TY - JOUR A1 - Sachse, René A1 - Moor, Maëlle A1 - Kraehnert, Ralph A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas T1 - Ellipsometry-based approach for the characterization of mesoporous thin films for H2 technologies N2 - Porous thin layer materials are gaining importance in different fields of technology and pose a challenge to the accurate determination of materials properties important for their function. In this work, we demonstrate a hybrid measurement technique using ellipsometry together with other independent methods for validation. Ellipsometry provides information about the porosity of different mesoporous films (PtRuNP/OMC = 45%; IrOx = 46%) as well as about the pore size (pore radius of ca. 5 nm for PtRuNP/OMC). In addition, the electronic structure of a material, such as intraband transitions of a mesoporous IrOx film, can be identified, which can be used to better understand the mechanisms of chemical processes. In addition, we show that ellipsometry can be used as a scalable imaging and visualization method for quality assurance in production. These require accurate and traceable measurements, with reference materials playing an important role that include porosity and other related properties. We show that our novel analytical methods are useful for improving analytical work in this entire field. KW - Porous materials KW - Electrolysis KW - Spectroscopic ellipsometry KW - Hybrid metrology measurement KW - Electron microscopy PY - 2021 DO - https://doi.org/10.1002/adem.202101320 SP - 1 EP - 17 PB - Wiley-VCH AN - OPUS4-53960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena A1 - Sachse, René A1 - Beck, Uwe T1 - Accuracy, traceability, and standardization in spectroscopic ellipsometry N2 - Ellipsometry has been an extremely successful and fast expanding method in the past decades along with other related techniques using polarisation sensitive measurements. Opening new fields of application for a successful measurement technique brings some requirements and issues that have to be solved. From a metrological point of view, ellipsometry has the problem that uncertainties are difficult to determine for model-based analysis techniques in general. In this presentation, we will explore how the usefulness of polarimetric methods like ellipsometry can be increased. Ellipsometry as a method could profit from several current developments which will be discussed in this presentation: • Standardisation initiatives on national and international level developing standards for best practice when using ellipsometry. A series of at least six standards is currently developed on national German and international level covering different levels of sample complexity. • Projects on traceability of ellipsometry and structured surface spectrometry as well as new dielectric function database initiatives. • Metadata handling and data ontology providing a better framework for exchange and collaborative use of research data. We will also explore the quantification of measurement uncertainty using examples from projects in which BAM is involved. Examples will be presented of multilayer and non-ideal materials as well as the determination of layer properties for technical applications such as thin layer catalysts and complex polymers. The definition of reference materials will be discussed. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Ellipsometry KW - Uncertainty KW - Surface analytics KW - Data science PY - 2021 AN - OPUS4-53295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Madkour, Sherif A1 - Gawek, Marcel A1 - Schönhals, Andreas T1 - Determination of the glass transition region of thin PVME films by means of spectroscopic ellipsometry N2 - In this presentation, we report on the Determination of the glass transition temperature of thin layers of Polyvinylmethylether (PVME) depending on the thickness of the polymer layer. The glass Transition of thin polymer layers is currently under much investigation due to the nano-confinement effects proposed to appear in dependence on the layer thicknesses in the nm range. The properties of the polymer, the temperature range, as well as the thicknesses range of the polymer layers pose a serious challenge to the investigation by means of spectroscopic ellipsometry. By careful choice of experimental parameters, we were able to investigate the thickness change by temperature of PVME layers in the range between 2 and 300 nm and in the temperature range between 200 K and 340 K. By optimizing the analysis process, we were able to determine Tg values within this parameter range with sufficient accuracy to investigate the Tg change due to confinement effects. Alongside the change of position of the glass transition with thickness, we discuss the details of the ellipsometric analysis and its implications for the resulting thermal properties of the thin polymer layers as well as the accuracy of the Tg value with respect to the method used in the analysis process. T2 - Workshop Ellipsometry 2018 CY - Chemnitz, Germany DA - 19.03.2018 KW - Polymers KW - PVME KW - Temperature dependent ellipsometry KW - Glass transition PY - 2018 AN - OPUS4-44672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Rosu, D.-M. A1 - Beck, Uwe T1 - Calibration samples and the GUM-compliant determination of uncertainties in ellipsometry N2 - Ellipsometry is well known as a highly sensitive and reproducible surface analysis technique. However, in a context of metrological applications, the most important property of a measurement process is accuracy, relying on statistical precision, (reproducibility) and trueness (in an absolute sense versus a given standard). The latter is much more difficult to achieve. In this presentation, we discuss the possibility of establishing ellipsometry in a diverse metrological landscape by means of defining standard procedures and best practice methodologies for the measurement and for calibration purposes. The most important task of this approach is to determine the model-inherent uncertainty, originating from parameter coupling. We achieve this by means of sensitivity analysis of the parameters resulting from the fit process. We discuss the definition of reference materials by which accuracy can be made available for ellipsometry, passed along between ellipsometry laboratories and for other measurement techniques. The determination of uncertainty is presented in this work for a number of examples involving difficult analysis models employed for samples from different production environments. We present a standardization initiative with the goal to disseminate this work into an international standard alongside an inter-laboratory study comparing the results for complex samples gained by laboratories with different instrumentation. We also present the results gained within EURAMET projects focused on the metrology of materials with strong non-idealities used in photovoltaics and other energy technology. T2 - Workshop Ellipsometry 2018 CY - Chemnitz, Germany DA - 19.03.2018 KW - Ellipsometric metrology KW - Reference samples KW - Reference procedures KW - Standardization PY - 2018 AN - OPUS4-44674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Bernsmeier, D. A1 - Schmack, R. A1 - Häusler, I. A1 - Hertwig, Andreas A1 - Kraffert, K. A1 - Nissen, J. A1 - Kraehnert, R. T1 - Colloidal bimetallic platinum–ruthenium nanoparticles in ordered mesoporous carbon films as highly active electrocatalysts for the hydrogen evolution reaction N2 - Hydrogen features a very high specific energy density and is therefore a promising candidate for clean fuel from renewable resources. Water electrolysis can convert electrical energy into storable and transportable hydrogen gas. Under acidic conditions, platinum is the most active and stable monometallic catalyst for the hydrogen evolution reaction (HER). Yet, platinum is rare and needs to be used efficiently. Here, we report a synthesis concept for colloidal bimetallic platinum–ruthenium and rhodium–ruthenium nanoparticles (PtRuNP, RhRuNP) and their incorporation into ordered mesoporous carbon (OMC) films. The films exhibit high surface area, good electrical conductivity and well-dispersed nanoparticles inside the mesopores. The nanoparticles retain their size, crystallinity and composition during carbonization. In the hydrogen evolution reaction (HER), PtRuNP/OMC catalyst films show up to five times higher activity per Pt than Pt/C/Nafion® and PtRu/C/Nafion® reference catalysts. KW - Ordered mesoporous carbon KW - Bimetallic noble metal nanoparticles KW - Platinum-ruthenium colloid KW - Electrolysis KW - Hydrogen evolution reaction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506868 DO - https://doi.org/10.1039/C9CY02285F SN - 2044-4753 VL - 10 IS - 7 SP - 2057 EP - 2068 PB - Royal Society of Chemistry AN - OPUS4-50686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezera, Marek A1 - Alamri, S. A1 - Hendriks, W. A. P. M. A1 - Hertwig, Andreas A1 - Elert, Anna Maria A1 - Bonse, Jörn A1 - Kunze, T. A1 - Lasagni, A. F. A1 - Römer, G. R. B. E. T1 - Hierarchical micro-/nano-structures on polycarbonate via UV pulsed laser processing N2 - Hierarchical micro/-nanostructures were produced on polycarbonate polymer surfaces by employing a two-step UV-laser processing strategy based on the combination of Direct Laser Interference Patterning (DLIP) of gratings and pillars on the microscale (3 ns, 266 nm, 2 kHz) and subsequently superimposing Laser-induced Periodic Surface Structures (LIPSS; 7–10 ps, 350 nm, 100 kHz) which adds nanoscale surface features. Particular emphasis was laid on the influence of the direction of the laser beam polarization on the morphology of resulting hierarchical surfaces. Scanning electron and atomic force microscopy methods were used for the characterization of the hybrid surface structures. Finite-difference time-domain (FDTD) calculations of the laser intensity distribution on the DLIP structures allowed to address the specific polarization dependence of the LIPSS formation observed in the second processing step. Complementary chemical analyzes by micro-Raman spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy provided in-depth information on the chemical and structural material modifications and material degradation imposed by the laser processing. It was found that when the linear laser polarization was set perpendicular to the DLIP ridges, LIPSS could be formed on top of various DLIP structures. FDTD calculations showed enhanced optical intensity at the topographic maxima, which can explain the dependency of the morphology of LIPSS on the polarization with respect to the orientation of the DLIP structures. It was also found that the degradation of the polymer was enhanced for increasing accumulated fluence levels. KW - Direct laser interference patterning KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Hierarchical structures KW - Surface functionalization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509101 DO - https://doi.org/10.3390/nano10061184 SN - 2079-4991 VL - 10(6) IS - Special issue "Laser-generated periodic nanostructures" SP - 1184-1 EP - 1184-19 PB - MDPI CY - Basel AN - OPUS4-50910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas A1 - Kotil, L. A1 - Kraehnert, R. T1 - Analysis of elemental composition and porosity of mesoporous iridium titanium mixed oxide thin films for energy application by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. KW - Electron probe microanalysis (EPMA) KW - Iridium-titanium mixed oxides KW - Spectroscopic ellipsometry KW - Mesoporous thin films KW - NanoSIMS PY - 2019 DO - https://doi.org/10.1017/S1431927619009589 SN - 1431-9276 (Print) SN - 1435-8115 (Online) VL - 25 IS - S2 (August) SP - 1770 EP - 1771 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-48768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Almalla, A. A1 - Hertwig, Andreas A1 - Fischer, Daniel A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - Development of layer-by-layer assembled thin coatings on aluminium alloy AA2024-T3 for high resolution studies of local corrosion processes N2 - The aim of this study is to develop nanometer-thin epoxy-based films on aluminium alloy AA2024-T3 as a model coating system for high resolution corrosion studies. Spin coating was used for the layer-by-layer (LbL) deposition of poly-(ethylenimine) (PEI) and poly([o-cresyl glycidyl ether]-co-formaldehyde) (CNER) bilayers. The film chemistry and the cross-linking process were characterized by means of Fourier-transform infrared spectroscopy (FTIR). Ellipsometric data confirmed the linear increase of film thickness. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) results indicate the improvement of the film barrier properties with increasing film thickness. Mapping of the topography and the volta potential was performed by means of scanning Kelvin probe force microscopy (SKPFM). The results indicate the presence of a homogeneous film structure, while the intermetallic phases can still be identified below the coating. The SKPFM Analysis confirmed that the model films are suitable for investigation of corrosion processes at the coating/metal interface. KW - Spectroscopy KW - Coatings KW - Electrochemistry KW - Microscopy KW - Resins PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514627 DO - https://doi.org/10.1002/app.49826 SN - 0021-8995 VL - 137 IS - 48 SP - e49826-1 EP - e49826-9 PB - Wiley CY - New York, NY AN - OPUS4-51462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Krähnert, R. T1 - Towards hydrogen economy: multimethod analysis and operando investigation of mesoporous iridium oxides films for electrocatalysis, EMPIR/EURAMET Project HyMet 16ENG03 N2 - In the face of rising energy demand and the impending climate change the development of a sustainable, fossil-free fuel and chemical production is of global importance. One possible goal is the development of electrochemical conversion processes using catalysts. Porous materials play an important role in such energy applications. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physico-chemical properties. However, the complex morphology of such catalysts constitutes a challenge even for modern analytical techniques. Spectroscopic ellipsometry (SE) is a versatile method for studying material properties by using appropriate models (e.g. film thickness, optical and electronic properties). The fact that the material properties cannot be taken directly from the measured spectra, the developed models have to be validated. In a first step, the model for the ellipsometric fit studies of a calcination series of mesoporous iridium oxide films (300 – 600 °C) was investigated and validated with respect to their material properties. Moreover, the electronic structures of the catalysts reveal a direct correlation with electrochemical activities. The development of an environmental cell offers the possibility of investigations under real conditions. This will allow changes in the optical and electronic properties during the electrocatalytic oxygen evolution reaction. T2 - HyMet dissemination event CY - Online meeting DA - 17.11.2020 KW - Correlative ex-situ ellipsometric analysis KW - Ellipsometric operando investigation KW - Hydrogen economy KW - Mesoporous iridium oxides films KW - Oxygen evolution reaction PY - 2020 AN - OPUS4-51629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Garwek, Marcel A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Do Interfacial Layers in Thin Films Act as an Independent Layer Within Thin Films? N2 - The thermodynamic behavior of thin PVME films including the irreversible adsorbed layer on the substrate is investigated. In a first step, the growth kinetics of the adsorbed layer was studied combining a leaching technique and atomic force microscopy. Further, it was shown that there is a critical initial film thickness for the formation of a surface-filling adsorbed layer. Additionally, spectroscopic ellipsometry measurements were carried out to investigate the influence of the adsorbed layer on the glass transition temperature of the thin films. For 30 nm films and below, the influence of the adsorbed layer percolates strongly to the bulk-like layer of the film. Finally, the molecular dynamics of the adsorbed layer was studied by broadband dielectric spectroscopy, employing nanostructured-electrode systems. One process was revealed, which was assigned either to molecular fluctuations taking place in a loosely-bounded the part of the adsorbed layer, or to the desorption/adsorption of segments at the substrate. KW - Thin polymer films PY - 2021 DO - https://doi.org/10.1021/acs.macromol.0c02149 VL - 54 IS - 1 SP - 509 EP - 519 PB - ACS Publications AN - OPUS4-52037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -