TY - JOUR A1 - Unger, Wolfgang A1 - Stockmann, Jörg M. A1 - Senoner, Mathias A1 - Weimann, T. A1 - Bütefisch, S. A1 - Passiu, C. A1 - Spencer, N. D. A1 - Rossi, A. T1 - Introduction to lateral resolution and analysis area measurements in XPS N2 - Imaging and small-spot (small area) XPS have become increasingly important components of surface chemical analysis during the last three decades, and its use is growing. Some ambiguity in the use of terminology, understanding of concepts, and lack of appropriate reference materials leads to confusing and not always reproducible data. In this paper, it is shown that by using existing knowledge, appropriate test specimens, and standardized approaches, problems of comparability and such reproducibility issues recently observed for XPS data reported in the scientific literature can be overcome. The standardized methods of ISO 18516:2019, (i) the straight-edge, (ii) the narrow-line, and (iii) the grating method, can be used to characterize and compare the lateral resolution achieved by imaging XPS instruments and are described by reporting examples. The respective measurements are made using new test specimens. When running an XPS instrument in the small-spot (small area) mode for a quantitative analysis of a feature of interest, the question arises as to what contribution to the intensity originates from outside the analysis area. A valid measurement approach to control the intensity from outside the nominal analysis area is also described. As always, the relevant resolution depends on the specific question that needs to be addressed. The strengths and limitations of methods defining resolution are indicated. KW - Imaging XPS KW - Lateral resolution KW - Analysis area measurements KW - Small-spot XPS PY - 2020 DO - https://doi.org/10.1116/6.0000398 VL - 38 IS - 5 SP - 053206 AN - OPUS4-51394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Senoner, M. A1 - Stockmann, Jörg Manfred A1 - Fernandez, V. A1 - Fairley, N. A1 - Passiu, C. A1 - Spencer, N. D. A1 - Rossi, A. T1 - Summary of ISO/TC 201 International Standard ISO 18516:2019 Surface chemical analysis - Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres and its implementation for imaging laboratory X-ray photoelectron spectrometers (XPS) N2 - ISO 18516:2019 Surface chemical analysis—Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres revises ISO 18516:2006 Surface chemical analysis—Auger electron spectroscopy and X-ray photoelectron spectroscopy—Determination of lateral resolution. It implements three different methods delivering parameters useful to express the lateral resolution: (1) the straight edge method, (2) the narrow line method and (3) the grating method. The theoretical background of these methods is introduced in ISO/TR 19319:2013 Surface chemical analysis—Fundamental approaches to determination of lateral resolution and sharpness in beam-based methods. The revised International Standard ISO 18516 delivers standardized procedures for the determination of the (1) effective lateral resolution by imaging of square-wave gratings, the (2) lateral resolution expressed as the parameter D12–88 characterizing the steepness of the sigmoidal edge spread function (ESF) determined by imaging a straight edge and (3) the lateral resolution expressed as the full width of half maximum of the line spread function (LSF), wLSF, determined by imaging a narrow line. The last method also delivers information on the shape of the LSF, which characterizes an individual imaging instrument. Finally, the implementation of all three standardized methods in the field of imaging laboratory X-ray photoelectron spectroscopy (XPS) is shortly presented. This part of the letter is based on the use of a new test sample developed at ETH Zurich, Switzerland. This test sample displays a micrometre scaled pattern motivated by the resolving power of recent imaging XPS instruments. KW - Grating method KW - Imaging AES KW - Imaging SIMS KW - Imaging XPS KW - Lateral resolution KW - Narrow line method KW - Noise in image KW - Resolution criterion KW - Straight edge method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536330 DO - https://doi.org/10.1002/sia.7025 SN - 1096-9918 VL - 54 IS - 4 SP - 320 EP - 327 PB - Wiley CY - Chichester AN - OPUS4-53633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mirabella, Francesca A1 - Müllner, M. A1 - Touzalin, T. A1 - Riva, M. A1 - Jakub, Z. A1 - Kraushofer, F. A1 - Schmid, M. A1 - Koper, M. T. M. A1 - Parkinson, G. S. A1 - Diebold, U. T1 - Ni-modified Fe3O4(001) surface as a simple model system for understanding the oxygen evolution reaction N2 - Electrochemical water splitting is an environmentally friendly technology to store renewable energy in the form of chemical fuels. Among the earth-abundant first-row transition metal-based catalysts, mixed Ni-Fe oxides have shown promising performance for effective and low-cost catalysis of the oxygen evolution reaction (OER) in alkaline media, but the synergistic roles of Fe and Ni cations in the OER mechanism remain unclear. In this work, we report how addition of Ni changes the reactivity of a model iron oxide catalyst, based on Ni deposited on and incorporated in a magnetite Fe3O4(001) single crystal, using a combination of surface science techniques in ultra-high vacuum such as low energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS), and scanning tunneling microscopy (STM), as well as atomic force microscopy (AFM) in air, and electrochemical Methods such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in alkaline media. A significant improvement in the OER activity is observed when the top surface presents an iron fraction among the cations in the range of 20-40%, which is in good agreement with what has been observed for powder catalysts. Furthermore, a decrease in the OER overpotential is observed following surface aging in electrolyte for three days. At higher Ni load, AFM shows the growth of a new phase attributed to an (oxy)-hydroxide phase which, according to CV measurements, does not seem to correlate with the surface activity towards OER. EIS suggests that the OER precursor species observed on the clean and Ni-modified surfaces are similar and Fe-centered, but form at lower overpotentials when the surface Fe:Ni ratio is optimized. We propose that the well-defined Fe3O4(001) surface can serve as a model System for understanding the OER mechanism and establishing the structure-reactivity relation on mixed Fe-Ni oxides. KW - OER KW - Fe-Ni oxides KW - Surface science KW - Electrochemistry KW - Water splitting PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529231 UR - https://www.sciencedirect.com/science/article/pii/S0013468621009282?via%3Dihub DO - https://doi.org/10.1016/j.electacta.2021.138638 VL - 389 SP - 138638 PB - Elsevier Ltd. AN - OPUS4-52923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ernst, O. C. A1 - Böttcher, K. A1 - Fischer, Daniel A1 - Uebel, D. A1 - Teubner, T. A1 - Boeck, T. T1 - Morphogenesis of liquid indium microdroplets on solid molybdenum surfaces during solidification at normal pressure and under vacuum conditions N2 - Electrical and optical applications based on micro- and nanoparticles have specific demands on their interfacial properties. These properties are strongly related to atmospheric conditions to which the particles were exposed during their formation. In this study, metallic In microparticles are synthesized by solidification of In droplets on an amorphous Mo substrate at normal pressure and under vacuum conditions. The influence of ambient pressure on the interface and surface shape is investigated. While solidification at atmospheric pressure leads to collapsed particles with undisturbed contact to the substrate, low pressures result in smooth spherical particles but with cavities inside. Numerical simulations with COMSOL Multiphysics reveal different temperature profiles and heat flux in particles during solidification for both cases. This indicates different starting conditions of the solidification, which leads to the described phenomenon eventually. The investigation of the varying process conditions on the particle shape in combination with the calculated and measured temperature curves over time gives valuable insights into new approaches to synthesize micro- and nanoparticles with defined interfacial properties. Both ambient pressure and cooling rate provide well-controllable and reliable parameters for the realization of different interfacial shapes. KW - Morphogenesis KW - Indium KW - Microdroplet KW - Molybdenum PY - 2022 DO - https://doi.org/10.1021/acs.langmuir.1c02744 SN - 0743-7463 SN - 1520-5827 VL - 38 IS - 2 SP - 762 EP - 768 PB - ACS Publ. CY - Washington, DC AN - OPUS4-54242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frisch, M. A1 - Raza, M. H. A1 - Ye, M.-Y. A1 - Sachse, René A1 - Paul, B. A1 - Gunder, R. A1 - Pinna, N. A1 - Kraehnert, R. T1 - ALD-coated mesoporous iridium-titanium mixed oxides: Maximizing iridium utilization for an outstanding OER performance N2 - With the increasing production of renewable energy and concomitant depletion of fossil resources, the demand for efficient water splitting electrocatalysts continues to grow. Iridium (Ir) and iridium oxides (IrOₓ) are currently the most promising candidates for an efficient oxygen evolution reaction (OER) in acidic medium, which remains the bottleneck in water electrolysis. Yet, the extremely high costs for Ir hamper a widespread production of hydrogen (H₂) on an industrial scale. Herein, the authors report a concept for the synthesis of electrode coatings with template-controlled mesoporosity surface-modified with highly active Ir species. The improved utilization of noble metal species relies on the synthesis of soft-templated metal oxide supports and a subsequent shape-conformal deposition of Ir species via atomic layer deposition (ALD) at two different reaction temperatures. The study reveals that a minimum Ir content in the mesoporous titania-based support is mandatory to provide a sufficient electrical bulk conductivity. After ALD, a significantly enhanced OER activity results in dependency of the ALD cycle number and temperature. The most active developed electrocatalyst film achieves an outstanding mass-specific activity of 2622 mA mg(Ir)⁻¹ at 1.60 V(RHE) in a rotating-disc electrode (RDE) setup at 25 °C using 0.5 m H₂SO₄ as a supporting electrolyte. KW - Acidic oxygen evolution reaction KW - Atomic layer deposition KW - Electrocatalysis KW - Iridium oxide KW - Soft-templated mesoporous films PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542651 DO - https://doi.org/10.1002/admi.202102035 SN - 2196-7350 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Müller, Anja T1 - Determination of the actual morphology of core-shell nanoparticles by advanced X-ray analytical techniques: A necessity for targeted and safe nanotechnology N2 - Even though we often do not knowingly recognize them, nanoparticles are present these days in most areas of our daily life, including food and its packaging, medicine, pharmaceuticals, cosmetics, pigments as well as electronic products, such as computer screens. The majority of these particles exhibits a core-shell morphology either intendedly or unintendedly. For the purpose of practicability, this core-shell nanoparticle (CSNP) morphology is often assumed to be ideal, namely a spherical core fully encapsulated by a shell of homogeneous thickness with a sharp interface between core and shell material. It is furthermore widely presumed that all nanoparticles in the sample possess the same shell thickness. As a matter of fact, most real CSNPs deviate in several ways from this ideal model with quite often severe impact on how efficiently they perform in a specific application. The topic of this cumulative PhD thesis is the accurate characterization of the actual morphology of CSNPs by advanced X-ray analytical techniques, namely X-ray photoelectron spectroscopy (XPS) and scanning transmission X-ray microscopy (STXM). A special focus is on CSNPs which deviate from an ideal core-shell morphology. In the paper from 2019 nanoparticle shell thicknesses are extracted from the elastic-peak intensities in an XPS spectrum based on an ideal particle morphology. This happens for a series of CSNP samples comprising a poly(tetrafluoroethylene) (PTFE) core and either a poly(methyl methacrylate) (PMMA) or polystyrene (PS) shell. The same paper as well as the paper from 2020 demonstrate for the first time, that the analysis of the inelastic background in an XPS spectrum of CSNPs can identify and quantify the heterogeneity of the shell and the incomplete encapsulation of the core. The result from an XPS experiment is always an average across a large nanoparticle ensemble. Deviations from an ideal morphology within a single particle of the sample cannot be assessed separately. As opposed to that, a spatial resolution of 35 nm enables STXM to visualize the interior of single CSNPs which exhibit a sufficient X-ray absorption contrast between core and shell material. In the paper from 2018 a STXM analysis is demonstrated based on the example of the PTFE-PS CSNP samples already mentioned in the previous paragraph. In the publication from 2021 (Ca/Sr)F₂ core-shell like nanoparticle ensembles for the practical use in, among others, antireflective coatings are investigated. These nanoparticles do not possess a sharp interface between core and shell material, which is why a shell thickness determination as described in the second paragraph is inappropriate. Instead, in-depth profiles of the chemical composition are obtained by XPS experiments based on synchrotron radiation with variable X-ray photon energy to elucidate the internal morphology of the particles. Additionally, theoretical in-depth profiles of Ca and Sr XPS peak intensities are simulated, in order to facilitate the interpretation of the experiments. Thus, an enrichment of CaF₂ at the particle surface was determined, which could hardly have been assessed by any other analytical technique. Because this kind of non-destructive depth profiling by XPS is very demanding, more than usual effort is spent on gapless documentation of the experiments to ensure full reproducibility. Due to the vast diversity of nanoparticles differing in material, composition and shape, a measurement procedure cannot unalteredly be transferred from one sample to another. Nevertheless, because the papers in this thesis present a greater depth of reporting on the experiments than comparable publications, they constitute an important guidance for other scientists on how to obtain meaningful information about CSNPs from surface analysis. N2 - Obwohl wir sie oft nicht bewusst wahrnehmen, sind Nanopartikel heutzutage in den meisten Bereichen unseres Alltags präsent, unter anderem in Lebensmitteln und ihren Verpackungen, Medizin, Medikamenten, Kosmetik, Pigmenten und in elektronischen Geräten wie Computermonitoren. Ein Großteil dieser Partikel weist, beabsichtigt oder unbeabsichtigt, eine Kern-Schale Morphologie auf. Einfachheitshalber wird diese Morphologie eines Kern-Schale-Nanopartikels (CSNP) oft als ideal angenommen, d.h. als ein sphärischer Kern, der komplett von einer Schale homogener Dicke bedeckt ist, mit einer scharfen Grenzfläche zwischen Kern- und Schalenmaterial. Außerdem wird vielfach auch davon ausgegangen, alle Partikel der Probe hätten gleiche Schalendicken. Tatsächlich weichen die meisten realen CSNPs in verschiedenster Weise von diesem Idealmodell ab, mit oft drastischen Auswirkungen darauf, wie gut sie ihre Aufgabe in einer bestimmten Anwendung erfüllen. Das Thema dieser kumulativen Doktorarbeit ist die exakte Charakterisierung der wirklichen Morphologie von CSNPs mit modernen Röntgen-basierten Methoden, konkret Röntgen-Photoelektronen-Spektroskopie (XPS) und Raster-Transmissions-Röntgen-Mikroskopie (STXM). Der Fokus liegt insbesondere auf CSNPs, die von einer idealen Kern-Schale-Morphologie abweichen. Im Artikel von 2019 werden Schalendicken von Nanopartikeln aus den elastischen Peakintensitäten im XPS-Spektrum unter Annahme einer idealen Partikelmorphologie abgeleitet. Dies geschieht für eine Reihe von CSNP-Proben, welche aus einem Polytetrafluoroethylen- (PTFE) Kern und entweder einer Polymethylmethacrylat- (PMMA) oder Polystyrol- (PS) Schale bestehen. Sowohl dieser Artikel als auch der von 2020 zeigen erstmals, dass die Auswertung des inelastischen Untergrunds eines CSNP-XPS-Spektrums in der Lage ist, die Heterogenität der Schale und die unvollständige Ummantelung des Kerns zu identifizieren und zu quantifizieren. Das Ergebnis eines XPS-Experiments ist immer ein Mittelwert über ein großes Nanopartikelensemble. Inwiefern ein einzelner Partikel innerhalb der Probe von einer idealen Morphologie abweicht, kann nicht gesondert erfasst werden. Im Gegensatz dazu kann STXM mit einer räumlichen Auflösung von 35 nm das Innere einzelner CSNPs visualisieren, sofern sie genügend Röntgenabsorptionskontrast zwischen Kern- und Schalenmaterial aufweisen. Im Artikel von 2018 wird am Beispiel der bereits im vorherigen Abschnitt genannt PTFE-PS-CSNPProben eine solche STXM-Untersuchung demonstriert. In der Veröffentlichung von 2021 werden Kern-Schale-artige (Ca/Sr)F₂-Nanopartikel für den praktischen Einsatz in unter anderem entspiegelnden Beschichtungen untersucht. Da hier keine scharfe Grenzfläche zwischen Kern- und Schalenmaterial vorliegt, ist eine Schalendickenbestimmung, wie sie im zweiten Abschnitt diskutiert wird, nicht sinnvoll. Stattdessen werden mit Hilfe von XPS, angeregt mit Synchrotronstrahlung bei variabler Röntgenphotonenenergie, Tiefenprofile der chemischen Zusammensetzung generiert, um die innere Morphologie der Partikel aufzuklären. Zusätzlich werden theoretische Tiefenprofile der Ca- und Sr-XPS-Peakintensitäten simuliert, um die Interpretation der Experimente zu erleichtern. So wurde eine CaF₂-Anreicherung an der Oberfläche der Partikel festgestellt, die kaum mit einer anderen analytischen Methode hätte entdeckt werden können. Da diese zerstörungsfreie Bestimmung von XPS-Tiefenprofilen sehr anspruchsvoll ist, wird noch mehr als üblich auf die lückenlose Dokumentation des Experiments geachtet, um vollständige Reproduzierbarkeit zu gewährleisten. Aufgrund der enormen Vielfalt an CSNPs, die sich in Material, Zusammensetzung und Form unterscheiden, kann eine Messmethode nicht völlig unverändert von einer Probe auf eine andere übertragen werden. Nichtsdestotrotz, da die als Teil dieser Doktorarbeit präsentierten Artikel eine deutlich ausführlichere Beschreibung der Experimente enthalten als vergleichbare Publikationen, stellen sie eine wichtige Anleitung für andere Wissenschaftler dafür dar, wie aussagekräftige Informationen über CSNPs durch Oberflächenanalytik erhalten werden können. KW - Core-shell nanoparticle (CSNP) KW - X-ray photoelectron spectroscopy (XPS) KW - Scanning transmission X-ray microscopy (STXM) PY - 2022 DO - https://doi.org/10.18452/24312 SP - i EP - 243 PB - Humboldt-Universität CY - Berlin AN - OPUS4-54991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas T1 - Application of imaging ellipsometry and white light interference microscopy for detection of defects in epitaxially grown 4H-SiC layers N2 - Critical defects, also known as device killers, in wide bandgap semiconductors significantly affect the performance of power electronic devices. We used the methods imaging ellipsometry (IE) and white light interference microscopy (WLIM) in a hybrid optical metrology study for fast and non-destructive detection, classification, and characterisation of defects in 4H–SiC homoepitaxial layers on 4H–SiC substrates. Ellipsometry measurement results are confirmed by WLIM. They can be successfully applied for wafer characterisation already during production of SiC epilayers and for subsequent industrial quality control. T2 - EOS Annual Meeting (EOSAM 2022) CY - Porto DA - 12.09.2022 KW - Imaging ellipsometry KW - White light interference microscopy KW - 4H–SiC KW - Defects PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574209 DO - https://doi.org/10.1051/jeos/2023018 SN - 1990-2573 VL - 19 IS - 1 SP - 1 EP - 8 PB - EDP Sciences AN - OPUS4-57420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fink, Friedrich A1 - Stawski, Tomasz M. A1 - Stockmann, Jörg Manfred A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - Surface Modification of Kraft Lignin by Mechanochemical Processing with Sodium Percarbonate N2 - In this article, we present a novel one-pot mechanochemical reaction for the surface activation of lignin. The process involves environmentally friendly oxidation with hydrogen peroxide, depolymerization of fractions with high molecular mass, and introduction of new carbonyl functions into the lignin backbone. Kraft lignin was ground with sodium percarbonate and sodium hydroxide in a ball mill at different time intervals. Analyses by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), size exclusion chromatography (SEC), dynamic vapor sorption (DVS), and small-angle X-ray scattering (SAXS) showed significant improvements. After only 5 min of reaction, there was a 47% reduction in mass-average molecular weight and an increase in carboxyl functionalities. Chemical activation resulted in an approximately 2.8-fold increase in water adsorption. Principal component analysis (PCA) provided further insight into the correlations between IR spectra and SAXS parameters KW - Kraft Lignin KW - Mechanochemical oxidation KW - SEC KW - FTIR KW - SAXS KW - PCA PY - 2023 DO - https://doi.org/10.1021/acs.biomac.3c00584 SN - 1525-7797 SP - 1 EP - 11 PB - American Chemical Society AN - OPUS4-58074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - John, Elisabeth A1 - Lothenbach, Barbara ED - Carter, C. B. T1 - Cement hydration mechanisms through time – a review N2 - In this article the progress of the research on cement hydration mechanisms is critically reviewed, starting with the work of Le Chatelier and Michaelis during the late 19th century. Proposed mechanisms are discussed in the light of experimental data to highlight the role of new or improved analytical techniques. The focus of this article lies on the dormant period and the silicate reaction. Today many of the mechanisms proposed throughout time cannot withstand experimental evidence and need to be rejected, including the classical protective hydrate layer theory. However, it seems likely that hydrated surface species are involved in the mechanism. Theories that aim to explain the rate changes solely based on the nucleation and growth of portlandite can also not withstand experimental evidence. Nevertheless, the retardation of portlandite crystal growth through silicate ions is a relevant factor. Especially since it might present a mechanism for the nucleation of calcium silicate hydrate (C-S-H), backing up theories that propose C-S-H and portlandite to grow from the same nuclei. Finally, an overview over facts, that are currently considered to be valid and hence need to be regarded in future mechanisms is given. KW - Cement hydration KW - Calcium silicate hydrate PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577460 DO - https://doi.org/10.1007/s10853-023-08651-9 SN - 1573-4803 VL - 58 IS - 24 SP - 9805 EP - 9833 PB - Springer Science + Business Media B.V CY - Dordrecht [u.a.] AN - OPUS4-57746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - Characterisation of thin layers of Polydopamine used as functional coatings in X-Ray optics N2 - Polydopamine (PDA) is a biological / biomimetic polymer which has spiked considerable interest in recent years. Its monomer is an important neurotransmitter and it is one of the strongest glues produced by biological organisms. Polydopamine is a candidate for several applications, mainly in the field of biology and medicine, but also - recently - for layer coatings with optical, electrical, and mechanical function. In this work, we investigate PDA layers intended as reflectivity enhancers for mirror surfaces in X-ray astronomical observatories. It has previously been shown, that such X-ray telescopes can be improved by a coating of PDA in the thickness range of several nm. Accurate thickness determination is required to monitor and optimise the coating process. We use spectroscopic ellipsometry to determine first the dielectric function of the polydopamine layers using model coatings of sufficient thickness. This data is then used to accurately determine the layer thickness of much thinner PDA layers. This study resulted in data on the thickness and dielectric function of PDA layers that could lead to a better understanding of the correlation of layer thickness and layer properties depending on the process parameters. T2 - Deutsche Physikalische Gesellschaft - Frühjahrstagung CY - Berlin, Germany DA - 17.03.2024 KW - Ellipsometry KW - Polydopamine KW - Thin Polymer Layers KW - X-Ray Reflectometry KW - Biopolymers PY - 2024 AN - OPUS4-59760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - Determining thermal transitions in thin polymer layers by means of spectroscopic ellipsometry N2 - Thin polymer layers have enormous technical significance as polymer coatings on materials are very cost-effective for tailoring properties of surfaces. Apart from technical aspects in their use, thin polymer layers can be used to determine dimensional aspects in properties of material, such as confinement effects. In this work, we investigated several different polymer layer materials and determined their glass transition region by means of temperature-dependent spectroscopic ellipsometry. We have optimised our fitting procedure of the ellipsometric data produced in temperature ramp experiments. By this, we could measure the dependence of Tg on the layer thickness in a wide variety of thickness values, proving the existence of confinement effects in the investigated systems. We compare numerical methods for determining the location of the glass transition and discuss the possibilities of different analysis methods when determining thermal transitions. We also discuss the simultaneous existence of these transitions and annealing effects and the implications on the accuracy of the determined data. T2 - 12th Workshop Ellipsometry 2023 CY - Prague, Czech Republic DA - 18.09.2023 KW - Thin Films KW - Polymers KW - Ellipsometry KW - Themal Transitions PY - 2023 AN - OPUS4-58413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena T1 - Hybrid measurement technique for defect characterisation in wide bandgap semiconductors N2 - Climate change and increasing demand for electricity require the use of power electronics based on new wide bandgap (WBG) compound semiconductors. Power electronics devices are used in numerous application areas to control and convert electric energy. These may include generation and distribution of renewable energy for green hydrogen, electrification of transport or 5G communication. WBG electronics have much higher efficiency than the silicon-based ones and can operate at higher power densities, voltages, temperatures and switching frequencies with low energy losses. However, defects in the semiconductors can considerably affect the performance of power electronic devices or make their operation even impossible. The presentation will show the application of spectroscopic and imaging ellipsometry as well as white light interference microscopy for defect characterisation in SiC, GaN and Ga2O3 over a wide wavelength range. We used parameterized modelling of ellipsometric transfer parameters to determine the dielectric properties of bulk materials and thin layers. Imaging ellipsometry offers more information and is an advanced variant of optical microscopy, combining the lateral resolution of optical microscopy with the extreme sensitivity to surface and interface effects of ellipsometry. Surface topography and morphology of different types of defects were additionally investigated with imaging white light interference microscopy. Modern electronic thin film components require complex surface analysis methodologies and hybrid metrology. Hybrid measurement techniques enable fast and non-destructive traceable characterisation of thin film compound semiconductors as well as accurate detection and identification of defects. This methodical approach leads to a better understanding of the materials themselves and of the defect formation mechanisms during manufacturing. This work aims to enable highly reproducible manufacturing of compound semiconductor power electronics as well as operation monitoring to ensure failure-safety of electronic systems in power electronic devices. T2 - Abteilungskolloquium 2023, BAM CY - Berlin, Germany DA - 09.02.2023 KW - Spectroscopic and imaging ellipsometry KW - White light interference microscopy KW - Wide bandgap semiconductors KW - Surface analysis, PY - 2023 AN - OPUS4-59443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grundmann, Jana A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Klapetek, Petr A1 - Pereira, Silvania F. A1 - Rafighdoost, Jila A1 - Bodermann, Bernd T1 - Optical and Tactile Measurements on SiC Sample Defects N2 - The different defect types on SiC samples are measured with various measurement methods including optical and tactile methods. The defect types investigated include particles, carrots and triangles and they are analyzed with imaging ellipsometry, coherent Fourier scatterometry and atomic force microscopy. Each of these methods measures different properties of the defects and they all together contribute to a complete analysis. T2 - SMSI 2023 - Sensor and Measurement Science International CY - Nuremberg, Germany DA - 08.05.2023 KW - Defects KW - Silicon carbide KW - Imaging ellipsometry KW - Atomic force microscopy KW - Coherent Fourier scatterometry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593397 SN - 978-3-9819376-8-8 DO - https://doi.org/10.5162/SMSI2023/D5.2 VL - 2023/D5 SP - 233 EP - 234 PB - AMA Service CY - Wunstorf AN - OPUS4-59339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena T1 - Imaging spectroscopic ellipsometry for investigation of energy materials and materials for nano-electronics N2 - Ellipsometry is a very powerful tool used for accurate material investigation in a wide wavelength range. It is a non-destructive and fast method. Imaging ellipsometry as a combination of optical microscopy and ellipsometry enables spatially resolved measurements when determining the layer thickness and dielectric properties of thin layers. It is known for its high polarisation sensitivity and high contrast for the surface structures. In this contribution we show the application of the imaging ellipsometry for detection of defects in energy materials and quality validation of possible reference materials for nano-electronics. Defects in wide bandgap semiconductors, in homoepitaxial SiC and heteroepitaxial GaN layers on transparent SiC substrates, can be successfully detected and classified by means of imaging ellipsometry. Correlation of imaging ellipsometry results with results from complementary techniques such as white light interference microscopy as well as atomic force microscopy contribute to understanding of surface topography and defect formation mechanisms. We discuss the potential of different methods for analysing ellipsometric map data for monitoring the defect densities. Electric properties of materials at the nanoscale can be investigated by means of scanning probe microscopy methods such as scanning microwave microscopy and conductive atomic force microscopy. However, development of new robust and easy-to-use calibration methods and calibration standards is essential to increase the traceability of these methods and allow their broad application in industry. We show how imaging spectroscopic ellipsometry can be used for development and monitoring of processing quality of patterned reference samples based on indium tin oxide (ITO) layer with different thickness and conductivity. T2 - 12th Workshop on Spectroscopic Ellipsometry (WSE) CY - Prague, Czech Republic DA - 18.09.2023 KW - Ellipsometry KW - Thin Films KW - Transparent Conductive Oxides KW - Energy materials KW - White light interference microscopy KW - Nanoelectronics KW - Wide-bandgap semiconductors PY - 2023 AN - OPUS4-59340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena T1 - Modell based ellipsometry standards for different application cases and their application for real non-ideal systems N2 - Ellipsometry enables the investigation of material properties over a broad spectral range. As a fast and non-destructive method, it is widely used in industry for quality assurance. Despite the wide application of ellipsometry and its high industrial relevance there are some material-specific standards and there have been no generally accepted standards dealing with model validation and measurement uncertainties. The first German standard DIN50989-1: 2018 Ellipsometry – Part1: Principles (currently international standard ISO 23131: 2021) marks the beginning of a 6-part standard series for ellipsometry, which was developed under consideration of GUM. T2 - International Conference on Spectroscopic Ellipsometry (ICSE-9) CY - Beijing, China DA - 22.05.2022 KW - Spectroscopic and imaging ellipsometry KW - Standards KW - Uncertainties PY - 2022 AN - OPUS4-56698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena T1 - Hybrid optical measurement technique for detection of defects in epitaxially grown 4H-SiC layers N2 - Recent developments in power electronics require the use of new wide bandgap compound semiconductors. Silicon carbide (SiC) is one of the most promising materials for power electronics due to its outstanding properties and commercial availability. Some types of defects in the SiC substrates or homoepitaxial SiC layers can affect the performance of electronic devices in a serious manner or make its operation even impossible. Optical methods such as imaging ellipsometry (IE) and white light interference microscopy (WLIM) were applied for fast and non-contact investigation of defects in the epitaxially grown 12 µm 4H-SiC layers on 4H- SiC substrates. T2 - EOS Annual Meeting (EOSAM 2022) CY - Porto, Portugal DA - 12.09.2022 KW - Imaging ellipsometry KW - White light interference microscopy KW - Epitaxially grown 4H-SiC layers KW - Wide bandgap compound semiconductors PY - 2022 AN - OPUS4-56705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Döhring, Thorsten A1 - Stanik, Eva A1 - Cotroneo, Vincenzo A1 - Gibertini, Eugenio T1 - Ellipsometrical characterization of poly-dopamine layers considered for technical applications N2 - Although the organic molecule dopamine (3,4-dihydroxyphenethylamine) is commonly known as the “hormone of happiness”, thin films of poly-dopamine also have interesting technical properties. When produced by dip coating, the self-organizing layers grow in a reproducible thickness of single or multiple molecule monolayers of a few nanometer thickness only. In this work, we introduce a method of determining the layer thickness of poly-dopamine on mirrors for astronomical X-ray telescopes. This work is based on spectroscopic ellipsometry measurements and involves the development of an optical model for the poly-dopamine layers including the dielectric function. Thereby the complex refractive index of the produced layers was determined, covering the range from the ultraviolet to the near infrared spectral region. These measurement results and the corresponding technical challenges are presented in this contribution. Furthermore, an outlook to potential technical applications of this interesting material is given and poly-dopamine layers will make scientist and engineers hopefully happy as an innovative and fascinating technical solution for the future. T2 - SPIE PHOTONICS EUROPE CY - Strasbourg. France DA - 08.04.2024 KW - Polydopamine KW - Thin Solid Layers KW - X-ray optics KW - Spectroscopic Ellipsometry PY - 2024 SN - 978-1-5106-7344-1 DO - https://doi.org/10.1117/12.3015281 VL - 13013 SP - 1 EP - 8 PB - SPIE digital library AN - OPUS4-60954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan A1 - Hertwig, Andreas A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Signature of the Adsorbed Layer on the glass transition of thin polymer Films: Broadband Dielectric spectroscopy and related techniques N2 - In well annealed thin polymer films with non-repulsive polymer/substrate interaction with a substrate an irreversibly adsorbed layer is expected to form. These adsorbed layers have shown a great potential for technological applications [1]. However, the growth kinetics and the molecular mobility of the adsorbed layer is still not fully understood. This concerns also the influence of the adsorbed layer on the thickness dependence of the glass transition temperature of thin films. This is partly due to the difficult accessibility of these layers in thin films. Here, the irreversibly adsorbed layers of semi-rigid mail chain polymers like polycarbonate or polysulfone are revealed by solvent-leaching experiments. First, the growth kinetics of these layers is investigated as a function of annealing time. The film thickness, topography and the quality of the adsorbed layer is controlled by Atomic Force Microscopy (AFM). Secondly, the molecular mobility of the adsorbed layer is investigated by Broadband Dielectric Spectroscopy (BDS). A developed nanostructured capacitor arrangement is employed to measure the layer with a free surface. In addition to the dielectric experiments, spectroscopic Ellipsometry measurements are carried out to estimate the glass transition of the thin films. The thickness dependence of the glass transition of the thin films is correlated with the adsorbed layer [2,3]. Acknowledgments D. Hülagü and G. Hidde thanked for the help with the ellipsometry measurements. T2 - 12. Conference on Broabband Dielectric Spectroscopy and its Application CY - Lisbon, Portugal DA - 01.09.2024 KW - Thin films PY - 2024 AN - OPUS4-60959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas T1 - Hybrid optical measurement technique for detection of defects in epitaxially grown 4H-SiC layers N2 - Recent developments in power electronics require the use of new wide bandgap compound semiconductor. We demonstrate the use of the ellipsometry and white light interference microscopy to detect defects in epitaxially grown SiC layers on SiC substrates. Such hybrid optical metrology methods can be used to better understand the mechanism of the development of the defects as well as their effects on the material´s optoelectronic properties. T2 - EOS Annual Meeting (EOSAM 2022) CY - Porto, Portugal DA - 12.09.2022 KW - Imaging ellipsometry KW - White light interference microscopy KW - Wide bandgap compound semiconductor KW - Epitaxially grown 4H-SiC layers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561113 DO - https://doi.org/10.1051/epjconf/202226610001 VL - 266 SP - 1 EP - 2 AN - OPUS4-56111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - John, Elisabeth A1 - Firdous, Rafia A1 - Hirsch, Tamino A1 - Kaczmarek, Daria A1 - Ziesack, Kevin A1 - Buchwald, Anja A1 - Stephan, Dietmar A1 - Kruschwitz, Sabine ED - Ferrara, Liberato ED - Muciaccia, Giovanni ED - di Summa, Davide T1 - Beyond Theory: Pioneering AI-Driven Materials Design in the Sustainable Building Material Lab N2 - This work focuses on Artificial Intelligence (AI)-driven materials design, addressing the challenge of improving the sustainability of building materials amid complex formulations. These formulations involve various components, such as binders, additives, and recycled aggregates, necessitating a balance between environmental impact and performance. Traditional experimental methods often fall short in managing the complexity of material composition, hindering fast enough development of optimal solutions. Our research explores complex composition materials design through a comprehensive, comparative lab study between Data-Driven Design, using SLAMD - an open-source AI materials design tool, and traditional Design of Experiments (DOE). We aimed to develop a high-performance, alkali-activated material using secondary precursors, aiming for a compressive strength exceeding 100 MPa after 7-days. The findings reveal that AI-driven design outperforms DOE in development speed and material quality, successfully identif. T2 - 4 RILEM Spring Convention and Conference on advanced construction materials and processes for a carbon neutral society 2024 CY - Milano, Italy DA - 07.04.2024 KW - Secondary Raw Materials KW - Data-Driven Design KW - Sequential Learning KW - Design of Experiments KW - Alkali-Activated Binder PY - 2024 SN - 978-3-03170281-5 DO - https://doi.org/10.1007/978-3-031-70281-5_31 SN - 2211-0852 VL - 2 SP - 274 EP - 282 PB - Springer AN - OPUS4-61662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -