TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Sachse, René A1 - Hertwig, Andreas A1 - Kraehnert, R. T1 - Analysis of elemental composition and porosity of mesoporous IrOx-TiOx thin films by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material, as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution, we characterise thin mesoporous iridium-titanium mixed oxide film properties by electron probe microanalysis (EPMA) with energy-dispersive X-ray spectroscopy (EDS) at an SEM. Mesoporous iridium oxide - titanium oxide (IrOx-TiOx) films were prepared via dip-coating of a solution containing a triblock-copolymer as structure-directing agent, an iridium precursor as well as a titanium precursor in ethanol. IrOx-TiOx films were synthesized with different amounts of iridium and calcined in air. The SEM micrographs reveal for all films the achievement of a well-ordered mesoporous structure and homogeneous films with thicknesses between 67 nm and 152 nm. For the determination of film elemental composition and porosity, EPMA can be used as part of a combined SEM/EDS/STRATAGem analysis. Elemental compositions and mass depositions (in μg cm-2) of IrOx-TiOx films were calculated with the thin film analysis Software STRATAGem via k-values measured with SEM/EDS. Pure bulk Ir, TiO2 and Si were measured as references. The average density of the films was obtained from the mass Deposition and the film thickness as measured by cross-section SEM. The porosity was then extracted from the measured average film density divided by a theoretical bulk density. The latter is calculated from the weight fractions of IrOx and TiOx as determined with STRATAGem and the bulk mass densities of IrO2 and TiO2 (rutil) from literature. The fitting results of the k-values from the STRATAGem software, which are in fair agreement with the measured k-values. The application of the SEM/EDS/STRATAGem approach for accurate porosity determination on pure mesoporous TiOx films and pure porous IrOx films has been recently demonstrated. The porosities of pure IrOx, TiOx and mixed IrOx-TiOx films in this study have been determined. The contribution will assess in detail the advantages and limitations of the combined SEM/EDS/STRATAGem analysis for the morphology and porosity of thin metal oxide films. Moreover, the comparison with other measurement techniques and the combination of datasets from multiple measurements will be discussed. T2 - EMAS 2019 - 16th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS CY - Trondheim, Norway DA - 19.05.2019 KW - Thin films KW - Porous layers KW - Electron probe microanalysis (EPMA) KW - Porosity PY - 2019 AN - OPUS4-48107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Sachse, René A1 - Matjacic, L. A1 - McMahon, G. A1 - Hertwig, Andreas A1 - Kraehnert, R. T1 - Correlative analysis of mesoporous thin IrOx-TiOx mixed oxide films for understanding the impact of synthesis conditions N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of thin porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the homogenous dispersion of the active species within the porous matrix. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by complementary analysis of SEM/EDS, ToF-SIMS, NanoSIMS, AES and spectroscopic ellipsometry. Mesoporous iridium oxide - titanium oxide (IrOx-TiOx) films can be prepared by a well-established Synthesis route via soft-templating. IrOx-TiOx films are very sensitive to the conditions of synthesis. Analysis by SEM and NanoSIMS imaging suggests IrOx-TiOx films with and without a homogenous dispersion of IrOx within the TiOx film matrix under different synthesis conditions. Auger electron spectroscopy (AES) analysis in the depth-profile mode as well as cross-section line-scan AES measurements of an inhomogeneous IrOx-TiOx film indicate the presence of an IrOx-rich Phase dispersion both at the surface of IrOx-TiOx film as well as within the film. The contribution will assess in detail the sensitivity of the synthesis conditions and the characterization of the thin metal oxide films. Moreover, the correlation between and comparison to other measurement techniques will be discussed. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Mesoporous films KW - Iridium oxide KW - SIMS KW - SEM/EDS KW - Titanium dioxide KW - Ellipsometry KW - Auger Electron Spectroscopy PY - 2019 AN - OPUS4-49234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas A1 - Matjacic, L. A1 - McMahon, G. A1 - Kotil, L. A1 - Bernsmeier, D. A1 - Kraehnert, R. T1 - Analysis of elemental composition and porosity of mesoporous iridium titanium mixed oxide thin films for energy application by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. T2 - Microscopy & Microanalysis 2019 Meeting CY - Portland, OR, USA DA - 04.08.2019 KW - Mesoporous mixed metal oxide films KW - SEM/EDS/STRATAGem KW - EPMA KW - Ellipsometry KW - NanoSIMS PY - 2019 AN - OPUS4-48767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas A1 - Kotil, L. A1 - Kraehnert, R. T1 - Analysis of elemental composition and porosity of mesoporous iridium titanium mixed oxide thin films for energy application by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. KW - Electron probe microanalysis (EPMA) KW - Iridium-titanium mixed oxides KW - Spectroscopic ellipsometry KW - Mesoporous thin films KW - NanoSIMS PY - 2019 U6 - https://doi.org/10.1017/S1431927619009589 SN - 1431-9276 (Print) SN - 1435-8115 (Online) VL - 25 IS - S2 (August) SP - 1770 EP - 1771 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-48768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Hertwig, Andreas A1 - Kraehnert, R. A1 - Hodoroaba, Vasile-Dan T1 - Analysis of elemental composition and porosity of mesoporous IrOx-TiOx thin films by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. T2 - EMAS 2019 - 16th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS CY - Trondheim, Norway DA - 19.05.2019 KW - Electron probe microanalysis (EPMA) KW - Iridium-titanium mixed oxides KW - Spectroscopic ellipsometry KW - Mesoporous thin films PY - 2019 AN - OPUS4-48769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Krüger, Jörg T1 - Plasma Germany, Fachausschuss Normung, Berichtszeitraum Herbst 2018 – Frühjahr 2019 N2 - Der Vortrag gibt den aktuellen Stand der Normung im Bereich der Oberflächentechnik insbesondere der Oberflächenanalytik und der Oberflächenmess- und -prüftechnik wider. Vorgestellt wird der Status technischer Berichte, Normenentwürfe und Normen u.a. zur Bewertung von Auflösung und Schärfe mit strahlbasierten Methoden im Nanometer- und Mikrometerbereich, zur Messung von Schichtdicken und Nanopartikeln in kritischen Dimensionen einschließlich Größen- und Formverteilungen mittels REM, zur Messung der Schichtdicke von Nanomaterialien und zur Klassifizierung von Kohlenstoffschichten mittels Ellipsometrie, zur Standardisierung der Ellipsometrie, zur Kalibrierung von Konfokalmikros-kopen für die Formmessung, zur linear elastisch dynamischen instrumentierten Eindringprüfung, zur Messung der flächenbezogenen Masse mittels AAS und ICP, zur Schichtpotentialmessung von Mehrfach-Nickelschichten, zur Schichtdicken und Flächen-widerstandsbestimmung sowie zur Bestimmung der Schichthaftung mittels Zentrifugentechnologie. T2 - Plasma Germany, Fachausschuss Normung, CY - Karlsruhe, Germany DA - 09.04.2019 KW - Stand der Normung KW - Oberflächenanalytik KW - Oberflächenmesstechnik KW - Qualitätssicherung PY - 2019 AN - OPUS4-48874 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Kotil, L. A1 - Hodoroaba, Vasile-Dan A1 - Bernsmeier, Denis A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Spectroscopic ellipsometric analysis of elemental composition and porosity of mesoporous iridium-titanium mixed oxide thin films for electrocatalytic splitting of water N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge for modern analytical techniques and requires approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by spectroscopic ellipsometry (SE). Mesoporous iridium oxide - titanium oxide (IrOx-TiOx) films were prepared via dip-coating of a solution containing a triblock-copolymer as structure-directing agent, an iridium precursor as well as a titanium precursor in ethanol. Deposited films with different amounts of iridium (0 wt%Ir to 100 wt%Ir) were synthesized and calcined in air. The thin films were analyzed with SE using the Bruggeman effective medium approximation (BEMA) for modelling. The results were compared with electron probe microanalysis (EPMA) as part of a combined SEM/EDS/STRATAGem Analysis. T2 - 8th International conference on spectroscopic ellipsometry (ICSE-8) CY - Barcelona, Spain DA - 26.05.2019 KW - Mesoporous iridium-titanium mixed oxides KW - Thin films KW - Spectroscopic ellipsometry KW - Oxygen evolution reaction KW - EPMA KW - Ellipsometric porosimetry PY - 2019 AN - OPUS4-48387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -