TY - JOUR A1 - Kästner, Claudia A1 - Böhmert, Linda A1 - Braeuning, Albert A1 - Lampen, Alfonso A1 - Thünemann, Andreas T1 - Fate of fluorescence labels - Their adsorption and desorption kinetics to silver nanoparticles JF - Langmuir N2 - Silver nanoparticles are among the most widely used and produced nanoparticles. Because of their frequent application in consumer products, the assessment of their toxicological potential has seen a renewed importance. A Major difficulty is the traceability of nanoparticles in in vitro and in vivo experiments. Even if the particles are labeled, for example, by a fluorescent marker, the dynamic exchange of ligands often prohibits their spatial localization. Our study provides an insight into the adsorption and desorption kinetics of two different fluorescent labels on silver nanoparticles with a core radius of 3 nm by dynamic light scattering, small-angle X-ray scattering, and fluorescence spectroscopy. We used BSA-FITC and tyrosine as examples for common fluorescent ligands. It is shown that the adsorption of BSA-FITC takes at least 3 days, whereas tyrosine adsorbs immediately. The quantitative amount of stabilizer on the particle surface was determined by fluorescence spectroscopy and revealed that the particles are stabilized by a monolayer of BSA-FITC (corresponding to 20 ± 9 molecules), whereas tyrosine forms a multilayered structure consisting of 15900 ± 200 molecules. Desorption experiments show that the BSA-FITC-stabilized particles are ideally suited for application in in vitro and in vivo experiments because the ligand desorption takes several days. Depending on the BSA concentration in the particles surroundings, the rate constant is k = 0.2 per day or lower when applying first order kinetics, that is, 50% of the BSAFITC molecules are released from the particle’s surface within 3.4 days. For illustration, we provide a first application of the fluorescence-labeled particles in an uptake study with two different commonly used cell lines, the human liver cell model HepG2 and the human intestinal cell model of differentiated Caco-2 cells. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Silver nanoparticles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452166 DO - https://doi.org/10.1021/acs.langmuir.8b01305 SN - 1520-5827 SN - 0743-7463 VL - 34 IS - 24 SP - 7153 EP - 7160 PB - American Chemical Society AN - OPUS4-45216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebig, Ferenc A1 - Moreno, Silvia A1 - Thünemann, Andreas A1 - Temme, Achim A1 - Appelhans, Dietmar A1 - Koetz, Joachim T1 - Toxicological investigations of “naked” and polymer-entrapped AOT-based gold nanotriangles JF - Colloids and Surfaces B: Biointerfaces N2 - tNegatively charged ultrathin gold nanotriangles (AuNTs) were synthesized in a vesicular dioctyl sodiumsulfosuccinate (AOT)/phospholipid-based template phase. These “naked” AuNTs with localized surfaceplasmon resonances in the NIR region at about 1300 nm and special photothermal properties are ofparticular interest for imaging and hyperthermia of cancerous tissues. For these kinds of applicationsthe toxicity and the cellular uptake of the AuNTs is of outstanding importance. Therefore, this studyfocuses on the toxicity of “naked” AOT-stabilized AuNTs compared to polymer-coated AuNTs. Poly-meric coating consisted of non-modified hyperbranched poly(ethyleneimine) (PEI), maltose-modifiedpoly(ethyleneimine) (PEI-Mal) and heparin. The toxicological experiments were carried out with twodifferent cell lines (embryonic kidney carcinoma cell line HEK293T and NK-cell leukemia cell line YTS).This study revealed that the heparin-coating of AuNTs improved biocompatibility by a factor of 50 whencompared to naked AuNTs. Of note, the highest nontoxic concentration of the AuNTs coated with PEI andPEI-Mal is drastically decreased. Overall, this is mainly triggered by the different surface charges of poly-meric coatings. Therefore, AuNTs coated with heparin were selected to carry out uptake studies. Theirpromising high biocompatibility and cellular uptake may open future studies in the field of biomedicalapplications. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle PY - 2018 DO - https://doi.org/10.1016/j.colsurfb.2018.04.059 SN - 0927-7765 VL - 167 SP - 560 EP - 567 PB - Elsevier AN - OPUS4-44844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -