TY - CONF A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Standard procedure for the irradiation of biomolecules with radiation of different linear energy transfer T2 - Proceedings of International Radiation Protection Association Conference 2018 America N2 - The damage caused by ionizing radiation to DNA and proteins is the reason to treat cancer by radiation therapy. A better understanding of the molecular processes and quantification of the different damaging mechanisms is the prerequisite to develop more efficient therapies. Hereby the understanding of the processes involved in the damage to DNA are of key interest due to its central role in reproduction and mutation. For radiation with low linear energy transfer (LET), most of the damage is caused by the secondary particles produced by scattering of the ionizing radiation with water. Thereby a multitude of species are produced, whereby especially kinetic low energy electrons, prehydrated electrons, OH-radicals and ions are of importance. With higher LET the relative amount of the direct damaging effects increases. This is especially important considering the increased usage of high LET nucleons in radiation therapy. Therefore, the quantification of the contribution to DNA damage of direct and indirect effects and the different secondary species is of high interest due to the increase of radio biological efficiency when applying high LET radiation. Here we present an approach to investigate the relative contributions to DNA strand break yield for radiation of different LET within a single electron microscope in combination with electron scattering simulations. T2 - XI International Radiation Protection Association Conference 2018 America CY - Havanna, Cuba DA - 16.04.2018 KW - Dosimetry KW - Linear energy transfer KW - Radiation damage KW - LET KW - Electron irradiation KW - Low energy electrons KW - Hydroxyl radicals KW - DEA KW - DET KW - Microdosimetry KW - Geant4 KW - Electron irradiation of DNA KW - DNA PY - 2018 VL - 2018 SP - 1 EP - 5 AN - OPUS4-44848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of rheology modifying admixtures on early hydration of cementitious suspensions T2 - PAPERS AND POSTERS PROCEEDINGS 15th International Congress on the Chemistry of Cement N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has enormous influence on the early hydration of cement. C3A as the most reactive phase of Portland cement plays a significant role in early hydration reactions and affects the rheological performance. Therefore, this paper presents experimental results about the influence of delayed addition of PCEs on the Hydration of cement and C3A-gypsum pastes investigated by isothermal heat flow calorimetry. Complementary in-situ XRD was carried out on C3A pastes to analyze hydration and phase changes related to the addition of PCE. Cement pastes with a delayed addition of PCE showed less Retardation compared to simultaneous addition. The alteration caused by PCE is much more pronounced for C3A-gypsum mixes. With a delayed addition of SP, the hydration of C3A is less retarded or even accelerated. It is obvious that there is less retardation the later the addition of SP. Furthermore, the PCE alter the hydration of C3A when added delayed and exhibit changes in kinetics and hydration rates. XRD results showed that more C3A is dissolved in the presence of PCE. Also, the gypsum depletion occurs earlier in the presence of PCE and even faster with delayed addition. Without PCE AFm starts to form just after the gypsum depletion. However, in the presence of PCE AFm already starts to form at the beginning of the hydration. Due to the faster gypsum depletion in the presence of PCE, also the transformation from ettringite into AFm begins earlier, but takes longer as without SP. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Cement KW - C3A KW - Early hydration KW - Polycarboxylate ether (PCE) KW - Delayed addition PY - 2019 SP - 1 EP - 8 AN - OPUS4-49104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of Rheology Modifying Admixtures on Hydration of Cementitious Suspensions T2 - Sixth International Symposium on Nanotechnology in Construction, Technology Transfer in Action N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has an enormous influence on the early hydration of cement. The hydration is retarded and the timing of formation and the morphology of hydrates is affected. This short paper presents experimental results about the influence of delayed addition time of PCE SPs on hydration of cement and alite pastes, investigated by isothermal heat flow calorimetry. For cement as well as for alite pastes the hydration is retarded with SP, whereby the high charge PCE has a stronger retarding effect than the low charge PCE. The retardation caused by PCE is much more pronounced for alite than for cement mixes. If PCE is added later to the mix, the induction period is shortened and the hydration is accelerated compared to simultaneous addition. This applies for cement and alite pastes. With delayed PCE addition the alite shows a clearly less retarded setting and main hydration than after simultaneous addition. It is obvious that for alite pastes there is less retardation the later the addition of SP. T2 - 6th International Symposium on Nanotechnology in Construction CY - Hong Kong, China DA - 02.12.2018 KW - Polycarboxylate ether (PCE) KW - Early hydration KW - Cement PY - 2018 SP - 1 EP - 8 AN - OPUS4-47204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz ED - M. Tyrer, ED - E. Ganjian, ED - West, A. T1 - Influence of rheology modifying admixtures on hydration of cementitious suspensions T2 - Proceedings of the 38th Cement and Concrete Science Conference N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has an enormous influence on the early hydration of cement. The hydration is retarded and the timing of formation and the morphology of hydrates is affected. This short paper presents experimental results about the influence of delayed Addition time of PCE SPs on hydration of cement and tricalcium aluminate (C3A) pastes, investigated by isothermal heat flow calorimetry. For cement pastes the hydration is retarded with SP, whereby the high charge PCE has a stronger retarding effect than the low charge PCE. With delayed PCE addition the cement shows a less retarded setting than with simultaneous addition. The alteration caused by PCE is much more pronounced for C3A and gypsum mixes than for cement. If the SP is added simultaneous, the exothermic peak of C3A is retarded. However, with delayed addition of SP the hydration is shortened, the gypsum depletion is fastened and the exothermic peak occurs less retarded or even accelerated compared to simultaneous addition. It is obvious that for C3A pastes there is less retardation the later the Addition of SP. Furthermore, the PCE alter the hydration of C3A when added delayed and exhibit changes in kinetics and hydration rates. The rate of reaction in the second stage is lower, discernible in decreased slopes and broader peaks. Besides this, a distinct ramp in the C3A heat flow curves within the first stage of C3A hydration occurs for all pastes with delayed addition of SP, which suggests an accelerated ettringite formation. T2 - 38th Cement and Concrete Science Conference CY - Coventry, UK DA - 10.09.2018 KW - Cement hydration KW - Polycarboxylate ether KW - C3A hydration PY - 2018 SN - 978-1-84600-088-1 SP - 64 EP - 67 CY - Coventry, UK AN - OPUS4-45995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -