TY - JOUR A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Eckert, J. G. A1 - Lutowski, Marc A1 - Geißler, Daniel A1 - Hertwig, Andreas A1 - Hidde, Gundula A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads N2 - Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 μm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials. KW - Optical spectroscopy KW - Particle KW - Optical assay KW - IR spectroscopy KW - Fluorescence KW - Quantum yield KW - Quality assurance KW - Nano KW - Synthesis KW - Surface chemistry KW - Quantification KW - Method KW - Conductometry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581502 DO - https://doi.org/10.1038/s41598-023-38518-7 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 15 PB - Springer Nature CY - London AN - OPUS4-58150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scholtz, Lena T1 - Luminescent, nanoparticle-loaded polymer microparticles - comparing synthesis routes N2 - Our comparison showed that the route used for the synthesis of luminescent, NP-loaded PSMPs can play a significant role for the luminescence properties, as well as the number of accessible SFGs, and hence subsequent functionalization. This should be considered for future applications. T2 - Bunsen-Tagung 2023 CY - Berlin, Germany DA - 05.06.2023 KW - Fluorescence KW - Polymerization KW - Microbeads KW - Quantum dots KW - Comparison PY - 2023 AN - OPUS4-57628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavernaro, Isabella A1 - Rajotte, Isabelle A1 - Thibeault, Marie-Pier A1 - Sander, Philipp C. A1 - Kodra, Oltion A1 - Lopinski, Gregory A1 - Radnik, Jörg A1 - Johnston, Linda J. A1 - Brinkmann, Andreas A1 - Resch-Genger, Ute T1 - Quantifying surface groups on aminated silica nanoparticles of different size, surface chemistry, and porosity with solution NMR, XPS, optical assays, and potentiometric titration N2 - We assessed the quantification of surface amino functional groups (FGs) for a large set of commercial and custom-made aminated silica nanoparticles (SiO2 NPs) with sizes of 20–100 nm, prepared with different sol–gel routes, different amounts of surface amino FGs, and different porosity with four methods providing different, yet connected measurands in a bilateral study of two laboratories, BAM and NRC, with the overall aim to develop standardizable measurements for surface FG quantification. Special emphasis was dedicated to traceable quantitative magnetic resonance spectroscopy (qNMR) performed with dissolved SiO2 NPs. For the cost efficient and automatable screening of the amount of surface amino FGs done in a first step of this study, the optical fluorescamine assay and a potentiometric titration method were utilized by one partner, i.e., BAM, yielding the amount of primary amino FGs accessible for the reaction with a dye precursor and the total amount of (de)protonatable FGs. These measurements, which give estimates of the minimum and maximum number of surface amino FGs, laid the basis for quantifying the amount of amino silane molecules with chemo-selective qNMR with stepwise fine-tuned workflows, involving centrifugation, drying, weighting, dissolution, measurement, and data evaluation steps jointly performed by BAM and NRC. Data comparability and relative standard deviations (RSDs) obtained by both labs were used as quality measures for method optimization and as prerequisites to identify method-inherent limitations to be later considered for standardized measurement protocols. Additionally, the nitrogen (N) to silicon (Si) ratio in the near-surface region of the SiO2 NPs was determined by both labs using X-ray photoelectron spectroscopy (XPS), a well established surface sensitive analytical method increasingly utilized for microparticles and nano-objects which is currently also in the focus of international standardization activities. Overall, our results underline the importance of multi-method characterization studies for quantifying FGs on NMs involving at least two expert laboratories for effectively identifying sources of uncertainty, validating analytical methods, and deriving NM structure–property relationships. KW - Advanced Materials KW - Amino Groups KW - Calibration KW - Characterization KW - Functional groups KW - Method Comparison KW - Nano Particle KW - Validation KW - XPS KW - Optical Assay KW - Quantification KW - Surface Analysis KW - Reference Materials KW - Synthesis KW - Fluorescence PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649992 DO - https://doi.org/10.1039/d5na00794a VL - 7 IS - 21 SP - 6888 EP - 6900 PB - Royal Society of Chemistry AN - OPUS4-64999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - The emp project smurfnano – Standardizing the quantification of surface functionalities, ligands, and coatings on nanomaterials N2 - For industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage, meanwhile engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. These needs are addressed by the recently started European metrology project SMURFnano involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. This project as well as first results derived from the development of test and reference materials with a well characterized surface chemistry and ongoing interlaboratory comparisons will be presented. T2 - LNE Workshop CY - Paris, France DA - 04.11.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Surface KW - Standardization KW - Reference material KW - Functional group KW - Quantification KW - Coating KW - Automation KW - Potentiometry KW - Method KW - Validation KW - Optical assay KW - Fluram KW - qNMR KW - Comparison KW - ILC PY - 2025 AN - OPUS4-64725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Nanocarriers – Challenges Imposed by Material Characterization N2 - A brief perspective of BAM on nanocarriers is presented including examples with special emphasis on the characterization of such materials and underlying challenges. In this respect, also ongoing activities at BAM on different types of core/shell nanomaterials and related systems are briefly summarized. T2 - Kolloquium BfR CY - Online meeting DA - 18.03.2021 KW - Nanomaterial KW - Nanocarrier KW - Size KW - Surface chemistry KW - Release kinetics KW - Chemical composition KW - Core/shell nanoparticle KW - Quantum dot KW - Spectroscopy KW - Fluorescence PY - 2021 AN - OPUS4-52412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardised Measurements of Surface Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage which improve the quality of life and European prosperity. NP function, performance, interaction with biological species, and environmental fate are largely determined by their surface functionalities. Standardized repeatable surface characterization methods are therefore vital for quality control of NPs, and to meet increasing concerns regarding their safety. Therefore, industry, regulatory agencies, and policymakers need validated traceable measurement methods and reference materials. This calls for fit-for-purpose, validated, and standardized methods, and reference data and materials on the surface chemistry of engineered NPs. Here, we present a concept for the development of such standardized measurement protocols utilizing method cross-validation and interlaboratory comparisons (ILCs) with emphasis on both advanced measurement methods such as quantitative Nuclear Magnetic Resonance (qNMR), X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) and cost-efficient, non-surface specific methods like optical assays and electrochemical titration methods. T2 - European Partnership on Metrology 2023 Review Conference CY - Amsterdam, Netherlands DA - 07.11.2023 KW - Surface chemistry KW - Quality assurance KW - Traceability PY - 2023 AN - OPUS4-59142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scholtz, Lena T1 - Standardized Measurements of Surface Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely and commonly fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage. NP function, their interaction with biological species, and also their environmental fate are largely determined by the surface functionalities of the particles. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, determination of their applicability, and mandatory to meet increasing concerns regarding their safety. In addition, industry as well as international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized up until now. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR), as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter, typically less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required to provide well characterized test and reference nanomaterials including benchmark values.[1] These needs are addressed by the current European metrology project SMURFnano, involving 12 partners from different National Metrology Institutes, designated and research institutes, two university groups as well as one large company and one SME producing NPs. This project, as well as first results derived from the development of test and reference materials with a well characterized surface chemistry, and ongoing interlaboratory comparisons, will be presented. T2 - eMRS - Fall Meeting 2025 CY - Warsaw, Poland DA - 15.09.2025 KW - Nano KW - Particle KW - Silica KW - Polymer KW - Metrology KW - Quality assurance KW - Reference material KW - Surface chemistry KW - Size KW - Shape KW - Particle number concentration KW - Method KW - Optical assay KW - qNMR KW - Validation KW - Potentiometry KW - XPS PY - 2025 AN - OPUS4-64243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - The SMURFnano project - standardized measurements of surface functionalities on nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, optoelectronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required and well characterized test and reference nanomaterials providing benchmark values.[1] These needs are addressed by the recently started European metrology project SMURFnano involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. This project as well as first results derived from the development of test and reference materials with a well characterized surface chemistry and ongoing interlaboratory comparisons will be presented. T2 - eMRS CY - Strasbourg, France DA - 27.05.2025 KW - Quality assurance KW - Reference analysis KW - Standardization KW - Metrology KW - Reference products KW - Reference materials KW - Mission KW - Surface chemistry KW - Nano KW - Particle KW - qNMR KW - XPS KW - Fluorescence KW - Optical assays KW - Interlaboratory comparison KW - Uncertainty PY - 2025 AN - OPUS4-63243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Homann, Christian A1 - Scholtz, Lena A1 - Radnik, Jörg T1 - Validated and standardized measurements and quantification of surface functionalities on nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage which improve the quality of life and European prosperity. Nanoparticle function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, regulatory agencies, and policymakers need validated traceable measurement methods and reference materials. Industry, e.g., must comply with various regulations, including the chemicals´ regulation REACH (2006/1907) and cosmetic products regulation (2009/1223), depending on the use. Therefore, standardization organizations such as the European Committee for Standardization (CEN), the International Organization for Standardization (ISO), and the International Electrotechnical Commission (IEC) as well as industrial stakeholders, European Medicine Agency (EMA), and the nanosafety community responsible for guidelines for nanomaterial (NM) regulation like the Organisation for Economic Co-operation and Development (OECD) have expressed needs for standardized methodologies to measure NP surface chemical properties. Despite these needs, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Specifically, validated quantitative procedures for the measurement of thickness and composition of nanoparticle coatings and other surface functionalities are needed. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required. These needs have been addressed by us in two interlaboratory comparisons, that will be presented. In addition, the European metrology project SMURFnano will be briefly presented involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. T2 - NanoCarbon Annual Conference 2025 CY - Würzburg, Germany DA - 18.03.2025 KW - Nano KW - Particle KW - Silica KW - Quality assurance KW - Reference material KW - Surface chemistry KW - Size KW - Shape KW - Particle number concentration KW - Method KW - Optical assay KW - QNMR KW - Validation KW - Potentiometry KW - XPS PY - 2025 AN - OPUS4-62790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brinkmann, A. T1 - A qNMR Method for Quantification of Surface Functional Groups on Silica Nanoparticles: Bilateral Comparisons N2 - Nanomaterials (NM) of different size, shape, morphology, composition, and surface chemistry are used in a wide range of applications, including medical diagnostics, and imaging and consumer products. The importance of an adequate and reliable characterization is crucial for quality control during NM production, for ensuring an optimum function for the desired application, and for risk assessment studies. Currently there is a lack of reliable and validated methods and reference materials for quantifying NM surface functional groups, despite the importance of surface chemistry for the production of colloidally stable materials, further processing steps, and the interaction with the environment and biological species. Following our initial study on the use of qNMR for quantifying the amount of amino groups on surface modified silica (1), we have carried out two bilateral comparisons between NRC and BAM to further develop and optimize a reliable protocol for these measurements (2,3), using aminated silica nanoparticles prepared by multiple methods, both commercial and in-house synthesized, and with varying amine content. Solution qNMR is based on dissolving aminated silica nanoparticles in strong base to release the surface grafted amino silane molecules, followed by the quantification of these molecules by solution qNMR using an internal standard. This method provides the amount of total amino groups present in the sample, which can differ from probe accessible or surface-sensitive measurements performed with X-Ray photoelectron spectroscopy (XPS). Complementary measurements using optical assays, involving a labeling step with a dye reporter, and XPS are employed to assess the probe accessible and surface amine content for representative samples. These measurements, which illustrate the advantages and potential limitations of the different characterization methods, will contribute to establish a basis for testing the protocol in an international inter-laboratory comparison and for standardization at ISO Technical Committee 229 – Nanotechnologies. T2 - BERM CY - Halifax, Canada DA - 01.06.2025 KW - Quality assurance KW - Nano KW - Particle KW - Synthesis KW - Advanced materials KW - Characterization KW - Electron microscopy KW - Silica KW - Surface KW - qNMR KW - Optical assay KW - Interlaboratory comparison KW - Metrology KW - Standardization PY - 2025 AN - OPUS4-63527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Homann, Christian A1 - Scholtz, Lena A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Validated and standardized measurements and quantification of surface functionalities on nanoparticles N2 - Surface-functionalized organic and inorganic engineered nanomaterials (NMs) are widely applied in the life and materials sciences. NM performance depends on key factors such as particle size and shape, crystal phase, morphology, chemical composition, and surface chemistry, i.e., surface coatings, functional groups (FGs), and ligands.1 The latter controls their processability and interaction with the environment and largely their possible toxicity. Thus, methods for FG quantification are important tools for quality control of NM production processes and can foster the sustainable development of functional and safe(r) NMs. This underlines the importance of validated and standardized analytical methods for surface analysis and reference materials.2 This encouraged us to explore simple and versatile tools for quantifying common bioanalytically relevant FGs such as optical assays, electrochemical titration methods, quantitative nuclear magnetic resonance spectroscopy (qNMR), and X-Ray photoelectron spectroscopy (XPS) and to perform a first interlaboratory comparison (ILC) on surface FG quantification.3,4 In a follow-up ILC, BAM and NRC explored qNMR sample preparation, measurement, and data evaluation protocols for commercial and custom-made aminated SiO2 NPs with sizes of 20-100 nm, different amounts of surface amino FGs, and different porosity.5,6 First, the number of amino FGs accessible for a dye reporter was determined with a cost-efficient, automated optical fluorescamine assay. Then, qNMR workflows and protocols were stepwise fine-tuned. The qNMR ILC was complemented by joint XPS measurements. BAM also examined the applicability of fast and automatable potentiometric titrations to screen the total amount of (de)protonable FGs on aminated SiO2 NPs. Our results underline the need to evaluate protocols for FG quantification in ILCs and the advantages of multi-method characterization strategies for efficient method cross validation. T2 - Surface and Micro/Nano Analysis Working Group CY - Paris, France DA - 08.04.2025 KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nano KW - Particle KW - Surface analysis KW - XPS KW - Traceability KW - Metrology KW - Calibration KW - Reference data KW - Reference product KW - Digital certificate KW - QNMR KW - Potentiometry PY - 2025 AN - OPUS4-62969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portesi, C. T1 - qNMR for standardised measurements of surface functionalities on nanoparticles N2 - Engineered nanoparticles have a large application potential in fields such as medicine, sensing, catalysis, energy storage, and opto-electronics [1]. The applicability and performance of engineered nanoparticles is largely determined by their surface chemistry, i.e. functional groups and ligands on the particle surface. However, documented standards to quantify functional groups and ligands currently do not exist. Such standards are required to support quality control of nanomaterial production and surface modification processes, and safe-by-design concepts and to meet regulatory requirements. Here, this issue is addressed by developing and standardizing quantitative Nuclear Magnetic Resonance (qNMR) methods for the characterization of surface functionalized nanoparticles which specifically address the determination of the amount and chemical composition of surface functionalities and coatings. This work is being developed under the EMP project 23NRM02 SMURFnano - Standardised measurements of surface functionalities on nanoparticles. qNMR competence of 7 qNMR laboratories involved in the project was first tested with a molecular model sample i.e. citrate, to be assessed in terms of purity. Citrate is often used as hydrophilic surface ligand for different nanoparticles. Then, the first nanoparticle samples, here a set of aminated SiO2 NPs [1] with a particle size of 100 nm and two amino group densities, prepared and characterized by BAM regarding size and surface charge as well as stability over 21 months with an optical assay and qNMR, were assessed in an international interlaboratory comparison (ILC) on qNMR. Thereby, the amount of surface amino groups introduced by grafting of the silica cores with different amounts of 3-aminopropyl)triethoxysilane (APTES) was quantified by each participant following a sample preparation protocol previously developed by BAM and NRC.The results of the ILC were then used to refine the protocol for sample preparation and to identify critical points for qNMR measurement and data analysis. This work will contribute to the development of a Preliminary Work Item (PWI) 19257 (ISO/TC 229) on surface functional groups and coatings on nano-objects. Also, it will lay the groundwork to perform ILCs on the quantification and determination of the amount of surface functional groups under the roof of VAMAS TWA2 (Surface Chemical Analysis) for different types of nanomaterials possessing industry-relevant surface functionalities using qNMR. These ILCs will be complemented by other techniques like X-Ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). T2 - BERM CY - Halifax, Canada DA - 01.06.2025 KW - Quality assurance KW - Nano KW - Particle KW - Synthesis KW - Advanced materials KW - Characterization KW - Electron microscopy KW - Silica KW - Surface KW - qNMR KW - Optical assay KW - Interlaboratory comparison KW - Metrology KW - Validation KW - Standardization PY - 2025 AN - OPUS4-63443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Quantifying the total and accessible amount of surface functionalities and ligands on nano-materials: Overview and recommended methods N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. This calls for reliable, reproducible, and standardized surface characterization methods, which are vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Validated and standardized workflows for surface analysis are also increasingly requested by industry, international standardization organizations, regulatory agencies, and policymakers. To establish comparable measurements of surface functionalities across different labs and ease instrument performance validation, reference test materials and reference materials of known surface chemistry as well as reference data are needed. In the following, different methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques are presented and discussed regarding method-inherent advantages and limitations. Special emphasis is dedicated to traceable quantitative nuclear magnetic resonance (qNMR), X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. T2 - LNE Workshop CY - Paris, France DA - 04.11.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Surface KW - Standardization KW - Reference material KW - Functional group KW - Quantification KW - Coating KW - Automation KW - Potentiometry KW - Method KW - Validation KW - Optical assay KW - Fluram KW - Fluorescamine KW - qNMR KW - Comparison KW - ILC PY - 2025 AN - OPUS4-64726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardized Measurements of Surface - Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, optoelectronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required and well characterized test and reference nanomaterials providing benchmark values.[1] These needs are addressed by the recently started European metrology project SMURFnano involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. This project as well as first results derived from the development of test and reference materials with a well characterized surface chemistry and ongoing interlaboratory comparisons will be presented. T2 - eMRS CY - Strasbourg, France DA - 27.05.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Silica KW - Upconversion nanoparticles KW - Optical assay KW - qNMR KW - Surface analysis KW - Ligand KW - Quantification KW - Functional group KW - XPS KW - ToF-SIMS KW - Polymer particle KW - Surface modification KW - Potentiometry KW - Metrology KW - Method KW - Validation KW - ILC PY - 2025 AN - OPUS4-63339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardized Measurements of Surface Functionalities on Nanoparticles - F. Synthesis and characterization of functional nanocomposite materials N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely and commonly fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage. NP function, their interaction with biological species, and also their environmental fate are largely determined by the surface functionalities of the particles. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, determination of their applicability, and mandatory to meet increasing concerns regarding their safety. In addition, industry as well as international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized up until now. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR), as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter, typically less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required to provide well characterized test and reference nanomaterials including benchmark values.[1] These needs are addressed by the current European metrology project SMURFnano, involving 12 partners from different National Metrology Institutes, designated and research institutes, two university groups as well as one large company and one SME producing NPs. This project, as well as first results derived from the development of test and reference materials with a well characterized surface chemistry, and ongoing interlaboratory comparisons, will be presented. T2 - Shift 2025 CY - La Laguna, Tenerife DA - 13.10.2025 KW - Nano KW - Particle KW - Silica KW - Iron oxide KW - Lanthanide KW - Metrology KW - Quality assurance KW - Reference material KW - Surface chemistry KW - Size KW - Shape KW - Particle number concentration KW - Method KW - Optical assay KW - qNMR KW - Validation KW - Potentiometry KW - XPS KW - ILC KW - Standardization PY - 2025 AN - OPUS4-64370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Knigge, Xenia A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Cant, D.J.H. A1 - Shard, A.G. A1 - Clifford, C.A. T1 - Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy N2 - Core–shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. KW - X-ray spectroscopy KW - Nanoparticles KW - Spectroscopy / Instrumentation KW - Spectroscopy / Theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548305 DO - https://doi.org/10.1007/s00216-022-04057-9 VL - 414 IS - 15 SP - 4331 EP - 4345 PB - SpringerNature AN - OPUS4-54830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dhamo, Lorena A1 - Wegner, Karl David A1 - Würth, Christian A1 - Häusler, I. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Assessing the influence of microwave-assisted synthesis parameters and stabilizing ligands on the optical properties of AIS/ZnS quantum dots N2 - Luminescent semiconductor quantum dots (QDs) are frequently used in the life and material sciences as reporter for bioimaging studies and as active components in devices such as displays, light-emitting diodes, solar cells, and sensors. Increasing concerns regarding the use of toxic elements like cadmium and lead, and hazardous organic solvents during QD synthesis have meanwhile triggered the search for heavy-metal free QDs using green chemistry syntheses methods. Interesting candidates are ternary AgInS2 (AIS) QDs that exhibit broad photoluminescence (PL) bands, large effective Stokes shifts, high PL quantum yields (PL QYs), and long PL lifetimes, which are particularly beneficial for applications such as bioimaging, white light-emitting diodes, and solar concentrators. In addition, these nanomaterials can be prepared in high quality with a microwave-assisted (MW) synthesis in aqueous solution. The homogeneous heat diffusion and instant temperature rise of the MW synthesis enables a better control of QD nucleation and growth and thus increases the batch-to-batch reproducibility. In this study, we systematically explored the MW synthesis of AIS/ZnS QDs by varying parameters such as the order of reagent addition, precursor concentration, and type of stabilizing thiol ligand, and assessed their influence on the optical properties of the resulting AIS/ZnS QDs. Under optimized synthesis conditions, water-soluble AIS/ZnS QDs with a PL QY of 65% and excellent colloidal and long-term stability could be reproducible prepared. KW - Quantum dots KW - Microwave-assisted synthesis KW - AgInS KW - Aqueous synthesis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567091 DO - https://doi.org/10.1038/s41598-022-25498-3 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 11 PB - Nature Publishing Group CY - London AN - OPUS4-56709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Automatic Image Segmentation and Analysis using Neural Networks N2 - We present a workflow for obtaining fully trained artificial neural networks that can perform automatic particle segmentations of agglomerated, non-spherical nanoparticles from electron microscopy images “from scratch”, without the need for large training data sets of manually annotated images. This is achieved by using unsupervised learning for most of the training dataset generation, making heavy use of generative adversarial networks and especially unpaired image-to-image translation via cycle-consistent adversarial networks. The whole process only requires about 15 minutes of hands-on time by a user and can typically be finished within less than 12 hours when training on a single graphics card (GPU). After training, SEM image analysis can be carried out by the artificial neural network within seconds, and the segmented images can be used for automatically extracting and calculating various other particle size and shape descriptors. T2 - Machine Learning Workshop CY - Online Meeting DA - 18.03.2021 KW - Electron Microscopy KW - Neural Networks KW - Artificial Intelligence KW - Image Segmentation KW - Automated Image Analysis PY - 2021 AN - OPUS4-52304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Miropoltsev, M. A1 - Wegner, Karl David A1 - Häusler, I. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Influence of Hydrophilic Thiol Ligands of Varying Denticity on the Luminescence Properties and Colloidal Stability of Quaternary Semiconductor Nanocrystals N2 - Binary photoluminescent semiconductor nanocrystals (quantum dots, QDs) are one of the best studied fluorescent nanomaterials, and their unique optoelectronic properties paved the road to many applications in (bio)nanophotonics, optoelectronics, and photovoltaics. However, concerns related to their toxic constituents like cadmium or lead and the emerging interest in greener chemistry synthesis approaches hamper their future applicability. Interesting alternatives for some applications like biosensing or bioimaging are heavy-metal-free ternary QDs like AgInS2 (AIS), CuInS2 (CIS), and quaternary QDs such as AIS-ZnS (ZAIS). In this context, we explored the effect of ligand denticity on the organic-to-aqueous phase transfer of oleylamine-stabilized ZAIS QDs with the hydrophilic ligands mercaptopropionic acid (MPA), dihydrolipoic acid (DHLA), and 3-mercapto-2,2-bis(mercaptomethyl)propanoic acid (3MPA), bearing mono-, bi-, and trialkyl thiol groups. Spectroscopic studies of the resulting water-dispersible ZAIS QDs revealed a considerable influence of ligand denticity and ligand-to-QD ratio on the spectral position and width (FWHM; full width at half-maximum) of the photoluminescence (PL) bands, the PL quantum yields (PL QY), and the PL decay kinetics. Thiol capping and phase transfer resulted in a loss in PL by at least a factor of 2. The ligand-induced PL quenching observed particularly for ligands bearing two or three thiol groups was attributed to the facilitated formation of surface-bound disulfides. The best colloidal stability under high dilution conditions was observed for 3MPA. KW - Quantum dots KW - Ligand exchange KW - Lifetime analysis KW - Thiols PY - 2022 DO - https://doi.org/10.1021/acs.jpcc.2c05342 SN - 1932-7447 VL - 126 IS - 47 SP - 20101 EP - 20113 PB - ACS Publications AN - OPUS4-56707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Correlative analysis with electron microscopy applied in different operating modes (SEM, STEM-in-SEM and TEM) for the accurate morphological characterisation of non-spherical fine nanoparticles N2 - Electron microscopy applied in different operating modes, e.g., SEM, TEM or STEM-in-SEM, is the gold standard method to investigate the exact size and shape of individual nanoparticles. However, when fine nanoparticles with a non-monodisperse size distribution and non-spherical shapes are analysed, achieving an accurate result is challenging. Deviations in size measurements of more than 10% may occur. Understanding of the contrasts and sensitivities characteristic to the individual operating modes of an electron microscope is key in interpreting and evaluating quantitatively the measurement uncertainties needed for an eventual certification of specific nanoparticles via traceable results. Further, beyond the pure measurement, the other components in the analysis workflow with significant impact on the overall measurement uncertainties are the sample preparation and the image segmentation. In the present study the same areas of selected iron oxide fine nanoparticles (<25 nm) as reference nanomaterial (candidate) prepared on substrate for electron microscopy imaging are analysed correlatively with SEM, STEM-in-SEM and TEM with respect to their size and shape distribution. Individual significant measurement uncertainties are discussed, e.g., the sensitivity of secondary electron detectors of InLens-type to the surface morphology, particularly to the presence of an ultrathin organic coating or signal saturation effects on the particle edges, to electron beam exposure, to surface contamination, or the selection of the threshold for image segmentation. Another goal of this study is to establish a basis of analysis conditions which shall guarantee accurate results when both manual and particularly (semi-)automated segmentation approaches are applied. Advantages as well as limitations of the use of different electron microscopy operating modes, applied individually and correlatively, are highlighted. T2 - E-MRS 2024 Spring Meeting CY - Strasbourg, France DA - 27.05.2024 KW - Nanoparticles KW - Electron Microscopy KW - Metrology KW - Imaging KW - Reference materials PY - 2024 AN - OPUS4-60436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Hodoroaba, Vasile-Dan T1 - Understanding Correlative Electron Microscopy Imaging with SEM, STEM in SEM and TEM for the Accurate Characterization of Size and Shape of FeOx Nanoparticles N2 - The recently certified reference material (CRM) BAM-N012 as cubical iron oxide FeOx nanoparticles (NPs) of 8 nm area equivalent square edge length (ESL) and the RM candidate BAM-N013 as nearly spherical NPs of 22 nm size were analyzed in detail by electron microscopy (EM). For the metrological characterization with SEM, STEM in SEM and TEM, the understanding of the imaging contrasts and sensitivities, and the correct interpretation of the (art)effects which are inherent to each detection mode is necessary. The same sample areas with NPs deposited on a TEM grid were analyzed by two SEM acquisition modes, i. e. SE InLens and STEM in SEM using a dedicated transmission sample holder, and further, correlatively, analyzed with TEM. With increasing kV, SE InLens shows increasing particle size (unless overcharging at the particle boundaries is filtered), as a known effect. For STEM-in-SEM the particle size decreases significantly and individual particles are identified easier (at 2 kV only a few single particles can be detected automatically). ❑ Documentation of the sample preparation and measurement conditions (including optimization process) is important for reproducibility. ❑ Plasma cleaning, analysis in the transmission mode at SEM is recommended for FeOx NPs. ❑ Selection of the threshold algorithm can significantly alter the reported ECD. T2 - Microscopy and Microanalysis 2024 CY - Cleveland, OH, USA DA - 28.07.2024 KW - Nanoparticles KW - Electron microscopy KW - Iron oxide KW - Reference materials KW - Correlative microscopy KW - Size and shape distribution PY - 2024 AN - OPUS4-60806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Understanding Correlative Electron Microscopy Imaging with SEM, STEM-in-SEM and TEM for the Accurate Characterization of Size and Shape of FeOx Nanoparticles N2 - The recently certified reference material (CRM) BAM-N012 as cubical iron oxide FeOx nanoparticles (NPs) of 8 nm area equivalent square edge length (ESL) and the RM candidate BAM-N013 as nearly spherical NPs of 22 nm size were analyzed in detail by electron microscopy (EM). For the metrological characterization with SEM, STEM in SEM and TEM, the understanding of the imaging contrasts and sensitivities, and the correct interpretation of the (art)effects which are inherent to each detection mode is necessary. The same sample areas with NPs deposited on a TEM grid were analyzed by two SEM acquisition modes, i. e. SE InLens and STEM in SEM using a dedicated transmission sample holder, and further, correlatively, analyzed with TEM. With increasing kV, SE InLens shows increasing particle size (unless overcharging at the particle boundaries is filtered), as a known effect. For STEM-in-SEM the particle size decreases significantly and individual particles are identified easier (at 2 kV only a few single particles can be detected automatically). ❑ Documentation of the sample preparation and measurement conditions (including optimization process) is important for reproducibility. ❑ Plasma cleaning, analysis in the transmission mode at SEM is recommended for FeOx NPs. ❑ Selection of the threshold algorithm can significantly alter the reported ECD. T2 - SALSA Make and Measure 2024: Interfaces CY - Berlin, Germany DA - 11.09.2024 KW - Correlative microscopy KW - Electron microscopy KW - Iron oxide KW - Nanoparticles KW - Reference materials KW - Size and shape distribution PY - 2024 AN - OPUS4-62347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Understanding Correlative Electron Microscopy Imaging with SEM, STEM in SEM and TEM for the Accurate Characterization of Size and Shape of FeOx Nanoparticles N2 - The recently certified reference material (CRM) BAM-N012 as cubical iron oxide FeOx nanoparticles (NPs) of 8 nm area equivalent square edge length (ESL) and the RM candidate BAM-N013 as nearly spherical NPs of 22 nm size were analyzed in detail by electron microscopy (EM). For the metrological characterization with SEM, STEM in SEM and TEM, the understanding of the imaging contrasts and sensitivities, and the correct interpretation of the (art)effects which are inherent to each detection mode is necessary. The same sample areas with NPs deposited on a TEM grid were analyzed by two SEM acquisition modes, i. e. SE InLens and STEM in SEM using a dedicated transmission sample holder, and further, correlatively, analyzed with TEM. With increasing kV, SE InLens shows increasing particle size (unless overcharging at the particle boundaries is filtered), as a known effect. For STEM-in-SEM the particle size decreases significantly and individual particles are identified easier (at 2 kV only a few single particles can be detected automatically). ❑ Documentation of the sample preparation and measurement conditions (including optimization process) is important for reproducibility. ❑ Plasma cleaning, analysis in the transmission mode at SEM is recommended for FeOx NPs. ❑ Selection of the threshold algorithm can significantly alter the reported ECD T2 - 2. Treffen des DGE-Arbeitskreises SEM CY - Stuttgart, Germany DA - 26.09.2024 KW - Correlative microscopy KW - Electron microscopy KW - Iron oxide KW - Nanoparticles KW - Reference materials KW - Size and shape distribution PY - 2024 AN - OPUS4-62349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rühle, Bastian A1 - Krumrey, Julian Frederic A1 - Hodoroaba, Vasile-Dan T1 - Dataset accompanying the publication "Workflow towards automated segmentation of agglomerated, non-spherical particles from electron microscopy images using artificial neural networks" N2 - This dataset accompanies the following publication, first published in Scientific Reports (www.nature.com/articles/s41598-021-84287-6): B. Ruehle, J. Krumrey, V.-D. Hodoroaba, Scientific Reports, Workflow towards Automated Segmentation of Agglomerated, Non-Spherical Particles from Electron Microscopy Images using Artificial Neural Networks, DOI: 10.1038/s41598-021-84287-6 It contains electron microscopy micrographs of TiO2 particles, the corresponding segmentation masks, and their classifications into different categories depending on their visibility/occlusion. Please refer to the publication and its supporting information for more details on the acquisition and contents of the dataset, as well as the GitHub repository at https://github.com/BAMresearch/automatic-sem-image-segmentation KW - Electron microscopy KW - Neural networks KW - Image segmentation KW - Automated image analysis PY - 2021 DO - https://doi.org/10.5281/zenodo.4563942 PB - Zenodo CY - Geneva AN - OPUS4-52246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Correlating HR-TEM and XPS to elucidate the core-shell structure of ultrabright CdSE/CdS semiconductor quantum dots N2 - Controlling the thickness and tightness of surface passivation shells is crucial for many applications of core-shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the application-relevant functionality like a high photoluminescence (PL) quantum yield. This calls for a whole nanoobject approach. Moreover, the thickness of the organic coating remains often unclear. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. The results of the different methods match very well within the different measurement uncertainties. Additionally, results obtained with energy-resolved XPS using excitation energies between 200 eV and 800 eV are discussed with respect to a potential core/shell intermixing. Moreover, the future application potential of this approach correlating different sizing and structural methods is discussed considering the method-inherent uncertainties and other core/multi-shell nanostructures. T2 - E-MRS Fall Meeting CY - Online meeting DA - 20.09.2021 KW - Core-shell nanoparticles KW - Quantum dots KW - High-resolution transmission electron microscopy KW - X-ray Photoelectron Spectroscopy PY - 2021 AN - OPUS4-53365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as Certified Reference Material for Size and Shape N2 - BAM is currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance to the material and life sciences. As a first candidate of this series, we present cubic iron oxide nanoparticles with a nominal edge length of 8 nm. These particles were synthesized by thermal decomposition of iron oleate in high boiling organic solvents adapting well-known literature procedures. After dilution to a concentration suitable for electron microscopy (TEM and SEM) as well as for small-angle X-ray scattering (SAXS) measurements, the candidate nanoRM was bottled and assessed for homogeneity and stability by both methods following the guidelines of ISO 17034 and ISO Guide 35. The particle sizes obtained by both STEM-in-SEM and TEM are in excellent agreement with a minimum Feret of 8.3 nm ± 0.7 nm. The aspect ratio (AR) of the iron oxide cubes were extracted from the images as the ratio of minimum Feret to Feret resulting in an AR of 1.18 for TEM to 1.25 for SEM. Alternatively, a rectangular bounding box was fitted originating from the minimum Feret and the longest distance through the particle in perpendicular direction. This led to AR values of 1.05 for TEM and 1.12 for SEM, respectively. The results confirm the almost ideal cubic shape. KW - Reference nanoparticles KW - Iron oxide KW - Cubical shape KW - Electron microscopy KW - SAXS KW - Nano CRM KW - Size PY - 2022 DO - https://doi.org/10.1017/S1431927622003610 SN - 1435-8115 VL - 28 IS - Suppl. 1 SP - 802 EP - 805 PB - Cambridge University Press AN - OPUS4-55599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Relling, Alexander T1 - Copper doped AgInS2-ZnS QDs from a single-source-precursor N2 - Quaternary semiconductor nanocrystals like AgInS2-ZnS solid solution quantum dots (QDs) are a highly promising material for material science and biomedical applications due to their tunable photoluminescence (PL), their high quantum yields (QY), and their low cytotoxicity1. A red shift of the PL into the NIR and SWIR region could further increase their application potential. Copper doping has been proven to be a suitable approach for bathochromically shifting the PL of QDs2. The synthesis of copper doped AgInS2-ZnS QDs from a single-source-precursor should enable an easily scalable synthesis with high reproducibility. T2 - Summer School "Exciting nanostructures: characterizing advanced confined systems" CY - Bad Honnef, Germany DA - 18.07.2021 KW - Nanocrystals KW - Quantum dots KW - Doping KW - AgInS2 KW - Single-source-precursor PY - 2021 AN - OPUS4-53129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - López de Ipina, J.-M. A1 - Arevalillo, A. A1 - Martín, A. A1 - Caillard, B. A1 - Marcoulaki, E. A1 - Aguerre- Charol, O. A1 - van Duuren-Stuurman, B. A1 - Hodoroaba, Vasile-Dan A1 - Viitanen, A.-K. A1 - Witters, H. A1 - Vercauteren, S. A1 - Persson, K. A1 - Bard, D. A1 - Evans, G. A1 - Jensen, K.A. A1 - Himly, M. A1 - Scalbi, S. A1 - Papin, A. A1 - Le Bihan, O. A1 - Kanerva, T. A1 - Tirez, K. A1 - Frijns, E. A1 - Niga, P. A1 - Eleftheriadis, K. A1 - Travlos, A. A1 - Geppert, M. A1 - Himly, M. A1 - Radnik, Jörg A1 - Kuchenbecker, Petra A1 - Resch-Genger, Ute A1 - Fraboulet, I. A1 - Bressot, C. A1 - Rissler, J. A1 - Gaucher, R. A1 - Binotto, G. A1 - Krietsch, Arne A1 - Braun, A. A1 - Abenet, S. A1 - Catalan, J. A1 - Verstraelen, S. A1 - Manier, N. A1 - Manzo, S. A1 - Fransman, S. A1 - Queron, J. A1 - Charpentier, D. A1 - Taxell, D. A1 - Säämänen, A. A1 - Brignon, J.-M. A1 - Jovanovic, A. A1 - Bisson, M A1 - Neofytou, P. T1 - EC4Safenano - Catalogue of Services N2 - The publicly available document encapsulates the first version of the Catalogue of Services of the future EC4Safenano Centre (CoS 2019). The CoS 2019 is structured in 12 Service Categories and 27 Service Topics, for each of the 12 categories considered. This architecture configures a 12 x 27 matrix that allows ordering the potential EC4Safenano offer in 324 types of services/groups of services. Each type of service/group of services is described, in a simple and friendly way, by means of a specific service sheet: the EC4Safenano - Service Data Sheet (EC4-SDS). These EC4-SDSs allow structuring and summarizing the information of each service, providing the customer with a concise view of characteristics of the service and also the contact details with the service provider. The CoS 2019 deploys a map of services consisting of a set of 100 EC4-SDSs, covering 7 of the 12 Service Categories and 17 of the 27 Service Topics. The harmonization of services is visualized as a future necessary step in EC4Safenano, in order to strengthen the offer and provide added value to customers with a growing offer of harmonized services in future versions of the CoS. The information contained in this document is structured in 3 main sections, as follows: • Catalogue structure. This section describes in short the main characteristics of the CoS 2019. • Catalogue content. This section represents the core part of the document and encapsulates the set of 100 SDSs displaying the offer proposed by the CoS 2019. • Online Catalogue. This section describes the resources implemented by EC4Safenano to facilitate the on-line consultation of the CoS 2019 by customers and other interested parties. KW - Nano-safety KW - Analytical services KW - Nanomaterials KW - Catalogue of services KW - EC4SafeNano KW - European Centre PY - 2021 UR - https://ec4safenano.eu-vri.eu/Public/Guidance SP - 1 EP - 72 PB - EU-VRi – European Virtual Institute for Integrated Risk Management CY - Stuttgart, Germany AN - OPUS4-52943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Towards Automated Electron Microscopy Image Segmentation for Nanoparticles of Complex Shape by Convolutional Neural Networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. KW - Nanoparticles KW - Convolutional neural networks KW - Image segmentation KW - Electron microscopy KW - Automatisation PY - 2020 DO - https://doi.org/10.1017/S1431927620017262 VL - 26 IS - S2 SP - 1188 EP - 1189 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dhamo, Lorena A1 - Carulli, F. A1 - Nickl, Philip A1 - Wegner, Karl David A1 - Hodoroaba, Vasile-Dan A1 - Würth, Christian A1 - Brovelli, S. A1 - Resch-Genger, Ute T1 - Efficient luminescent solar concentrators based on environmentally friendly Cd-free ternary AIS/ZnS quantum dots N2 - Luminescent solar concentrators (LSC) allow to obtain renewable energy from building integrated photovoltaic systems. As promising efficient and long-term stable LSC fluorophores semiconductor nanocrystals like Quantum dots (QDs) with size and composition tunable optoelectronic properties have recently emerged. The most popular II/VI or IV/VI semiconductor QDs contain, however, potentially hazardous cadmium or lead ions, which is a bottleneck for commercial applications. A simple aqueous based, microwaveassisted synthesis for environmentally friendly and highly emissive AgInS2/ ZnS QDs is developed using 3-mercaptopropionic acid (MPA) and glutathione (GSH) and their incorporation into polylaurylmethacrylate (PLMA) polymer slabs integrable in LSC devices (10.4 × 10.4 × 0.2 cm3, G = 12.98). With this simple approach, optical power efficiencies (OPE) of 3.8% and 3.6% and optical quantum efficiencies (OQE) of 24.1% and 27.4% are obtained, which are among the highest values yet reported. KW - Solar energy KW - Solar concentrator KW - Quantum dots KW - Advanced material KW - Quantum yield PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529735 DO - https://doi.org/10.1002/adom.202100587 SN - 2195-1071 SN - 0935-9648 VL - 9 IS - 17 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-52973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Häusler, I. A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan A1 - Emmerling, Franziska A1 - Reiss, P. A1 - Resch-Genger, Ute T1 - One-Pot Heat-Up Synthesis of ZnSe Magic-Sized Clusters Using Thiol Ligands N2 - The synthesis of two new families of ZnSe magic-sized clusters (MSCs) is achieved using the thiol ligand 1-dodecanethiol in a simple one-pot heat-up approach. The sizes of the MSCs are controlled with the thiol ligand concentration and reaction temperature. KW - ZnSe KW - Magic-sized cluster KW - Dodecanethiol KW - Semiconductor nanocrystals KW - One-pot synthesis PY - 2022 DO - https://doi.org/10.1021/acs.inorgchem.2c00041 VL - 61 IS - 19 SP - 7207 EP - 7211 PB - ACS Publications CY - Washington, DC (USA) AN - OPUS4-54880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Krumrey, Julian Frederic A1 - Hodoroaba, Vasile-Dan T1 - Workflow towards automated segmentation of agglomerated, non‑spherical particles from electron microscopy images using artificial neural networks N2 - We present a workflow for obtaining fully trained artificial neural networks that can perform automatic particle segmentations of agglomerated, non-spherical nanoparticles from scanning electron microscopy images “from scratch”, without the need for large training data sets of manually annotated images. The whole process only requires about 15 minutes of hands-on time by a user and can typically be finished within less than 12 hours when training on a single graphics card (GPU). After training, SEM image analysis can be carried out by the artificial neural network within seconds. This is achieved by using unsupervised learning for most of the training dataset generation, making heavy use of generative adversarial networks and especially unpaired image-to-image translation via cycle-consistent adversarial networks. We compare the segmentation masks obtained with our suggested workflow qualitatively and quantitatively to state-of-the-art methods using various metrics. Finally, we used the segmentation masks for automatically extracting particle size distributions from the SEM images of TiO2 particles, which were in excellent agreement with particle size distributions obtained manually but could be obtained in a fraction of the time. KW - Electron microscopy KW - Neural networks KW - Artificial intelligence KW - Image segmentation KW - Automated image analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522454 DO - https://doi.org/10.1038/s41598-021-84287-6 VL - 11 IS - 1 SP - 4942 PB - Springer Nature AN - OPUS4-52245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Towards automated electron microscopy image segmentation for nanoparticles of complex shape by convolutional neural networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Automatisation KW - Image segmentation KW - Convolutional neural networks KW - Electron microscopy PY - 2020 AN - OPUS4-51114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Understanding Correlative Electron Microscopy Imaging with SEM, STEM-in-SEM and TEM for the Accurate Characterization of Size and Shape of Iron Oxide Nanoparticles N2 - The recently certified reference material (CRM) BAM-N012 as cubical iron oxide FeOx nanoparticles (NPs) of 8 nm area equivalent square edge length (ESL) and the RM candidate BAM-N013 as nearly spherical NPs of 22 nm size were analyzed in detail by electron microscopy (EM). For the metrological characterization with SEM, STEM in SEM and TEM, the understanding of the imaging contrasts and sensitivities, and the correct interpretation of the (art)effects which are inherent to each detection mode is necessary. The same sample areas with NPs deposited on a TEM grid were analyzed by two SEM acquisition modes, i. e. SE InLens and STEM in SEM using a dedicated transmission sample holder, and further, correlatively, analyzed with TEM. With increasing kV, SE InLens shows increasing particle size (unless overcharging at the particle boundaries is filtered), as a known effect. For STEM-in-SEM the particle size decreases significantly and individual particles are identified easier (at 2 kV only a few single particles can be detected automatically). ❑ Documentation of the sample preparation and measurement conditions (including optimization process) is important for reproducibility. ❑ Plasma cleaning, analysis in the transmission mode at SEM is recommended for FeOx NPs. ❑ Selection of the threshold algorithm can significantly alter the reported ECD. KW - Nanoparticles KW - Iron oxide KW - Electron microscopy KW - Reference materials KW - Particle size distribution KW - Imaging PY - 2024 DO - https://doi.org/10.1093/mam/ozae044.339 VL - 30 IS - Supplement_1 SP - 710 EP - 711 PB - Oxford University Press (OUP) AN - OPUS4-61007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Wang, Shu A1 - Radnik, Jörg A1 - You, Yi A1 - Resch-Genger, Ute T1 - Assessing the protective effects of different surface coatings on NaYF4:YB3+, Er3+, upconverting nanoparticles in buffer and DMEM N2 - We studied the dissolution behavior of β NaYF4:Yb(20%), Er(2%) UCNP of two different sizes in biologically relevant media i.e., water (neutral pH), phosphate buffered saline (PBS), and Dulbecco’s modified Eagle medium (DMEM) at different temperatures and particle concentrations. Special emphasis was dedicated to assess the influence of different surface functionalizations, particularly the potential of mesoporous and microporous silica shells of different thicknesses for UCNP stabilization and protection. Dissolution was quantified electrochemically using a fluoride ion selective electrode (ISE) and by inductively coupled plasma optical emission spectrometry (ICP OES). In addition, dissolution was monitored fluorometrically. These experiments revealed that a thick microporous silica shell drastically decreased dissolution. Our results also underline the critical influence of the chemical composition of the aqueous environment on UCNP dissolution. In DMEM, we observed the formation of a layer of adsorbed molecules on the UCNP surface that protected the UCNP from dissolution and enhanced their fluorescence. Examination of this layer by X ray photoelectron spectroscopy (XPS) and mass spectrometry (MS) suggested that mainly phenylalanine, lysine, and glucose are adsorbed from DMEM. These findings should be considered in the future for cellular toxicity studies with UCNP and other nanoparticles and the design of new biocompatible surface coatings. KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515984 DO - https://doi.org/10.1038/s41598-020-76116-z SN - 2045-2322 VL - 10 IS - 1 SP - 19318-1 EP - 19318-11 PB - Springer Nature CY - London AN - OPUS4-51598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Fine iron oxide nanoparticles as a candidate reference material for reliable measurement of particle size N2 - Background, Motivation and Objective Nanomaterials are at the core of some of the 21st century’s most promising technologies. In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important. Furthermore, the European Commission has taken measures via the REACH Regulations to control the classification of nanomaterials. REACH Annexes which entered into force in January 2020 require manufacturers to register nanomaterials that are traded in larger quantities (at least 1 ton). Every powder or dispersion where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as a nanomaterial. This creates a need for both industrial manufacturers and research and analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is working on developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution, but also targeting other key parameters such as shape, structure (including porosity) and functional properties. Thus, candidate materials are considered to complement the already available spherical and monodisperse silica, Au and polystyrene reference nanoparticles, e.g. iron oxide and titanium oxide, with an average atomic number between those of silica and gold. Particularly for the imaging by electron microscopies, new nanoparticles of well-defined size in the range of 10 nm are decisive for the accurate particle segmentation by setting precise thresholds. Statement of Contribution/Methods Synthesis: Highly monodisperse iron oxide nanoparticles can be synthesized in large quantities by thermal decomposition of iron oleate or iron acetylacetonate precursors in high boiling solvents such as octadecene or dioctyl ether in the presence of oleic acid and oleylamine as capping agents. Scanning Electron Microscope: An SEM of type Supra 40 from Zeiss has been used including the dedicated measurement mode transmission in SEM (STEM-in-SEM) with a superior material contrast for the nanoparticle analysis. The software package ImageJ has been used for the analysis of the STEM-in-SEM images and to determine the particle size distribution. Dynamic Light scattering (DLS): Particles in suspension were measured in comparison by means of Zetasizer Nano (Malvern Panalytical; cumulants analysis) and NanoFlex (Microtrac; frequency power spectrum). Results/Discussion In this study iron oxide nanoparticles synthesized at BAM and pre-characterized by DLS, SEM (including the transmission mode STEM-in-SEM) are presented. The particles are spherical and highly monodisperse with sizes slightly larger than 10 nm. T2 - Nanosafe 2020 CY - Online meeting DA - 16.11.2020 KW - Reference nanomaterials KW - Imaging techniques KW - Size and size distribution KW - Reliable characterization KW - Iron oxide nanoparticles PY - 2020 AN - OPUS4-51767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schutter, Jan David A1 - Eberhardt, Karl A1 - Elert, Anna Maria A1 - Radnik, Jörg A1 - Geißler, Daniel A1 - Özcan Sandikcioglu, Özlem T1 - Synthesis and characterization of lipopolysaccharide (LPS) anchored polystyrene microparticles as a synthetic model system for attachment studies N2 - Outer membrane lipopolysaccharides (LPS) play a crucial role in determining attachment behavior and pathogenicity of bacteria. The aim of this study was to develop a simple procedure for anchoring bacterial lipopolysaccharides to polystyrene (PS) microparticles as a model system for in situ attachment studies. By using a swellcapture methodology, commercially available LPS of Pseudomonas aeruginosa (strain ATCC 27316 serotype 10.22) was anchored onto PS microparticles in a proof-of-concept study. A detailed chemical and morphological characterization has proven the success of LPS incorporation. It was shown that the coverage and structure of the LPS film was concentration dependent. The procedure can easily be adapted to LPS of other bacterial strains to generate a synthetic model toolkit for attachment studies. KW - Bacterial lipopolysaccharides KW - Pseudomonas aeruginosa KW - Polystyrene microparticles KW - Swell-capture KW - Biomimicry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579818 DO - https://doi.org/10.1016/j.colsurfb.2023.113301 SN - 0927-7765 VL - 226 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-57981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Habibimarkani, Heydar A1 - Abram, Sarah-Luise A1 - de Oliveira Guilherme Buzanich, Ana A1 - Prinz, Carsten A1 - Sahre, Mario A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - In-depth analysis of FeNi-based nanoparticles for the oxygen evolution reaction N2 - This study investigates the effect of varying iron-to-nickel ratios on the catalytic performance of Fe-Ni oxide nanoparticles (NPs) for the oxygen evolution reaction (OER). Addressing the issue of high energy wastage due to large overpotentials in OER, we synthesized and characterized different NP catalysts with different Fe: Ni oxide ratios. Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Diffraction (XRD) were employed to determine the morphology, elemental and phase composition of the NPs. Furthermore, in-depth profiling with X-ray Photoelectron Spectroscopy (XPS) and Hard X-ray Photoelectron Spectroscopy (HAXPES) revealed that iron predominantly exists as oxide, while nickel exhibits both metallic and oxidic forms depending on the Fe content. XPS indicated an enrichment of iron at the NP surface, whereas HAXPES and EDS data agreed on the bulk stoichiometry. The assessment of the catalytic activity via cyclic voltammetry (CV) showed that the Fe: Ni ratio of 2:3 exhibited superior performance, characterized by lower overpotential and a smaller Tafel slope. KW - Fe-Ni oxide KW - Nanoparticles KW - OER KW - Catalytic performance KW - Cyclic voltammetry PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626932 UR - https://www.nature.com/articles/s41598-025-92720-3 DO - https://doi.org/10.1038/s41598-025-92720-3 VL - 15 IS - 1 SP - 1 EP - 17 PB - Springer Nature AN - OPUS4-62693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habibimarkani, Heydar T1 - Comparative chemical analysis of Ni-Fe oxide nanoparticles N2 - Ni-Fe oxide nanoparticles have gained a lot of interest because of their high activity in the oxygen evolution reaction (OER) which is crucial for water splitting. [1] Although there have been great efforts in the last years, the understanding of the synergistic effect between Fe and Ni is still under discussion. Therefore, we prepared different Ni-Fe oxide nanoparticles with different compositions from pure iron oxide to pure nickel oxide adapting a known procedure. [2,3] Size and morphology of the nanoparticles depend on the composition which was shown with Transmission Electron Microscopy (TEM). The compositions of the nanoparticles were measured with a comparative approach using X-ray Photoelectron Spectroscopy (XPS), Hard X-ray Photoelectron Spectroscopy (HAXPES), and Energy Dispersive X-Ray Spectroscopy (EDS) coupled with the TEM providing detailed chemical information of the nanoparticles in different sample regions. EDS reveals that the different sample regions are dominated by one of the components, Fe or Ni, but a slight mixing between the components can be found (see Figure 1), which was confirmed with X-ray Diffraction (XRD). XPS indicates the enrichment of Fe at the sample surface, while HAXPES and EDS data agree on the stoichiometry of the bulk. High-resolution XPS and HAXPES exhibit some differences in the valence states of Fe and Ni, whereas Ni seems to be easier to reduce than Fe. Further investigations combining these different techniques and additionally Secondary Ion Mass Spectrometry (ToF-SIMS) are ongoing by using in situ approaches and coupling cyclic voltammetry to the analytical techniques T2 - SALSA Make and Measure 2024: Interfaces CY - Berlin, Germany DA - 11.09.2024 KW - (Hard) X-ray Photoelectron Spectroscopy KW - Oxygen evolution reaction KW - Synergistic effects KW - TEM PY - 2024 AN - OPUS4-62346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Comparative chemical analysis of Ni-Fe oxide nanoparticles N2 - Ni-Fe oxide nanoparticles have gained a lot of interest because of their high activity in the oxygen evolution reaction (OER) which is crucial for water splitting. [1] Although there have been great efforts in the last years, the understanding of the synergistic effect between Fe and Ni is still under discussion. Therefore, we prepared different Ni-Fe oxide nanoparticles with different compositions from pure iron oxide to pure nickel oxide adapting a known procedure. [2,3] Size and morphology of the nanoparticles depend on the composition which was shown with Transmission Electron Microscopy (TEM). The compositions of the nanoparticles were measured with a comparative approach using X-ray Photoelectron Spectroscopy (XPS), Hard X-ray Photoelectron Spectroscopy (HAXPES), and Energy Dispersive X-Ray Spectroscopy (EDS) coupled with the TEM providing detailed chemical information of the nanoparticles in different sample regions. EDS reveals that the different sample regions are dominated by one of the components, Fe or Ni, but a slight mixing between the components can be found (see Figure 1), which was confirmed with X-ray Diffraction (XRD). XPS indicates the enrichment of Fe at the sample surface, while HAXPES and EDS data agree on the stoichiometry of the bulk. High-resolution XPS and HAXPES exhibit some differences in the valence states of Fe and Ni, whereas Ni seems to be easier to reduce than Fe. Further investigations combining these different techniques and additionally Secondary Ion Mass Spectrometry (ToF-SIMS) are ongoing by using in situ approaches and coupling cyclic voltammetry to the analytical techniques. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Oxygen evolution reaction KW - Transmission Electron Microscopy KW - (Hard) X-ray Photoelectron Spectroscopy KW - Synergistic effects PY - 2024 AN - OPUS4-60534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Influence of Surface Chemistry and Size on the Stability of β-NaYF4:Yb,Er Nanocrystals in Various Environments N2 - The use of inorganic lanthanide-doped upconversion nanoparticles (UCNP) in bioimaging and cellular studies requires biocompatible particles. One possible cause of UCNP toxicity is the release of potentially harmful fluoride and lanthanide ions as revealed by dilution studies in aqueous environments, particularly under high dilution conditions. To address this issue, suitable surface coatings preventing such effects in combination with fast screening methods suited for online monitoring and in situ analyses are desired. Here we present systematic studies of differently sized β-NaYF4:Yb,Er UCNP stabilized with different surface coatings and hydrophilic ligands varying in binding strength to the particle surface in various aqueous environments at different temperatures and UCNP concentrations. The concentration of the fluoride and lanthanide ions released upon particle dissolution was quantified electrochemically with a fluoride ion-sensitive electrode and inductively coupled plasma optical emission spectrometry (ICP-OES) and monitored fluorometrically, thereby exploiting the sensitivity of the upconversion luminescence to changes in size and surface chemistry. Moreover, changes in surface chemistry were determined with X-Ray photoelectron spectroscopy (XPS). Based upon our results, we could derive optimum screening parameters for UCNP stability studies and determine conditions and coating procedures and ligands for enhancing UCNP stability in aqueous environments. T2 - UPCON2021 CY - Online meeting DA - 06.04.2021 KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2021 AN - OPUS4-52411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -