision flow scheme and an extensive user manual. Selected examples of analysis and classification as nano-/non-nanomaterials will be given, highlighting the limits of applicability of the available measurement techniques in dependence on sample properties. On some recent relevant developments in sample preparation – as a crucial part for an accurate analysis - will be also reported. T2 - RSC-NPL Symposium: Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - Nanoparticles KW - Nanomaterial KW - Particle size distribution KW - EU definition of nanomaterial PY - 2018 AN - OPUS4-44804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Streeck, C. A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Beckhoff, B. T1 - Qualifying calibration samples for advanced thin film materials characterisation N2 - In this article the question of the certification of calibration samples for the characterisation of advanced thin film materials is addressed within the framework of reliable process control or quality management purposes. Reference measurement techniques can be used in order to address the gap in appropriate certified reference materials (CRMs) for thin film analyses. They allow for qualifying out-of-production samples originating from an operating production line as calibration samples. As a template for this procedure, CIGS [Cu(In,Ga)Se2] layers, that are absorber layers for high efficiency thin-film solar cells, have been used for establishing and validating reference-free X-ray fluorescence (XRF) analysis and Auger-electron spectroscopy (AES) as reference measurement techniques. The focus was on determining the average mole fractions in the CIGS layers obtaining results traceable to the SI unit system. Reference-free XRF is physically traceable and is based upon radiometrically calibrated instrumentation and knowledge of atomic fundamental data. Sputter-assisted AES can be established as a chemically traceable method after careful calibration using a certified reference material (CRM) based on a total number counting method. KW - CIGS KW - X-ray fluorescence (XRF) KW - Auger-electron spectroscopy (AES) PY - 2018 UR - https://www.spectroscopyeurope.com/article/qualifying-calibration-samples-advanced-thin-film-materials-characterisation VL - 30 IS - 1 SP - 11 EP - 14 PB - John Wiley & Sons Ltd CY - Chichester, West Sussex PO19 8SQ, UK AN - OPUS4-44260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of biofilms by nearambient pressure X-ray photoelectron spectroscopy N2 - The XPS information depth of approximately 10 nm is in the same size range as the outer membrane of the gram-negative bacteria, which makes XPS a suitable tool for determining the elemental composition of the bacterial surface and monitor changes caused by outer stress like dehydration or exposure to antimicrobials. However, bacteria are inherently in a hydrated state, and therefore only compatible to ultra-high vacuum after extensive sample preparation, which may degrade the sample constituents. This issue is addressed by the development of near-ambient pressure (NAP)-XPS, which enables bacteria and biofilms to be characterised in their native wet state. Artificial biofilms, bacteria and biofilms of Escherichia coli have been characterised with the laboratory NAP-XPS instrument EnviroESCA from SPECS GmbH, at pressures ranging from high vacuum to 12 mbar, and in both humid and dry environment. By studying biological samples in their native wet state, new insight about composition and transport of drugs through cell membranes and the extracellular polymeric substance (EPS) of biofilms can be obtained. T2 - Royal Society of Chemistry Twitter Conference CY - Worldwide (online conference) DA - 06.03.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of bacteria and biofilms by NAP-XPS N2 - The XPS information depth of approximately 10 nm is in the same size range as the outer membrane of the gram-negative bacteria, which makes XPS a suitable tool for determining the elemental composition of the bacterial surface and monitor changes caused by outer stress like dehydration or exposure to antimicrobials. However, bacteria are inherently in a hydrated state, and therefore only compatible to ultra-high vacuum after extensive sample preparation, which may degrade the sample constituents. This issue is addressed by the development of near-ambient pressure (NAP)-XPS, which enables bacteria and biofilms to be characterised in their native wet state. Artificial biofilms, bacteria and biofilms of Escherichia coli have been characterised with the laboratory NAP-XPS instrument EnviroESCA from SPECS GmbH, at pressures ranging from high vacuum to 12 mbar, and in both humid and dry environment. By studying biological samples in their native wet state, new insight about composition and transport of drugs through cell membranes and the extracellular polymeric substance (EPS) of biofilms can be obtained. In this contribution, the latest progress on biofilm characterisation by NAP-XPS will be presented, and measurement capabilities and limitations will be discussed. T2 - Die Frühjahrstagung der Deutsche Physikalische Gesellschaft CY - Berlin, Germany DA - 12.03.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dietrich, P. A1 - Beblo-Vranesevic, K. A1 - Kjærvik, Marit A1 - Unger, Wolfgang A1 - Schwibbert, Karin A1 - Hardie, K. A1 - Brown, J. T1 - XPS surface analysis of bacterial samples N2 - This application note presents how EnviroESCA can be used to analyze bacterial samples under near ambient pressure conditions in various states of hydration using different levels of humidity. Such investigations of bacterial cell wall surfaces in their hydrated state are essential for studying biological interfaces at work. The use of innovative near-ambient pressure (NAP-)XPS instrumentation allows the detailed analysis of irregularly-surfaced biofilms. NAP-XPS enables the surface analysis of bacterial samples in their natural hydrated state without complex sample preparation techniques such as freeze-drying or fast-freezing, which are needed for XPS analysis in ultrahigh vacuum. KW - Near ambient pressure XPS KW - Biofilms PY - 2018 UR - http://www.enviroai.com/uploads/1/0/2/8/102861712/xps_surface_analysis_of_bacillus_subtilis_biofilms_final.pdf IS - Application Note #000399 SP - 1 EP - 5 CY - Berlin AN - OPUS4-44588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donskyi, Ievgen A1 - Drüke, M. A1 - Silberreis, K. A1 - Lauster, D. A1 - Ludwig, K. A1 - Kühne, C. A1 - Unger, Wolfgang A1 - Böttcher, C. A1 - Herrmann, A. A1 - Dernedde, J. A1 - Adeli, M. A1 - Haag, R. T1 - Interactions of fullerene-polyglycerol sulfates at viral and cellular interfaces N2 - Understanding the mechanism of interactions of nanomaterials at biointerfaces is a crucial issue to develop new antimicrobial vectors. In this work, a series of water-soluble fullerene-polyglycerol sulfates (FPS) with different fullerene/polymer weight ratios and varying numbers of polyglycerol sulfate branches are synthesized, characterized, and their interactions with two distinct surfaces displaying proteins involved in target cell recognition are investigated. The combination of polyanionic branches with a solvent exposed variable hydrophobic core in FPS proves to be superior to analogs possessing only one of these features in preventing interaction of vesicular Stomatitis virus coat glycoprotein (VSV-G) with baby hamster kidney cells serving as a model of host cell. Interference with L-selectin-ligand binding is dominated by the negative charge, which is studied by two assays: a competitive surface plasmon resonance (SPR)-based inhibition assay and the leukocyte cell (NALM-6) rolling on ligands under flow conditions. Due to possible intrinsic hydrophobic and electrostatic effects of synthesized compounds, pico- to nanomolar half maximal inhibitory concentrations (IC50) are achieved. With their highly antiviral and anti-inflammatory properties, together with good biocompatibility, FPS are promising candidates for the future development towards biomedical applications. KW - Fullerene-Polyglycerol Sulfates KW - Fullerene KW - Biointerfaces KW - XPS PY - 2018 DO - https://doi.org/10.1002/smll.201800189 SN - 1613-6829 SN - 1613-6810 VL - 14 IS - 17 SP - 1800189, 1 EP - 7 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-44573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Shell thickness determination for PTFE‐PS core‐shell nanoparticles using scanning transmission X‐ray microscopy (STXM) N2 - A scanning transmission X‐ray microscopy (STXM)‐based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core‐shell nanoparticles, which exhibit a strong X‐ray absorption contrast and a well‐defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less X‐ray beam‐induced damage of the sample is achieved by recording STXM images only at 2 predetermined energies of maximum Absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core‐shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near‐edge X‐ray absorption fine structure spectroscopy confirms the significant difference in X‐ray absorption behavior between PTFE and PS. Additionally, because of the insolubility of styrene in PTFE a well‐defined interface between particle core and shell is expected. To validate the STXM results, both the naked PTFE cores as well as the complete core‐shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM‐based methodology yields particle dimensions in agreement with the SEM results and provides additional information such as the position of the particle core, which cannot be extracted from a SEM micrograph. T2 - European conference on applications of surface and interface analysis (ECASIA'17) CY - Montpellier, France DA - 24.09.2017 KW - Core-shell nanoparticles KW - Polymers KW - PS KW - PTFE KW - SEM KW - STXM PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449700 DO - https://doi.org/10.1002/sia.6464 SN - 1096-9918 SN - 0142-2421 VL - 50 IS - 11 SP - 1077 EP - 1082 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-44970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. T1 - Controlled electrospray deposition of nanoparticles for improved analysis by electron microscopy N2 - Of many experimental techniques for measuring particle sizes and size distributions, electron microscopy (EM) is considered as the gold standard, especially in the nano range (1–100 nm). Furthermore, high-resolution X-ray spectroscopy (EDX) in conjunction with EM can be applied to individual NPs. Preparation of an EM sample for generic particulate materials is a difficult task. Usually, the particles in a suspension are deposited on a support. However, this procedure includes the drying of larger solvent amounts on the substrate itself, and this can affect the spatial distribution of the deposited particles. One possibility to overcome this is the use of an electrospray system, where the suspension of particles is sprayed onto the substrate in charged droplets that are so small that they either dry off on the substrate immediately without affecting the position of particles, or even already during their flight time to the substrate. Additionally, the charging of particles minimizes agglomeration and aggregation, maximizing the collection of the EM grids. The prototype of an electrospray deposition system from RAMEM under its trademark IONER (www.ioner.eu) was tested. Electrospray is theoretically described since a long time, but no dedicated commercial instruments are available for the preparation of TEM grids yet, apart from electrostatic deposition of aerosols. Several materials have been sprayed onto TEM grids and the resulting particle distributions were evaluated. Operation parameters such as the sample flow-rate, capillary – substrate distance, electric field strength and sampling period length have been optimized. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and a substantial increase of the number of single particles (suited to automatic analysis). The project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 604347. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Nanoparticles KW - Electrospray KW - Electron microscopy PY - 2018 AN - OPUS4-44994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Bosse, H. T1 - Improved traceability chain of nanoparticle size measurements – the new EMPIR project nPSize N2 - Coming as response to the needs expressed by The European Commission mandating CEN, CENELEC and ETSI to develop European standards for methods that can characterize reliably manufactured nanomaterials, a new European metrology research project ‘nPSize - Improved traceability chain of nanoparticle size measurements’ has received funding for the next three years. The project will develop methods, reference materials and modelling to improve the traceability chain, comparability and compatibility for nanoparticle size measurements to support standardization. nPSize has selected only those nanoparticle sizing techniques which are able to provide traceable results: electron microscopy (SEM, TSEM and TEM), AFM and SAXS. Metrologists from national metrological or designated institutes (PTB, LNE, LGC, VSL, SMD and BAM) will work together with scientists with know-how in development of new nano reference nanoparticles (CEA, University of Turin, LGC, BAM) and with experts in advanced data processing, e.g. by machine learning (POLLEN). With the support of DIN, the project outcomes will be channelized to standardization bodies such as ISO/TC 229 ‘Nanotechnologies’/JWG 2 ‘Nanoparticle Measurement and Characterization’ (SEM, TSEM and TEM), CEN/TC 352 ‘Nanotechnologies’ (SEM, TSEM and TEM), ISO/TC 201/SC 9 (AFM), ISO/TC 24/SC 4 (SAXS). Three technical work packages will ensure input for impact to standardization community, nanoparticle manufacturers, instrument manufacturers, and (accredited) service laboratories: - WP1 Performance and traceability of characterization methods - WP2 Reference materials - Preparation and Characterization - WP3 Modelling and development of measurement procedures Well-defined non-spherical nanoparticles shapes such as cubes, platelets, bipyramids, rods/acicular will be developed, with mono- and polydisperse size distribution, as well as with accurate particle number concentration (by SAXS and isotopically enrichment for ICP-MS). Physical modelling of the signal for TSEM, SEM, 3D-AFM and SAXS will be used to feed machine learning modeling from a-priori measurement data. Further, data fusion will be developed for hybrid sizing techniques: SEM with TSEM/TEM, SEM/TSEM with AFM, SEM/TSEM with SAXS with the final aim of improving the true shape and size of non-spherical nanoparticles by a better estimation of the measurement uncertainties. In the second half-time of the project dedicated workshops (focused on method improvement and reference materials development) will be organized to disseminate the gained knowledge to end-users. Further, a data library with relevant tagged measurement data is planned to be organized and made publicly available. Inter-laboratory comparisons based on the newly developed multi-modal nano reference materials will be organized preferably within VAMAS/TWA 34 ‘Nanoparticle populations’. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Nanoparticles KW - Size KW - Shape KW - Traceable size PY - 2018 AN - OPUS4-44995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. T1 - Shape controlled TiO2 nanoparticles as candidates for nano-CRM’s – an ISO case study N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Titanium oxide KW - Nanoparticles KW - Shape-controlled KW - Electron microscopy KW - Reference material PY - 2018 AN - OPUS4-44996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Metrology for spatially resolved chemical analysis at the micro and nanometre scales Surface Analysis Working Group (SAWG) - Report for 16th Meeting (2017/18) N2 - Following the 2017 meeting, progress with the Key Comparison CCQM-K153 related to the BET specific surface lead by UNIIM and the Pilot Study P-190 “Thickness Measurement of nm HfO2 Films” lead by KRISS will be discussed. The 16th meeting of SAWG will focus on •survey on CMC claims submitted with reference to K-129 and K-136. •the overall and SAWG specific aspects of the CCQM Strategy process, •a consideration of comparisons on convention methods as recommended by the CCQM Plenary Meeting 2017, •the 2019 CCQM Workshop and paper(s) for Metrologia’s Special Issue, •discussion of future comparisons. T2 - 24th meeting of the CCQM 2018 CY - Paris, France DA - 19.04.2018 KW - Surface chemical analysis KW - Metrology KW - Inter-laboratory comparisons PY - 2018 AN - OPUS4-44998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Lippitz, Andreas A1 - Swaraj, Sufal A1 - Sparnacci, Katia A1 - Unger, Wolfgang T1 - Progress Talk 3 / Investigating the dimensions of core|shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - This presentation deals with the progress between month twelve and nineteen of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 30.01.2018 KW - Core-shell nanoparticles KW - Metrology KW - PS KW - PTFE KW - Polymers KW - SEM KW - STXM PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Unger, Wolfgang A1 - Thissen, A. A1 - Dietrich, P. T1 - Progress on characterisation of biofilms by NAP-XPS N2 - Progress talk on characterisation of biofilms by NAP-XPS in the framework of the MetVBadBugs EURAMET-project T2 - MetVBadBugs 24 M project meeting CY - Turin, Italy DA - 06.02.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Babick, F. A1 - Ullmann, C. T1 - Evaluation of particle sizing techniques for the implementation of the EC definition of a nanomaterial N2 - Many techniques are available for measuring particle size distribution. For ideal materials (spherical particles, well dispersed) it is possible to evaluate the Performance of These methods. The performance of the analytical instrumentation for the purpose of classifying materials according to EC Definition is unknown. In this work the performance of commercially available particle sizing techniques on representative NanoDefine set of real-world testing materials (RTM) and quality control materials (QCM) for the implementation of the Definition is evaluated. T2 - 4. Sitzung des wissenschaftlichen Beirats zum Themefeld Umwelt der BAM CY - BAM, Berlin, Germany DA - 13.04.2018 KW - Nanoparticles KW - Nanomaterial KW - Characterization methods KW - EU definition KW - Nanodefine PY - 2018 AN - OPUS4-44693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - nPSize - Improved traceability chain of nanoparticle size measurements N2 - The overall objective of project Improved traceability chain of nanoparticle size measurements is to improve the traceability chain for nanoparticle size measurements. The main impact will be achieved by manifold contributions to standard documents for CEN/TC 352 “Nanotechnologies”, which directly addresses the research needs of CEN, CENELEC and ETSI mandated by EC to develop standards for methods and reference materials to accurately measure the size and size distribution of nanoparticles. This will take place in collaboration with ISO/TC229 ‘Nanotechnologies’, ISO/TC24/SC4 ‘Particle characterization’ and ISO/TC201 ‘Surface analysis’/ SC9 ‘Scanning probe microscopy’. T2 - 4. Sitzung des wissenschaftlichen Beirats zum Themefeld Umwelt der BAM CY - BAM, Berlin, Germany DA - 13.04.2018 KW - Nanoparticles KW - Nanoparticle size KW - Traceability KW - Standardization PY - 2018 AN - OPUS4-44695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Determining the shell thickness of core-shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in agreement with the SEM results and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - Innanopart open day CY - London, UK DA - 25.04.2018 KW - STXM KW - SEM KW - PTFE KW - PS KW - Polymer KW - Core-shell nanoparticles PY - 2018 AN - OPUS4-44841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Hupatz, H. A1 - Lippitz, Andreas A1 - Schalley, C. A. A1 - Unger, Wolfgang T1 - Switchable Rotaxanes operating in multilayers on solid supports N2 - Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimuli-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimuli-responsive surfaces may help integrating synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically and photochemically switchable rotaxanes on gold surfaces. Two substrates are investigated – silicon and gold. Of these materials, only gold showed to be suitable for the development of highly preferential oriented rotaxane layers. XPS indicates for both substrates that our layer-by-layer approach worked and a layer growth with every deposition step is present. NEXAFS showed that both stimuli cause an increase of the multilayer's preferential orientation and that the switching is reversible. However, these effects are only observed for the multilayers on gold surfaces. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - XPS KW - NEXAFS KW - Rotaxanes KW - Multilayers PY - 2018 AN - OPUS4-44794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Müller, Anja A1 - Schneider, Markus A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Chemical Analysis of Core-Shell Nanoparticles using ToF-SIMS and XPS N2 - The analysis of nanomaterials is currently an important task - especially in case of risk assessment – as the properties of these material class are not well understood. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surface’s chemical composition must be investigated to get a better understanding and prediction of the nanomaterials’ behavior. ToF-SIMS and XPS have proven to be powerful tools to determine the general chemical composition. The superior surface sensitivity of ToF-SIMS furthermore allows us to study mainly the utmost atomic layer and thus gives us an idea of the interactions involved. Here, we present initial data on the analysis of Hyflon®-polystyrene core-shell nanoparticles which can be used as a model system due to the known preparation and a rather good chemical as well as physical separation of core and shell. Furthermore, principle component analysis (PCA) will be used to detect the influence of sample preparation and for a better separation of different samples. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - RSC-NPL Symposium: Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - XPS KW - ToF-SIMS KW - Nanoparticles PY - 2018 AN - OPUS4-44795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -