TY - JOUR A1 - Haferkamp, Sebastian A1 - Paul, Andrea A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation N2 - The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling. KW - Ball milling KW - C-C coupling KW - In situ KW - Mechanochemistry KW - Multivariate data analysis PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-481872 SN - 1860-5397 VL - 15 SP - 1141 EP - 1148 PB - Beilstein Insitut CY - Frankfurt am Main AN - OPUS4-48187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Michalchuk, Adam A1 - Lampronti, G A1 - Sanders, J T1 - Understanding the unexpected effect of frequency on the kinetics of a covalent reaction under ball-milling conditions N2 - We here explore how ball-mill-grinding frequency affects the kinetics of a disulfide exchange reaction. Our kinetic data show that the reaction progress is similar at all the frequencies studied (15–30 Hz), including a significant induction time before the nucleation and growth process starts. This indicates that to start the reaction an initial energy accumulation is necessary. Other than mixing, the energy supplied by the mechanical treatment has two effects: (i) reducing the crystal size and (ii) creating defects in the structure. The crystal-breaking process is likely to be dominant at first becoming less important later in the process when the energy supplied is stored at the molecular level as local crystal defects. This accumulation is taken here to be the rate-determining step. We suggest that the local defects accumulate preferentially at or near the crystal surface. Since the total area increases exponentially when the crystal size is reduced by the crystal-breaking process, this can further explain the exponential dependence of the onset time on the milling frequency. KW - Mechanochemistry KW - Kinetics KW - Diffraction PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-483361 SN - 2195-951X VL - 15 SP - 1226 EP - 1235 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-48336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Feiler, Torvid A1 - Ali, N. Z. A1 - Minas da Piedade, M. E. A1 - Emmerling, Franziska T1 - Mechanistic Insights into a Sustainable Mechanochemical Synthesis of Ettringite N2 - Mechanochemistry offers an environmentally benign and facile synthesis method for a variety of cement paste constituents. In addition, these methods can be used to selectively tune the properties of cement components. The mineral ettringite is an important component of cementitious materials and has additional technological potential due to its ion exchange properties. Synthesis of ettringite via mechanochemistry is an environmentally friendly alternative to conventional wet-chemical synthesis established in industry. This contribution explores the mechanism of a two-step mechanochemical synthesis of ettringite, which was previously found to greatly improve the reaction conversion as compared with one-pot synthesis. The crystallinity of Al(OH)3 was found to decrease during the first stage of this mechanochemical synthesis. This was correlated to a significant decrease in the particle size of Al(OH)3 in this stage. No other significant changes were found for the other components, suggesting that mechanochemical activation of Al(OH)3 is responsible for the enhanced formation of ettringite by the two-step approach. The environmentally friendly approach developed for ettringite synthesis offers a versatile synthetic strategy, which can be applied to synthesise further cementitious materials. KW - Ettringite KW - Mechanochemistry KW - Sustainability KW - X-ray diffraction PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-489172 VL - 8 IS - 7 SP - 1012 EP - 1019 PB - ChemPubSoc AN - OPUS4-48917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Manipulating the dynamics of mechanochemical ternary cocrystal formation N2 - The mechanism of ternary cocrystal formation, and the potential role of intermediate binary phases, has been debated for some time. We report here the first in situ real-time monitoring of two prototypic ternary cocrystals. Our results suggest that the question is more complicated than previously considered. The mechanism of mechanochemical ternary cocrystal formation depends on the milling conditions, here the milling frequency and addition of liquid. Binary phases can form under certain conditions, but do not act as intermediates in the formation of the ternary cocrystals. Rather, binary phases are competitive with the ternary phase, and their formation appears to compete with that of the ternary components. The presence of binary phases leads to an increase in the overall reaction time. The results reported here offer the first insights into the true complexities of mechanochemical multi-component synthesis of higher order multi-component crystals and demonstrate a new understanding of the influence of milling condition for the study of mechanisms and kinetics. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2019 UR - https://pubs.rsc.org/en/content/articlepdf/2019/cc/c9cc03034d U6 - https://doi.org/10.1039/c9cc03034d SN - 1364-548X VL - 55 IS - 66 SP - 9793 EP - 9796 PB - RSC AN - OPUS4-48613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Ali, Naveed Zafar A1 - Maierhofer, Christiane A1 - Emmerling, Franziska T1 - Ettringite via Mechanochemistry: A Green and Rapid Approach for Industrial Application N2 - Here, we report on a first mechanochemical synthesis of ettringite, an important cement hydrate phase. The mineral compound ettringite ([Ca3Al(OH)6]2·(SO4)3·26H2O) occurs rarely in nature, but is common for cement-based materials. Ettringite has wide technical application in the ceramic and paper industry. However, its typical wet-chemical synthesis is cumbersome and produces waste water and CO2 emissions. Here, we investigate the first mechanochemical synthesis of ettringite for developing an easy and sustainable alternative for industrial application. The mechanosynthesis was monitored in situ by coupled synchrotron X-ray diffraction (XRD) and infrared thermography (IRT). The consumption of the reactants and the formation of the reaction product were monitored with time-resolved XRD. IRT showed the temperature increase based on the exothermic reaction. The reaction conversion was significantly improved changing the strategy of the mechanosynthesis from a one- to a two-step process. The latter included neat pregrinding of solid reactants followed by a delayed addition of the stoichiometric amount of water. Thus, an increase of reaction conversion from 34 to 94% of ettringite could be achieved. KW - XRD KW - Mechanochemistry KW - Ettringite KW - In situ PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-479016 SN - 2470-1343 VL - 4 IS - 4 SP - 7734 EP - 7737 PB - ACS Publications CY - Washington, DC AN - OPUS4-47901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kumari, N. A1 - Bhattacharya, Biswajit A1 - Roy, P. A1 - Michalchuk, Adam A1 - Ghosh, A. A1 - Emmerling, Franziska T1 - Enhancing the Pharmaceutical Properties of Pirfenidone by Mechanochemical Cocrystallization N2 - Pirfenidone is an important drug molecule used in the treatment of idiopathic lung fibrosis. Although approved by the USFDA in 2014, pirfenidone’s aqueous solubility is too high and must be mitigated by additives. In this work, the cocrystallization of pirfenidone is explored as an alternative approach to reducing its solubility. Herein, an anhydrous form of pirfenidone is reported, alongside its first two reported cocrystals. The new crystalline solids are thoroughly characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction analysis (PXRD), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Equilibrium solubility and intrinsic dissolution rates (IDR) are studied for the cocrystals and compared to that of the parent drug. Both cocrystal forms exhibit drastically lower aqueous solubility (by up to 90%) and dissolution rates, rationalized based on both lattice energy calculations and consideration of intermolecular interactions in the solid state. Furthermore, we compare the physicochemical properties of solution-based material with that of material produced mechanochemically. Importantly, no differences are observed between the two production methods. This work demonstrates the strength of crystal Engineering strategies to beneficially modify important pharmaceutical properties and highlights the potential of mechanochemistry to facilitate this in an environmentally benign way. KW - Mechanochemistry PY - 2019 U6 - https://doi.org/10.1021/acs.cgd.9b00932 VL - 19 IS - 11 SP - 6482 EP - 6492 PB - ACS Publications AN - OPUS4-49828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akhmetova, Irina A1 - Beyer, Sebastian A1 - Schutjajew, K. A1 - Tichter, T. A1 - Wilke, Manuel A1 - Prinz, Carsten A1 - B. Martins, Inês C. A1 - Al-Sabbagh, Dominik A1 - Roth, C. A1 - Emmerling, Franziska T1 - Cadmium benzylphosphonates - the close relationship between structure and properties N2 - Cadmium benzylphosphonate Cd(O3PBn)·H2O and its fluorinated derivates Cd(O3PBn-3F)·H2O, Cd(O3PBn-4F)·H2O, and Cd(O3PBn-F5)·H2O were synthesized mechanochemically. The Crystal structures of the compounds were determined based on powder X-ray diffraction (PXRD) data. The influence of the ligand substitution on the crystal structure of the metal phosphonate was determined. The hydrophobicity as a function of degree of fluorination was investigated using dynamic vapor sorption. KW - Mechanochemistry KW - Metal phosphonates KW - PXRD KW - DVS PY - 2019 U6 - https://doi.org/10.1039/c9ce00776h VL - 21 SP - 5958 EP - 5964 PB - RSC Royal Society of Chemistry AN - OPUS4-49930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Prinz, Carsten A1 - Scholz, Gudrun A1 - Kemnitz, Erhard A1 - Emmerling, Franziska T1 - Ca-, Sr-, and Ba-Coordination polymers based on anthranilic acid via mechanochemistry N2 - Ca-, Sr-, and Ba-Based coordination polymers (CPs) were prepared mechanochemically by milling metal-hydroxide samples with anthranilic acid (oABAH). {[Ca(oABA)2(H2O)3]}n consists of one-dimensional polymeric chains that are further connected by a hydrogen-bonding network. {[Sr(oABA)2(H2O)2]·H2O}n is a one-dimensional CP in which water molecules bridge Sr2+ ions and increase the dimensionality by building an extended network. {[Ba(oABA)2(H2O)]}n crystallizes as a two-dimensional CP comprising one bridging water molecule. The cation radii influence the inorganic connectivity and dimensionality of the resulting crystal structures. The crystal structures were refined from powder X-ray diffraction data using the Rietveld method. The local coordination environments were studied via extended X-ray absorption fine structure (EXAFS) measurements. The compounds were further characterized using comprehensive analytical methods such as elemental analysis, thermal analysis, MAS NMR, imaging, and dynamic vapor sorption (DVS) measurements. Compounds 1, 2, and 3 exhibit small surface areas which decrease further after thermal annealing experiments. All compounds exhibit a phase transformation upon heating, which is only reversible in 3. KW - Mechanochemistry KW - XRD PY - 2019 U6 - https://doi.org/10.1039/c9dt00991d SN - 1477-9226 SN - 1477-9234 VL - 48 IS - 19 SP - 6513 EP - 6521 PB - Royal Society of Chemistry AN - OPUS4-48014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tumanov, I. A1 - Tumanov, E. A1 - Michalchuk, Adam T1 - Ball size or ball mass – what matters in organic mechanochemical synthesis? N2 - Ball mass is an important parameter that is known to have an influence on the outcome of a mechanochemical reaction induced by ball-milling. A standard way of modifying the ball mass is to change the size of the ball made of the same material. In this case, however, a change in mass is accompanied by a simulatneous change in the ball size. It is therefore not possible to disentangle the effects of mass and Surface area in these cases. In the present work we report the results of experiments with specially designed and manufactured balls in which (1) milling ball mass is held constant, but their size differs, and (2) the ball mass is altered, with the diameter of the milling ball being held constant. Using the cocrystallisation of theophylline + nicotinamide as a case study it was found that both diameter and ball mass play crucial roles in determining the rate of a mechanochemical reaction. For comparison, we have also used milling balls with the same size (different mass), and others with the same mass (different size) made of different materials, as would be “traditional”. It was found that, despite having the same size, the lightest milling ball (nylon) was the most efficient in initiating the co-crystallisation, presumably due to the sorption of EtOH. Hence, the results of this manuscript also demonstrate how milling ball material can in fact be the most influential parameter, and potentially counterintuitive to classical mechanics. KW - Mechanochemistry KW - XRD PY - 2019 U6 - https://doi.org/0.1039/c8ce02109k VL - 21 SP - 2174 EP - 2179 PB - RSC Royal Society of Chemistry AN - OPUS4-47851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Ali, Naveed Zafar A1 - Etter, M. A1 - Michalchuk, Adam A1 - Rademann, K. A1 - Emmerling, Franziska T1 - A Comparative Study of the Ionic Cocrystals NaX (α-d-Glucose)2 (X = Cl, Br, I) N2 - The mechanochemical formation of the ionic cocrystals of glucose (Glc) and sodium salts Glc2NaCl·H2O (1) and Glc2NaX (X = Br (2), I (3)) is presented. Products are formed by co-milling Glc with three sodium salts (NaCl, NaBr, NaI). The ionic cocrystals were obtained under both neat grinding and liquid-assisted grinding conditions, the later found to accelerate the reaction kinetics. The crystal structures of the ionic cocrystals (2) and (3) were solved from powder X-ray diffraction data. The structure solution contrasts with the structure of Glc2NaCl·H2O (1) where the electron density at three halide crystallographic sites is modeled as of being the intermediate between water molecule and a chloride ion. The reaction pathways of the three ionic cocrystals were investigated in real time using our tandem approach comprising a combination of in situ synchrotron powder X-ray diffraction and Raman spectroscopy. The results indicate the rapid formation of each cocrystal directly from their respective starting materials without any intermediate moiety formation. The products were further characterized by DTA-TG and elemental analysis. KW - In situ KW - Co-crystal KW - Mechanochemistry KW - Glucose PY - 2019 U6 - https://doi.org/10.1021/acs.cgd.8b01929 VL - 19 IS - 8 SP - 4293 EP - 4299 PB - ACS Publications AN - OPUS4-48781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -