TY - JOUR A1 - Weber, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane T1 - A µ‐XANES study of the combined oxidation/sulfidation of Fe–Cr model alloys N2 - The precise analysis of cation diffusion profiles through corrosion scales is an important aspect to evaluate corrosion phenomena under multicomponent chemical load, as during high‐temperature corrosion under deposits and salts. The present study shows a comprehensive analysis of cation diffusion profiles by electron microprobe analysis and microbeam X‐ray absorption near edge structure (µ‐XANES) spectroscopy in mixed oxide/sulfide scales grown on Fe–Cr model alloys after exposing them to 0.5% SO2. The results presented here correspond to depth‐dependent phase identification of oxides and sulfides in the corrosion scales by µ‐XANES and the description of oxidation‐state‐dependent diffusion profiles. Scales grown on low‐ and high‐alloyed materials show both a well‐pronounced diffusion profile with a high concentration of Fe3+ at the gas and a high concentration of Fe2+ at the alloy interface. The distribution of the cations within a close‐packed oxide lattice is strongly influencing the lattice diffusion phenomena due to their different oxidation states and therefore different crystal‐field preference energies. This issue is discussed based on the results obtained by µ‐XANES analysis. KW - X-ray absorption spectroscopy KW - Oxidation KW - Sulfidation PY - 2019 U6 - https://doi.org/10.1002/maco.201810644 VL - 70 IS - 8 SP - 1360 EP - 1370 PB - Wiley VCH-Verlag AN - OPUS4-47934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Nützmann, Kathrin A1 - Falk, Florian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Witte, Steffen A1 - Radtke, Martin T1 - Early stages of high temperature oxidation/sulfidation studied by synchrotron x-ray diffraction and spectroscopy N2 - Ferritic high temperature alloys are widely used as boiler tube and heat exchanger materials in coal, biomass and co-fired power plants. All technologies have in common that the applied materials are exposed to different temperatures, process pressures and reactive atmospheres that lead to a change of the material properties and a further degradation of the material. Material changes caused by aging in highly corrosive and toxic gases such as SO2 are mainly studied ex situ after the reaction is finished. The solid material is deposited in the atmosphere for a certain period of time, and material changes are then examined by various microscopic techniques such as optical microscopy (OM), electron microprobe analysis (EMPA), scanning electron microscopy (SEM and TEM) and X-ray diffraction (XRD). Nevertheless, extensive efforts were made to study material changes of high temperature alloys under oxidizing and reducing atmospheres by environmental scanning electron microscopy or in situ TEM techniques However, the possibilities of microscopic in situ techniques are very limited for the use of highly corrosive and toxic gases such as SO2. Since Sulfur induced corrosion at temperatures relevant for coal and biomass fired power plants, which is causing breakaway oxidation and sulfide precipitation at grain boundaries, is still of scientific interest, the current work focuses on the effect of SO2 in an initial stage of corrosion of ferritic alloys. For the analysis of early stages of combined oxidation and sulphidation processes of Fe-Cr model alloys the usage of a light furnace to conduct a rapid reactive annealing experiment is feasible. Previous studies presented distinct results of the influence of chromium on early high temperature corrosion by SO2 by this technique and subsequent classical metallographic analyses. However, it is still not possible to trace the corrosion mechanism in real time by conducting single aging experiments. The current work introduces two different approaches to study the initial stages of high temperature oxidation processes by applying above state of the art X-ray diffraction and spectroscopy methods. One part focuses on the real time observation of the formation of corrosion products such as oxides and sulfides by energy dispersive X-ray diffraction (EDXRD). The potential of this technique to study crystallization and growth processes of thin films in a reactive environment in real time was previously shown for different compound semiconductors. This approach was now applied to follow oxidation and sulphidation processes of ferritic model alloys in SO2 and SO2/H2O environments. The diffraction signals of the X-rays were detected during the corrosion process and the peak area and positions were analyzed as a function of time. This procedure enables monitoring external oxide growth and material loss in real time in an early stage of corrosion. The other part of the current work presents the possibilities of X-ray absorption near edge structure spectroscopy (XANES) to characterize oxide scales and their growth mechanisms. Precise phase identification and quantification of corrosion products in a multi-phase oxide/sulfide scale is a pre-requisite to understand diffusion paths of metal ions and gas components. It is a challenging task to distinguish structurally similar reaction products such as Fe3O4 and FeCr2O4 especially in thin films with texture effects by diffraction. To illustrate for example Cr-out diffusion of an alloy throughout an inner and external oxide scale the differentiation of Fe3O4 and FeCr2O4 is indispensable. XANES uses the photoionization effect at the metal absorption edge in an aging product and accesses by this structural and chemical information. The current work uses XANES at the Fe-K and Cr-K absorption edge to identify various aging products grown as thin layers on alloys after short time aging experiments. A reaction chamber for combining high temperature oxidation experiments with surface sensitive X-ray absorption near edge structure spectroscopy will be introduced and first results of XANES on scales at high temperatures will be presented. T2 - ISHOC 2018 CY - Matsue, Japan DA - 22.10.2018 KW - Corrosion KW - Sulfidation KW - In situ KW - Diffraction KW - XANES PY - 2018 AN - OPUS4-47278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -