TY - JOUR A1 - Kirner, Sabrina V. A1 - Slachciak, Nadine A1 - Elert, Anna Maria A1 - Griepentrog, Michael A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Dörfel, Ilona A1 - Sturm, Heinz A1 - Pentzien, Simone A1 - Koter, Robert A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization N2 - Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms. KW - Femtosecond laser KW - Titanium KW - Oxidation KW - Friction PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-445609 DO - https://doi.org/10.1007/s00339-018-1745-8 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 4 SP - 326, 1 EP - 10 PB - Springer-Verlag AN - OPUS4-44560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Ectoine interaction with DNA: Influence on ultraviolet radiation damage N2 - Ectoine is a small zwitterionic osmolyte and compatible solute, which does not interfere with cell metabolism even at molar concentrations. Plasmid DNA (pUC19) was irradiated with ultraviolet radiation (UV-C at 266 nm) under quasi physiological conditions (PBS) and in pure water in the presence and absence of ectoine (THP(B)) and hydroxyectoine (THP(A)). Different types of UV induced DNA damage were analysed: DNA single-strand breaks (SSBs), abasic sites and cyclobutane pyrimidine dimers (CPDs). A complex interplay between these factors was observed with respect to the nature and occurrence of DNA damage with 266 nm photons. In PBS, the cosolutes showed efficient protection against base damage, whilst in pure water, a dramatic shift from SSB damage to base damage was observed when cosolutes were added. To test whether these effects are caused by ectoine binding to DNA, further experiments were conducted: small-angle X-ray scattering (SAXS), surface-plasmon resonance (SPR) measurements and Raman spectroscopy. The results show, for the first time, a close interaction between ectoine and DNA. This is in stark contrast to the assumption made by preferential exclusion models, which are often used to interpret the behaviour of compatible solutes within cells and with biomolecules. It is tentatively proposed that the alterations of UV damage to DNA are attributed to ectoine influence on nucleobases through the direct interaction between ectoine and DNA. KW - Ectoine KW - DNA KW - Radiation damage KW - Radiation protection KW - SSB KW - DNA damage KW - DNA protection KW - Compatible solute KW - Zwitterion KW - Hydroxyectoine KW - Salt KW - PBS KW - UV absorption KW - DNA strand-break KW - DNA base damage KW - Ectoine UV absorption KW - Ectoine DNA protection KW - Excited states KW - UV irradiation KW - UV-A KW - UV-B KW - UV-C KW - 266nm KW - UV photons KW - Ectoine-DNA binding KW - Raman spectroscopy KW - UV-Vis KW - Radical scavenger KW - OH scavenger KW - Hydroxyl radicals KW - CPD KW - Abasic site KW - Agarose gel electrophorese KW - SYBR gold KW - DNA melting temperature KW - Counterions KW - Preferential exclusion KW - Cancer KW - Therapy KW - UV protection KW - Sunscreen PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505772 DO - https://doi.org/10.1039/d0cp00092b SN - 1463-9076 SN - 1463-9084 VL - 22 IS - 13 SP - 6984 EP - 6992 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-50577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Silbernagl, Dorothee A1 - Rautenberg, Max A1 - Schmid, Thomas A1 - Feiler, Torvid A1 - Reimann, K. A1 - Ghalgaoui, A. A1 - Sturm, Heinz A1 - Paulus, B. A1 - Emmerling, Franziska T1 - A Mechanistic Perspective on Plastically Flexible Coordination Polymers N2 - Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one-dimensional (1D) coordination polymer. The compound [Zn(m-Cl)2(3,5-dichloropyridine)2]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 1808. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material KW - Coordination polymer KW - Flexible crystals KW - Mechanical properties KW - Plastic deformation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504755 DO - https://doi.org/10.1002/anie.201914798 VL - 59 IS - 14 SP - 5557 EP - 5561 PB - Wiley-VCH AN - OPUS4-50475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fortini, Renata A1 - Meyer-Plath, A. A1 - Kehren, D. A1 - Gernert, U. A1 - Agudo Jácome, Leonardo A1 - Sturm, Heinz T1 - Measurement of flexural rigidity of multi-walled carbon nanotubes by Dynamic Scanning Electron Microscopy N2 - In this work the flexural rigidity of individual large diameter multi-walled carbon nanotubes (MWCNTs) was investigated. The bending modulus were obtained by detecting the resonance frequencies of mechanically excited cantilevered carbon nanotubes using the so-called dynamic scanning electron microscopy technique, and applying the Euler–Bernoulli beam theory. For the nanotubes studied, we determined a modulus of up to 160 GPa. This agrees with values reported by other authors for MWCNTs produced by catalytic chemical vapor deposition, however, it is 6-8 times smaller than values reported for single and multi-walled carbon nanotubes produced by arc-discharge synthesis. Toxicological studies with carbon nanotubes have been showing that inhaled airborne nanofibers that reach the deep airways of the respiratory system may lead to serious, asbestos-like lung diseases. These studies suggested that their toxicity critically depends on the fiber flexural rigidity, with high rigidity causing cell lesions. To complement the correlation between observed toxicological effects and fiber rigidities, reliable and routinely applicable measurement techniques for the flexural rigidity of nanofibers are required. KW - Flexural rigidity KW - Bending modulus KW - Resonance frequency KW - Carbon nanotubes KW - Fiber toxicology PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514190 DO - https://doi.org/10.3390/fib8050031 SN - 2079-6439 VL - 8 IS - 5 SP - 31 PB - MDPI AN - OPUS4-51419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Ghasem Zadeh Khorasani, Media A1 - Cano Murillo, Natalia A1 - Elert, Anna Maria A1 - Sturm, Heinz ED - Glatzel, T. T1 - Bulk chemical composition contrast from attractive forces in AFM force spectroscopy N2 - A key application of atomic force microscopy (AFM) is the measurement of physical properties at sub-micrometer resolution. Methods such as force–distance curves (FDCs) or dynamic variants (such as intermodulation AFM (ImAFM)) are able to measure mechanical properties (such as the local stiffness, kr) of nanoscopic heterogeneous materials. For a complete structure–property correlation, these mechanical measurements are considered to lack the ability to identify the chemical structure of the materials. In this study, the measured attractive force, Fattr, acting between the AFM tip and the sample is shown to be an independent measurement for the local chemical composition and hence a complete structure–property correlation can be obtained. A proof of concept is provided by two model samples comprised of (1) epoxy/polycarbonate and (2) epoxy/boehmite. The preparation of the model samples allowed for the assignment of material phases based on AFM topography. Additional chemical characterization on the nanoscale is performed by an AFM/infrared-spectroscopy hybrid method. Mechanical properties (kr) and attractive forces (Fattr) are calculated and a structure–property correlation is obtained by a manual principle component analysis (mPCA) from a kr/Fattr diagram. A third sample comprised of (3) epoxy/polycarbonate/boehmite is measured by ImAFM. The measurement of a 2 × 2 µm cross section yields 128 × 128 force curves which are successfully evaluated by a kr/Fattr diagram and the nanoscopic heterogeneity of the sample is determined. KW - AFM force spectroscopy KW - Composites KW - Principle component analysis KW - Structure–property correlation KW - Van der Waals forces PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520175 DO - https://doi.org/10.3762/bjnano.12.5 SN - 2190-4286 VL - 12 IS - 5 SP - 58 EP - 71 PB - Beilstein Institute CY - Frankfurt am Main AN - OPUS4-52017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Hahn, Marc Benjamin A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Nanomechanical study of polycarbonate/boehmite nanoparticles/epoxy ternary composite and their interphases N2 - Thermoplastic modified thermosets are of great interest especially due to their improved fracture toughness. Comparable enhancements have been achieved by adding different nanofillers including inorganic particles such as nanosized boehmite. Here, we present a nanomechanical study of two composite systems, the first comprising a polycarbonate (PC) layer in contact with epoxy resin (EP) and the second consisting of a PC layer containing boehmite nanoparticles (BNP) which is also in contact with an EP layer. The interaction between PC and EP monomer is tested by in situ Fourier transformed infrared (FT-IR) analysis, from which a reaction induced phase separation of the PC phase is inferred. Both systems are explored by atomic force microscopy (AFM) force spectroscopy. AFM force-distance curves (FDC) show no alteration of the mechanical properties of EP at the interface to PC. However, when a PC phase loaded with BNP is put in contact with an epoxy system during curing, a considerable mechanical improvement exceeding the rule of mixture was detected. The trend of BNP to agglomerate preferentially around EP dominated regions and the stiffening effect of BNP on EP shown by spatial resolved measurements of Young's modulus, suggest the effective presence of BNP within the EP phase. KW - Composites KW - Mechanical properties KW - Nanoparticles KW - Thermoplastics KW - Thermosets PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515965 DO - https://doi.org/10.1002/app.50231 SN - 0021-8995 SN - 1097-4628 VL - 138 IS - 12 SP - 1 EP - 11 PB - Wiley CY - New York, NY AN - OPUS4-51596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz A1 - Günster, Jens T1 - First time additively manufactured advanced ceramics by using two-photon polymerization for powder processing N2 - Methods and materials are presented here, which enable the manufacturing of fine structures using a 3D-printing method known as two-photon polymerization (2PP). As traditional photolithography methods for structuring ceramic slurries do not function with 2PP, due to light scattering on ceramic particles, a novel water-based photoresist with high ceramic loading of extremely well dispersed ceramic nano particles was developed. This photoresist is basically a ceramic slurry containing a photocurable agent and a photoinitiator to be crosslinkable with the 780 nm wavelength femtosecond laser light source of the 2PP machine. It is demonstrated that it is possible to gain a highly transparent and low viscous slurry suitable for 2PP processing. This work shows the development of the slurry, first printing results and the post-printing processes required to form three dimensional ceramic microstructures consisting of alumina toughened zirconia (ATZ). KW - 3D-printing KW - Two-photon polymerization KW - 2PP KW - Ceramic nano particles KW - Slurry KW - Alumina toughened zirconia KW - ATZ KW - Additive manufacturing KW - SchwarzP cells KW - Nano-ceramic-additive-manufacturing photoresin KW - NanoCAM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517441 DO - https://doi.org/10.1016/j.oceram.2020.100040 VL - 4 SP - 100040 PB - Elsevier Ltd. AN - OPUS4-51744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Topolniak, Ievgeniia A1 - Silbernagl, Dorothee A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Long-time behavior of surface properties of microstructures fabricated by multiphoton lithography N2 - The multiphoton lithography (MPL) technique represents the future of 3D microprinting, enabling the production of complex microscale objects with high precision. Although the MPL fabrication parameters are widely evaluated and discussed, not much attention has been given to the microscopic properties of 3D objects with respect to their surface properties and time-dependent stability. These properties are of crucial importance when it comes to the safe and durable use of these structures in biomedical applications. In this work, we investigate the surface properties of the MPL-produced SZ2080 polymeric microstructures with regard to the physical aging processes during the post-production stage. The influence of aging on the polymeric microstructures was investigated by means of Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). As a result, a time-dependent change in Young’s Modulus, plastic deformation, and adhesion and their correlation to the development in chemical composition of the surface of MPL-microstructures are evaluated. The results presented here are valuable for the application of MPL-fabricated 3D objects in general, but especially in medical technology as they give detailed information of the physical and chemical time-dependent dynamic behavior of MPL-printed surfaces and thus their suitability and performance in biological systems. KW - Multiphoton lithography KW - Additive manufacturing KW - Microfabrication KW - SZ2080 negative photo-resist KW - Young´s modulus KW - Aging KW - Surface properties KW - X-ray photoelectron spectroscopy KW - Atomic force microscopy KW - Force-distance-curve PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542166 DO - https://doi.org/10.3390/nano11123285 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Plajer, A. J. T1 - Thioanhydride/isothiocyanate/epoxide ring-opening terpolymerisation: sequence selective enchainment of monomer mixtures and switchable catalysis N2 - We report a new sequence selective terpolymerisation in which three monomers (butylene oxide (BO) A, PhNCS B and phtalic thioanhydride (PTA) C) are selectively enchained into an (ABA′C)n sequence. PTA/PhNCS/BO ring-opening terpolymerisation ROTERP can be coupled with CS2 ROTERP to generate tetrapolymers and with εDL ROP in switchable catalysis for blockpolymer synthesis. KW - Blockcopolymer KW - 1H-NMR KW - TGA KW - DSC KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552339 DO - https://doi.org/10.1039/d2py00629d SP - 1 EP - 5 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-55233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Chen, Yong-Cin A1 - Smales, Glen J. A1 - Topolniak, Ievgeniia A1 - Sturm, Heinz A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Effects of the charge density of nanopapers based on carboxymethylated cellulose nanofibrils investigated by complementary techniques N2 - Cellulose nanofibrils (CNFs) with different charge densities were prepared and investigated by a combination of different complementary techniques sensitive to the structure and molecular dynamics of the system. The morphology of the materials was investigated by scanning electron microscopy (SEM) and X-ray scattering (SAXS/WAXS). The latter measurements were quantitatively analyzed yielding to molecular parameters in dependence of the charge density like the diameter of the fibrils, the distance between the fibrils, and the dimension of bundles of nanofibrils, including pores. The influence of water on the properties and the charge density is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and broadband dielectric spectroscopy. The TGA measurements reveal two mass loss processes. The one at lower temperatures was related to the loss of water, and the second process at higher temperatures was related to the chemical decomposition. The resulting char yield could be correlated to the distance between the microfibrils. The DSC investigation for hydrated CNFs revealed three glass transitions due to the cellulose segments surrounded by water molecules in different states. In the second heating scan, only one broad glass transition is observed. The dielectric spectra reveal two relaxation processes. At low temperatures or higher frequencies, the β-relaxation is observed, which is assigned to localized fluctuation of the glycosidic linkage. At higher temperatures and lower frequencies, the α-relaxation takes places. This relaxation is due to cooperative fluctuations in the cellulose segments. Both processes were quantitatively analyzed. The obtained parameters such as the relaxation rates were related to both the morphological data, the charge density, and the content of water for the first time. KW - Cellulose nanofibrils PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600528 DO - https://doi.org/https://doi.org/10.1021/acsomega.4c00255 SN - 2470-1343 VL - 9 SP - 20152 EP - 20166 PB - ACS AN - OPUS4-60052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -