TY - JOUR A1 - Sachse, René A1 - Moor, Maëlle A1 - Kraehnert, Ralph A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas T1 - Ellipsometry-based approach for the characterization of mesoporous thin films for H2 technologies N2 - Porous thin layer materials are gaining importance in different fields of technology and pose a challenge to the accurate determination of materials properties important for their function. In this work, we demonstrate a hybrid measurement technique using ellipsometry together with other independent methods for validation. Ellipsometry provides information about the porosity of different mesoporous films (PtRuNP/OMC = 45%; IrOx = 46%) as well as about the pore size (pore radius of ca. 5 nm for PtRuNP/OMC). In addition, the electronic structure of a material, such as intraband transitions of a mesoporous IrOx film, can be identified, which can be used to better understand the mechanisms of chemical processes. In addition, we show that ellipsometry can be used as a scalable imaging and visualization method for quality assurance in production. These require accurate and traceable measurements, with reference materials playing an important role that include porosity and other related properties. We show that our novel analytical methods are useful for improving analytical work in this entire field. KW - Porous materials KW - Electrolysis KW - Spectroscopic ellipsometry KW - Hybrid metrology measurement KW - Electron microscopy PY - 2021 DO - https://doi.org/10.1002/adem.202101320 SP - 1 EP - 17 PB - Wiley-VCH AN - OPUS4-53960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrOx films revealed under realistic OER conditions N2 - Hydrogen production via water electrolysis will be an essential cornerstone in development of sustainable, fossil-free fuel and chemical production on a global scale. The activity and stability of each catalyst is highly dependent on the properties of the coating, i.e., phase composition, crystallinity, accessible surface area, and many other factors. The key to developing improved catalysts is a better understanding of the relationships between their performance, stability, and physicochemical properties. However, these relationships can be complex and are also strongly influenced by the reaction environment. Therefore, operando analysis of the catalyst material during catalysis at realistic potentials and current densities is highly desirable. However, many analytical techniques cannot be applied in liquid environments at realistic potentials and current densities. We propose environmental ellipsometric analysis in a dedicated electrochemical flow cell as a method to evaluate gas evolution reactions operando under realistic working conditions. Figure 1 illustrates schematically the developed technique. Key factors to success are highly active model-type catalysts, a suitable sample environment, and a deep understanding of the appropriate model development, as well as concise cross validation with numerous other analytical techniques. The method was developed and validated by analyzing a calcination series (300 – 600 °C) of mesoporous templated IrOx films ex-situ and operando under oxygen evolution reaction (OER) conditions. The employed environmental electrochemical spectroscopic ellipsometric (ECSE) analysis revealed during OER the change of optical and electronic properties, i.e. the dielectric functions, resistivity and band-to-band transitions (p-d band transitions). Film thickness and porosity were validated by means of scanning electron microscopy (SEM), X-ray reflectometry (XRR) or ellipsometric porosimetry (EP), electrical and electronic properties by means of conductivity measurements, X-ray photoelectron spectroscopy (XPS) or UV-Vis-NIR absorption spectroscopy. The electronic structures of the catalysts from valence electron energy loss spectra (VEELS) derived from ε1 and ε2 from SE measurements reveal a direct correlation with electrochemical activities in OER. In the presentation reversible and irreversible potential-dependent changes of the catalyst properties during operation will be discussed along with the dynamics of gas formation, transport and dissolution at different potentials. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Ectrocatalysis KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis KW - Oxygen evolution reaction KW - Spectroscopic ellipsometry PY - 2021 AN - OPUS4-53915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher-Hofinger, Stefan A1 - Weise, Matthias T1 - Functional coatings for mechanical applications: characterization and standardization N2 - The paper addresses the “Functional coatings for mechanical applications: characterization and standardization” and the following points are discussed in more detail: 1. Mechanic alapplications (coatings for tools and components, system features vs. material parameters) 2. Mechanical characterization (instrumented indentation testing (IIT), centrifugal adhesion testing (CAT), state of standardization) 3. Topometric characterization (white light interference microscopy (WLIM, 3D), mechanical stylus (MS, 2D), state of standardization) 4. Optical characterization (spectroscopic ellipsometry (SE), inter-laboratory comparison, state of standardization) T2 - IC-CMTP6 CY - Miskolc, Hungary DA - 04.10.2021 KW - Spectroscopic Ellipsometry KW - White Light Interference Microscopy KW - Instrumented Indentation Testing KW - Functional coatings KW - Mechanical characterization KW - Optical characterization KW - Topometric characterization KW - Standardization PY - 2021 AN - OPUS4-53987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Schneider, S. A1 - Peters, S. T1 - Development of a standard series for ellipsometry N2 - Ellipsometry is a powerful tool, which allows the investigation of material properties over a broad spectral range. Over the course of several years, the ellipsometry lab at BAM has become an accredited testing lab according to ISO/IEC 17025 laying bare the need of better methods for accuracy and traceability. Despite its wide range of application in both research and development as well as industry, there have been no generally accepted standards dealing with model validation and measurement uncertainties. Based on the first German standard DIN 50989 – 1: 2018 Ellipsometry - Part 1: Principles (currently international standard ISO 23131: 2021) and under consideration of GUM [1] a series of standards for ellipsometry was developed. The entire 6-part series covers several model-based application cases. This standards series avoids having narrow and material specific application cases but instead classifies applications of ellipsometry according to the sample complexity. The concept of ellipsometric transfer quantities (Ψ and Δ or alternatively the elements of transfer matrices) is implemented in the series. For each application case a model-based validation strategy was developed. Thus, the standards are applicable to all materials, instruments and measuring principles. The uniform structure concept of the series facilitates its practical applicability for users. The standards include the model-based GUM-compliant determination/estimation of the measurement uncertainties. In addition, the appendices of the documents contain numerous measurement and simulation examples as well as recommendations for measuring practice. In this contribution we present the application cases and basic structure of the standards developed in collaboration with Accurion GmbH and SENTECH Instruments GmbH in the project SNELLIUS. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Standardization of ellipsometry KW - DIN 50989 Parts 1 – 6 KW - ISO 23131: 2021 KW - Validation concepts of ellipsometric measurements KW - Uncertainty budgets KW - GUM-compliance PY - 2021 AN - OPUS4-53250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Hertwig, Andreas A1 - Kraehnert, Ralph T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrO IrOxfilms revealed under realistic OER conditions N2 - Rising energy demand and the impending climate change require the development of a sustainable, fossil-free fuel and chemical production on a global scale. Hydrogen production via water electrolysis will be a fundamental cornerstone in this endeavor. The activity and stability of respective electrode coatings strongly depends on the coating's properties, i.e. phase composition, crystallinity, electrical conductivity, accessible surface, wettability and many other factors. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physicochemical properties. However, those relations can be complex, and are strongly influenced also by the reaction environment. Hence, operando analysis of the catalyst material during catalysis at realistic potentials and current densities is highly desirable. Yet, many analytical techniques cannot be applied in liquid environments at realistic potentials and current densities. We propose environmental ellipsometric analysis in a dedicated electrochemical flow cell as a new method to evaluate gas evolution reactions operando under realistic working conditions. Figure 1 illustrates schematically the developed technique. Key factors to success are highly active model-type catalysts with template-controlled porosity, a suitable sample environment, a deep understanding of the spectroscopic method and respective model development, as well as concise cross validation with numerous other analytical techniques. The method was developed and validated by analyzing a calcination series (300 - 600°C) of mesoporous templated IrOx films ex-situ and operando under oxygen evolution reaction (OER) conditions. The employed environmental electrochemical spectroscopic ellipsometric analysis (ECSE) revealed during OER the change of optical and electronic properties, i.e. the dielectric functions (real ε1 and imaginary part ε2), electrical and electronic properties such as resistivity (ρ) and band-to-band transitions (p-d band transitions). Film thickness and porosity were validated by means of scanning electron microscopy (SEM), X-ray reflectometry (XRR) or ellipsometric porosimetry (EP), electrical and electronic properties by means of conductivity measurements, X-ray photoelectron spectroscopy (XPS) or UV-Vis-NIR absorption spectroscopy. The electronic structures of the catalysts from valence electron energy loss spectra (VEELS) derived from the real (ε1) and imaginary part (ε2) of the dielectric function from SE measurements reveal a direct correlation with electrochemical activities in OER. In the presentation reversible and irreversible potential-dependent changes of the catalyst properties during operation will be discussed along with the dynamics of gas formation, transport and dissolution T2 - E MRS 2021 SPRING MEETING CY - Online meeting DA - 31.05.2021 KW - Spectroscopic ellipsometry KW - Ectrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis PY - 2021 AN - OPUS4-52929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Weise, Matthias T1 - Uncertainty budgets in surface technology: stepheigt, layerthickness, indentation hardness, adehesive strength N2 - The object (sample) and the measurement/testing procedure may always have unknown degrees of freedom, i.e. instead of 𝐯 ≥ n – 1 in many cases 𝐯 ≫ n - 1 may apply, in particular in the micro- and nano-world! T2 - 10. VDI-Fachtagung, Messunsicherheit und Prüfprozesse CY - Erfurt, Germany DA - 10.11.2021 KW - Methodology in metrology KW - Methodology in testing KW - Spectroscopic Ellipsometry KW - Instrumented Indentation Testing (IIT) KW - Centrifugal Adhesion Testing (CAT) PY - 2021 AN - OPUS4-53986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena A1 - Sachse, René A1 - Beck, Uwe T1 - Accuracy, traceability, and standardization in spectroscopic ellipsometry N2 - Ellipsometry has been an extremely successful and fast expanding method in the past decades along with other related techniques using polarisation sensitive measurements. Opening new fields of application for a successful measurement technique brings some requirements and issues that have to be solved. From a metrological point of view, ellipsometry has the problem that uncertainties are difficult to determine for model-based analysis techniques in general. In this presentation, we will explore how the usefulness of polarimetric methods like ellipsometry can be increased. Ellipsometry as a method could profit from several current developments which will be discussed in this presentation: • Standardisation initiatives on national and international level developing standards for best practice when using ellipsometry. A series of at least six standards is currently developed on national German and international level covering different levels of sample complexity. • Projects on traceability of ellipsometry and structured surface spectrometry as well as new dielectric function database initiatives. • Metadata handling and data ontology providing a better framework for exchange and collaborative use of research data. We will also explore the quantification of measurement uncertainty using examples from projects in which BAM is involved. Examples will be presented of multilayer and non-ideal materials as well as the determination of layer properties for technical applications such as thin layer catalysts and complex polymers. The definition of reference materials will be discussed. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Ellipsometry KW - Uncertainty KW - Surface analytics KW - Data science PY - 2021 AN - OPUS4-53295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Bernsmeier, D. A1 - Hertwig, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, R. T1 - Spectroscopic ellipsometry for the determination of thickness and porosity of mesoporous metal oxide films N2 - Thin mesoporous metal oxide films are versatile and attractive candidates for several energy applications like photovoltaics, electrolysis or batteries. Due to their high surface area and ordered pore structure, mesoporous metal oxides demonstrate higher activities. The performance of the porous films is affected by properties like size and shape of the mesopores as well as the crystallinity of the framework. The exact determination and metrological evaluation of the complex morphology of thin mesoporous films requires a new analytical approach employing to combined data of different analytical methods. In this contribution we present a novel evaluation procedure for spectroscopic ellipsometry (SE) to analyse thin mesoporous iridium oxide films. Mesoporous iridium oxide films were prepared via dip-coating of a solution containing a triblock-copolymer as structure directing agent and an iridium precursor in ethanol. Deposited films were calcined in air at temperatures between 300 and 600 °C. Their morphology was studied with SEM and an electron probe microanalysis (EPMA)and correlated via SE with a Bruggeman effective medium approximation (BEMA). The developed SE model described the film thickness as well as the porosity. Figure 1a shows a top-view SEM image of mesoporous IrO2 film calcined at 375 °C. The image reveals that the films exhibit a well-ordered mesopore structure with an average pore diameter of 16 nm and a periodic distance between pore centres of 24 nm (FFT inset). Figure 1b is a parity plot of film thicknesses determined by cross-section SEM versus SE of IrO2 film samples prepared at different calcination temperatures. The porosity from the SE model is in good agreement to the porosity values obtained by EPMA. The contribution will assess in detail the novel approach to analyse the morphology and porosity of thin metal oxide films with spectroscopic ellipsometry. Moreover, the advantages of the new developed approach will be discussed as well as combination of datasets from multiple measurements to development new methods for innovative energy technologies. T2 - 30. Deutsche Zeolith-Tagung und Jahrestreffen der ProcessNet-Fachgruppe Adsorption CY - Kiel, Germany DA - 28.02.2018 KW - Mesoporous materials KW - Iridium oxide films KW - Electro catalyst KW - Spectroscopic ellipsometry KW - Thin film metrology KW - Multi-sample analysis PY - 2018 AN - OPUS4-45101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Hertwig, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, R. T1 - Spectroscopic ellipsometry for the determination of thickness and porosity of mesoporous metal oxide films N2 - Thin mesoporous metal oxide films are versatile and attractive candidates for several energy applications like photovoltaics, electrolysis or batteries. Due to their high surface area and ordered pore structure, mesoporous metal oxides demonstrate higher activities. The performance of the porous films is affected by properties like size and shape of the mesopores as well as the crystallinity of the framework. The exact determination and metrological evaluation of the complex morphology of thin mesoporous films requires a new analytical approach employing to combined data of different analytical methods. In this contribution we present a novel evaluation procedure for spectroscopic ellipsometry (SE) to analyse thin mesoporous iridium oxide films. Mesoporous iridium oxide films were prepared via dip-coating of a solution containing a triblock-copolymer as structure directing agent and an Iridium precursor in ethanol. Deposited films were calcined in air at temperatures between 300 and 600 °C. Their morphology was studied with SEM and an electron probe microanalysis (EPMA) and correlated via SE with a Bruggeman effective medium approximation (BEMA). The developed SE model described the film thickness as well as the porosity. ... The contribution will assess in detail the novel approach to analyse the morphology and porosity of thin metal oxide films with spectroscopic ellipsometry. Moreover, the advantages of the new developed approach will be discussed as well as combination of datasets from multiple measurements to development new methods for innovative energy technologies. T2 - 10th Workshop Ellipsometry 2018 CY - Chemnitz University of Technology, Germany DA - 19.03.2018 KW - Mesoporous materials KW - Iridium oxide films KW - Electro catalyst KW - Spectroscopic ellipsometry KW - Thin film metrology KW - Multi-sample analysis PY - 2018 AN - OPUS4-45143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Bernsmeier, Denis A1 - Hertwig, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, Ralph T1 - Spectroscopic ellipsometry for the determination of thickness and porosity of mesoporous metal oxide films N2 - Thin mesoporous metal oxide films are versatile and attractive candidates for several energy applications like photovoltaics, electrolysis or batteries. Due to their high surface area and ordered pore structure, mesoporous metal oxides demonstrate higher activities. The performance of the porous films is affected by properties like size and shape of the mesopores as well as the crystallinity of the framework. The exact determination and metrological evaluation of the complex morphology of thin mesoporous films requires a new analytical approach employing to combined data of different analytical methods. In this contribution we present a novel evaluation procedure for spectroscopic ellipsometry (SE) to analyse thin mesoporous iridium oxide films. Mesoporous iridium oxide films were prepared via dip-coating of a solution containing a triblock-copolymer as structure directing agent and an iridium precursor in ethanol. Deposited films were calcined in air at temperatures between 300 and 600 °C. Their morphology was studied with SEM and an electron probe microanalysis (EPMA) and correlated via SE with a Bruggeman effective medium approximation (BEMA). The developed SE model described the film thickness as well as the porosity. ... The contribution will assess in detail the novel approach to analyse the morphology and porosity of thin metal oxide films with spectroscopic ellipsometry. Moreover, the advantages of the new developed approach will be discussed as well as combination of datasets from multiple measurements to development new methods for innovative energy technologies. T2 - 30. Deutsche Zeolith-Tagung gemeinsam mit dem Jahrestreffen der ProcessNet-Fachgruppe Adsorption CY - Christian-Albrechts-Universität zu Kiel, Germany DA - 28.02.2018 KW - Mesoporous materials KW - Iridium oxide films KW - Electro catalyst KW - Spectroscopic ellipsometry KW - Thin film metrology KW - Multi-sample analysis PY - 2018 AN - OPUS4-45134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - Multi-methods surface analysis involving spectroscopic ellipsometry: New measurements for optical and energy applications N2 - Surface analysis is still gaining importance, as most modern technology is in essence surface and thin film technology. In microelectronics and optics but also in many fields of energy storage and conversion, thin surface layers or structured surfaces are key components. Optical surface measurements are useful because of their reliability, robustness, and scalability – properties, which are especially desirable in a production environment. However, many of these methods take require considerable effort in data analysis. Spectroscopic ellipsometry (SE) is maybe the prime example of this class of methods. To combine the advantages of SE with metrological trueness and traceability, we combine it in a group of other methods, such as electron microscopy, instrumental surface analysis, X-ray diffraction. This presentation will give an overview on the principles of SE, its available quantities and the general properties of this measurement technique. Several examples from current and past projects of BAM-6.7 will show how a measurement community involving ellipsometry can benefit many fields of interest, from polymer science to energy applications. In the context of creating a “measurement landscape”, standardisation and standard compliance play an important role. The efforts of BAM in standardisation and accrediting of ellipsometry will be shown demonstrating the possible impact on quality assurance in different fields of technology. T2 - Abteilungskolloquium 2018, BAM CY - BAM, Berlin, Germany DA - 12.12.2018 KW - Spectroscopic ellipsometry KW - Surface analysis KW - Thin film technology KW - Reference materials PY - 2018 AN - OPUS4-47671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Madkour, Sherif A1 - Gawek, Marcel A1 - Szymoniak, Paulina A1 - Hertwig, Andreas T1 - Growth kinetics and molecular mobility of irreversibly adsorbed layers in thin polymer films N2 - In well-annealed thin polymer films, with non-repulsive polymer/substrate interactions, an irreversibly adsorbed layer is expected to from. These adsorbed layers have shown greate potential for technological applications. However, their growth kinetics and molecular dynamics are still not fully understood. This is partly due to the hard accessibility of these layers in thin films. Here, the irreversibly adsorbed layers of homopolymer thin films are revealed by solvent-leaching experiments. First, the growth kinetics of these layers is investigated as a function of annealing time, annealing temperature, leaching time and the original filme thickness. The film thickness, topography and the quality of the adsorbed layer is controlled by Atomic Force Microscopy (AFM). Secondly, the molecular mobility of the adsorbed layer is investigated by Broadband Dielectric Spectroscopy (BDS). A recently developed nanostructured capacitor arrangement is employed to measure the layer with a free surface. The results are quantitatively compared and discussed with respect to recently published work. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussles, Belgium DA - 26.08.2018 KW - Thin polymer films PY - 2018 AN - OPUS4-45837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kormunda, M. A1 - Hertwig, Andreas A1 - Rysanek, P. A1 - Ivanov, L. T1 - Optical and Electrical Properties of reactive/nonreactive Magnetron Deposited SnZnOxCoatings Annealed at Various Temperatures N2 - ZnSnOx coatings were deposited from two 2in magnetron targets made of ZnO and SnO2 connected to DC pulsed and RF power supplies, respectively. The pure Ar and reactive gas mixture Ar/O2 were used. DC pulsed power applied on ZnO target was kept constant 50W 50kHz, 20% d.c. and the RF power applied on SnO2 target was set to values from 0W (pure ZnO deposited) up to 150W (up to 8 at.% of Sn in films). The deposited films were investigated by multiple techniques as deposited at RT as well as after annealing at temperatures 200o C and 450o C. The lower annealing temperature is still compatible with many of common polymeric substrates. The amount of Sn in the films is proportional to applied RF power on SnO2 target. But there is also significant influence of the post Deposition annealing on the film compositions. The ratio Zn/Sn is reduced by the annealing process. Therefore the annealing is promoting the migration of Sn toward the surface and Zn to inside. Moreover the films deposited in oxygen rich reactive gas mixture does not reduces the resistivity with added Sn in contrary to films deposited in Ar where the resistivity was reduced by 5 orders of magnitudes. The plasma parameters were investigated and mean energies of dominant species were in DC pulsed only about 3eV and DC + RF powered plasma up to 15eV. The expected higher energetic particles in the RF influenced plasma deliver an additional energy to the growing film. Therefore, we observed systematic differences between refractive indexes in the films deposited with low RF powered SnO2 magnetron at RT and post-annealed at 200 ° and practically no difference between RT and post-annealed film at higher RF power above 50 W. The XRD results proved the transitions from an amorphous to more crystalline structure by post-annealing of the films. T2 - PSE 2018 - 16th Conference on Plasma Surface Engineering CY - Garmisch-Partenkirchen, Germany DA - 17.09.2018 KW - Reactive sputtering KW - Plasma diagnostics KW - Optical films KW - TCO PY - 2018 AN - OPUS4-46347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawek, Marcel A1 - Madkour, Sherif A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of Irreversibly Adsorbed Layers in Thin Films of P2VP and PVME N2 - In well-annealed thin polymer films, with non-repulsive polymer/substrate interactions, an irreversibly adsorbed layer is formed. These adsorbed layers have shown enormous potential for technological applications. Due to the hard accessibility of these layers, their growth kinetics and molecular dynamics are still not fully understood. Here, the irreversibly adsorbed layers of Poly(2-vinylpyridine) (P2VP) and Poly(vinyl methyl ether) (PVME) thin films are revealed by solvent-leaching experiments. The growth kinetics of these layers is investigated as a function of original film thickness and annealing times. The thickness, topography and quality of the adsorbed layer is determined with Atomic Force Microscopy (AFM) and spectroscopic ellipsometry. Additionally, the molecular mobility of the adsorbed layer is investigated with Broadband Dielectric Spectroscopy (BDS). A recently developed nanostructured capacitor (NSC) is employed to measure the adsorbed layers with a free surface layer depending on annealing and solvent-leaching time. The results are quantitatively compared and discussed with respect to recently published work. T2 - Spring Meeting of German Physical Society CY - Regensburg, Germany DA - 31.03.2019 KW - Adsorbed layer KW - Thin polymeric films PY - 2019 AN - OPUS4-47766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hertwig, Andreas A1 - Kraehnert, R. A1 - Hodoroaba, Vasile-Dan T1 - Analysis of mesoporous iridium oxide thin films by the combined methodical approach SEM/EDS/STRATAGem N2 - For the determination of porosity of Ir oxide thin films, electron probe microanalysis (EPMA) can be used as part of a combined SEM/EDS/STRATAGem analysis. The mass deposition (in μg cm-2) of films was calculated with the analysis software STRATAGem via k-values measured with EDS. The average density of coated films was obtained from the mass deposition and the film thickness as measured by the cross-section SEM. The porosity was calculated by dividing the average film density by the bulk (theoretical) density of the film material. Film porosities were counterchecked by spectroscopic ellipsometry (SE) using the Bruggeman effective medium approximation (BEMA). The results obtained by both analytical approaches/methods used, SEM/EDS/STRATAGem and SE were in good agreement. KW - Porous thin films KW - Iridium oxide KW - Electron probe microanalysis (EPMA) KW - Spectroscopic ellipsometry PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/analysis-of-mesoporous-iridium-oxide-thin-films-by-the-combined-methodical-approach-semedsstratagem/7607018338B542D8B8C4D944392781EF DO - https://doi.org/10.1017/S1431927618004300 SN - 1431-9276 SN - 1435-8115 VL - 24 IS - S1 (August) SP - 762 EP - 763 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Sachse, René A1 - Hertwig, Andreas A1 - Kraehnert, R. T1 - Analysis of Mesoporous Iridium Oxide Thin Films by the Combined Methodical Approach SEM/EDS/STRATAGem N2 - For the determination of porosity of Ir oxide thin films, electron probe microanalysis (EPMA) can be used as part of a combined SEM/EDS/STRATAGem analysis. The mass deposition (in μg cm-2) of films was calculated with the analysis software STRATAGem via k-values measured with EDS. The average density of coated films was obtained from the mass deposition and the film thickness as measured by the cross-section SEM. The porosity was calculated by dividing the average film density by the bulk (theoretical) density of the film material. Film porosities were counterchecked by spectroscopic ellipsometry (SE) using the Bruggeman effective medium approximation (BEMA). The results obtained by both analytical approaches/methods used, SEM/EDS/STRATAGem and SE were in good agreement. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Electron probe microanalysis (EPMA) KW - Iridium oxide KW - Porous thin films KW - Spectroscopic ellipsometry PY - 2018 AN - OPUS4-46509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juds, Carmen A1 - Schmidt, J. A1 - Weller, Michael G. A1 - Lange, Thorid A1 - Beck, Uwe A1 - Conrad, T. A1 - Boerner, H. G. T1 - Combining phage display and next-generation sequencing for materials sciences: A case study on probing polypropylene surfaces N2 - Phage display biopanning with Illumina next-generation sequencing (NGS) is applied to reveal insights into peptide-based adhesion domains for polypropylene (PP). One biopanning round followed by NGS selects robust PP-binding peptides that are not evident by Sanger sequencing. NGS provides a significant statistical base that enables motif analysis, statistics on positional residue depletion/enrichment, and data analysis to suppress false-positive sequences from amplification bias. The selected sequences are employed as water-based primers for PP-metal adhesion to condition PP surfaces and increase adhesive strength by 100% relative to nonprimed PP. KW - Polymers KW - Polypropylene KW - Glue KW - Plastics KW - Surface Activation KW - Primer KW - Peptide Library KW - Epoxy KW - Solid-binding Peptides KW - Functionalization KW - Polymer-binding Peptides KW - Adhesion KW - Material-binding Peptides KW - Adhesives PY - 2020 DO - https://doi.org/10.1021/jacs.0c03482 SN - 0002-7863 SN - 1520-5126 VL - 142 IS - 24 SP - 10624 EP - 10628 PB - ACS CY - Washington, DC, USA AN - OPUS4-51123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arinchtein, A. A1 - Schnack, R. A1 - Kraffert, K. A1 - Radnik, Jörg A1 - Dietrich, P. A1 - Sachse, René A1 - Krähnert, R. T1 - Role of Water in Phase Transformations and Crystallization of Ferrihydrite and Hematite N2 - The oxides, hydroxides, and oxo-hydroxides of iron belong to the most abundant materials on earth. They also feature a wide range of practical applications. In many environments, they can undergo facile phase transformations and crystallization processes. Water appears to play a critical role in many of these processes. Despite numerous attempts, the role of water has not been fully revealed yet. We present a new approach to study the influence of water in the crystallization and phase transformations of iron oxides. The approach employs model-type iron oxide films that comprise a defined homogeneous nanostructure. The films are exposed to air containing different amounts of water reaching up to pressures of 10 bar. Ex situ analysis via scanning electron microscopy, Transmission electron microscopy, selected area electron diffraction, and X-ray diffraction is combined with operando near-ambient pressure X-ray photoelectron spectroscopy to follow water-induced changes in hematite nd ferrihydrite. Water proves to be critical for the nucleation of ematite domains in ferrihydrite, the resulting crystallite orientation, and the underlying crystallization mechanism. KW - Iron oxide KW - Ferrihydrite KW - Hematite KW - Water KW - NAP-XPS KW - High pressure PY - 2020 DO - https://doi.org/10.1021/acsami.0c05253 VL - 12 SP - 38714 EP - 38722 PB - ACS Publication AN - OPUS4-51201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Silicon surface amorphization and re-crystallization via single femtosecond laser pulses N2 - Silicon is the material responsible for most of the technological developments during the past century, making it one of the most studied materials along different disciplines. However, there are still unturned stones regarding its superficial re-solidification after femtosecond laser-induced local melting. In this presentation, we report irradiation experiments with single femtosecond pulses (790 nm, 30 fs) with a spatially Gaussian distribution on two different types of silicon with orientations <111> and <100>. The surface modifications were studied in detail via different techniques, including optical microscopy, atomic force microscopy, spectroscopic imaging ellipsometry, energy dispersive X-ray spectroscopy and high-resolution transmission electron microscopy. We quantitatively estimate the resulting radial amorphous layer depth profiles with maximum thicknesses around some tenths of nanometers for fluences in between the melting and ablation thresholds. In particular, spectroscopic imaging ellipsometry (SIE) allowed fast data acquisition using multiple wavelengths to provide experimental measurements for calculating the nanometric radial amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. SIE proved to be capable of detecting and measuring nanometric structural and chemical modifications (oxidation) on the studied laser spots. The accuracy of the SIE-based calculations is verified experimentally by characterizing an in-depth material lamella via high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). For completeness, we present a mathematical modelling for the melt layer thickness considering different optical absorption processes including one photon absorption, two photon absorption and free-carrier absorption, highlighting the relevance of the latter one in the femtosecond laser-induced melting of silicon. T2 - 28th International Conference on Advanced Laser Technologies (ALT'21) CY - Online meeting DA - 06.09.2021 KW - Silicon KW - Femtosecond laser KW - Phase transitions KW - Spectroscopic imaging ellipsometry KW - Transmission electron microscopy PY - 2021 AN - OPUS4-53235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duwe, M. A1 - Florian, C. A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Thickness Profiling of the Superficial Amorphization and Re-Crystallization of Silicon Induced by Femtosecond Laser Pulses N2 - Crystalline Silicon undergoes a complex phase-change dynamic of melting, amorphization, ablation and re-crystallization upon irradiation with high intensity ultra-short laser pulses [1]. The final state of such a modified surface spot depends on many factors, most notably the local fluence and the surface’s crystal orientation. In this study, we induced superficial structure and phase changes in Silicon <111> and <100> wafers using single femtosecond laser pulses (790 nm, 30 fs) for a range of different peak fluences. The resulting surface modifications were studied in great detail using a number of different techniques, including spectroscopic imaging ellipsometry (SIE), atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), and energy dispersive X-ray spectroscopy within scanning transmission electron microscopy (STEM-EDX). Playing a pivotal role in this work, SIE provided non-destructive measurements for the calculation of the radial amorphous layer-thickness profiles of the irradiated spots using a two-layer thin-film model (Silicon dioxide and amorphous Silicon on a crystalline Silicon substrate). The measurements further allowed for the analysis of the oxide-layer modifications induced by the laser treatment. The results of the SIE-calculations were cross-checked by an in-depth material lamella via HRTEM and STEM-EDX. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Femtosecond Laser KW - Spectroscopic imaging ellipsometry KW - Amorphization KW - Ablation KW - Re-crystallization PY - 2021 AN - OPUS4-53363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -