TY - JOUR A1 - Zutta Villate, J. M. A1 - Hahn, Marc Benjamin T1 - Radioactive gold nanoparticles for cancer treatment N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive 198 Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply 198 AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. KW - Gold KW - Nanoparticle KW - Cancer KW - Monte-Carlo KW - Simulation KW - Cluster PY - 2019 U6 - https://doi.org/10.1140/epjd/e2019-90707-x SN - 1434-6060 SN - 1434-6079 VL - 73 IS - 95 SP - 1 EP - 7 PB - Springer CY - Berlin AN - OPUS4-47964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zietzschmann, F. A1 - Dittmar, S. A1 - Splettstößer, L. A1 - Hunsicker, J. A1 - Dittmann, Daniel A1 - Meinel, F. A1 - Rößler, A. A1 - Metzger, S. A1 - Jekel, M. A1 - Ruhl, A. S. T1 - Fast empirical lab method for performance projections of large-scale powdered activated carbon re-circulation plants N2 - Powdered activated carbon (PAC) for organic micro-pollutant (OMP) removal can be applied effectively on wastewater treatment plant (WWTP) effluents by using re-circulation schemes, accumulating the PAC in the system. This technique is complex because several factors are unknown: (i) the PAC concentration in the system, (ii) specific and average contact times of PAC particles, and (iii) PAC particle loadings with target compounds/competing water constituents. Thus, performance projections (e.g. in the lab) are very challenging. We sampled large-scale PAC plants with PAC sludge re-circulation on eight different WWTPs. The PAC plant-induced OMP removals were notably different, even when considering PAC concentrations in proportion to background organic sum parameters. The variability is likely caused by differing PAC products, varying water composition, differently effective plant/re-circulation operation, and variable biodegradation. Plant PAC samples and parts of the PAC plant influent samples were used in laboratory tests, applying multiples (0.5, 1, 2, 4) of the respective large-scale “fresh” PAC doses, and several fixed contact times (0.5, 1, 2, 4, 48 h). The aimwas to empirically identify suitable combinations of lab PAC dose (as multiples of the plant PAC dose) and contact time, which represent the PAC plant performances in removing OMPs (for specific OMPs at single locations, and for averages of different OMPs at all locations). E.g., for five well adsorbing, little biodegradable OMPs, plant performances can be projected by using a lab PAC dose of twice the respective full-scale PAC dose and 4 h lab contact time (standard deviation of 13 %-points). KW - Adsorption KW - Powdered activated carbon KW - Organic micro-pollutant KW - Trace organic contaminant PY - 2019 U6 - https://doi.org/10.1016/j.chemosphere.2018.10.055 VL - 215 SP - 563 EP - 573 PB - Elsevier Ltd. AN - OPUS4-46957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Separation of polystyrene nanoparticles with different coatings using two-dimensional off-line coupling of asymmetrical flow field flow fractionation and capillary electrophoresis N2 - The successful off-line coupling of asymmetrical flow field flow fractionation (AF4) and capillary electrophoresis (CE) for separation of nanoparticles (NPs) with different surface coatings was shown. We could successfully demonstrate that, in a certain NP size range, hyphenation of both techniques significantly improved the separation of differently coated NPs. Three mixtures of polystyrene nanoparticles (PS-NPs) with comparable core sizes but different coatings (no coating/carboxyl-coated) were studied. Separation in either method resulted in non-baseline resolved or non-separated peaks. In contrast, two-dimensional off-line coupling of AF4 and CE resulted in clearly separated regions in their 2 D plots in case of 20 and 50 nm particle mixtures, whereas the 100 nm NP mixture could not be separated at all. Various factors affecting the separation like hydrodynamic diameter or SDS concentration were discussed. KW - Capillary electrophoresis (CE) KW - Nanoparticles with same nominal diameter KW - Surface coating KW - Two-dimensional off-line coupling KW - Asymmetrical flow field flow fractionation (AF4) PY - 2019 U6 - https://doi.org/10.1016/j.chroma.2019.01.056 VL - 1593 SP - 119 EP - 126 PB - Elsevier AN - OPUS4-47363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - Spatial, temporal, and spectral characterization and kinetic investigations of a high repetition-rate laser-induced micro-plasma in air N2 - Advances in laser-induced plasmas have enabled various rapid and simple analytical applications. Especially, their uses in the analyses of condensed-phase samples have drawn significant attention in the past few decades. Depending on the laser energy per pulse, various analytical goals can be achieved. Laser-induced airborne plasmas allow direct analysis of species in ambient air. Importantly, all of these applications are based on a fundamental understanding of the laser–medium interaction. Recent developments of diode-pumped solid-state lasers offer an alternative to conventional powerful, yet bulky lasers, which can specifically operate at high Repetition rates. Although these lasers deliver much lower power per pulse (mJ compared to mJ), the outstanding repetition rates offer significant improvement to meet statistical needs in some cases. In the present work, a mJ-laserinduced airborne plasma was characterized through optical emission analysis. By using a ns-timegated image detector coupled with specific bandpass filters, spatially, temporally, and spectrally resolved plasma images were recorded. Compared to conventional mJ-laser-induced plasmas, the one induced by mJ-lasers demonstrated unique features during its evolution. Specifically, measurements of the distribution of ionic and atomic species revealed distinctive energy/matter transfer processes during early ignition of the plasma. Meanwhile, dynamic investigations suggested subsequent matter transport in the later stage. KW - Laser-induced plasma KW - Plasma KW - DPSS-laser PY - 2019 UR - https://pubs.rsc.org/en/content/articlehtml/2019/ja/c9ja00163h U6 - https://doi.org/10.1039/C9JA00163H SN - 0267-9477 VL - 34 IS - 8 SP - 1618 EP - 1629 PB - Royal Society of Chemistry CY - London AN - OPUS4-48622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chapala, P. A1 - Bermeshev, M. A1 - Pauw, Brian Richard A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Influence of Trimethylsilyl Side Groups on the Molecular Mobility and Charge Transport in Highly Permeable Glassy Polynorbornenes N2 - Superglassy polymers with a large fractional free volume have emerged as novel materials with a broad range of applications, especially in the field of membrane separations. Highly permeable addition-type substituted polynorbornenes with high thermal resistance and chemical stability are among the most promising materials. The major obstacle for extending the practical membrane application is their strong tendency to physical aging, leading to a partial decline in their superior transport performance over time. In the present study, broadband dielectric spectroscopy with complementary X-ray scattering techniques were employed to reveal changes in microporous structure, molecular mobility, and conductivity by systematic comparison of two polynorbornenes with different numbers of trimethylsilyl side groups. Their response upon heating (aging) was compared in terms of structure, dynamics, and charge transport behavior. Furthermore, a detailed analysis of the observed Maxwell−Wagner−Sillars polarization at internal interfaces provides unique information about the microporous structure in the solid films. The knowledge obtained from the experiments will guide and unlock potential in synthesizing addition-type polynorbornenes with versatile properties. KW - Dielectric spectroscopy KW - Molecular mobility KW - Electrical conductivity KW - Gas separation membranes PY - 2019 U6 - https://doi.org/10.1021/acsapm.9b00092 SN - 2637-6105 VL - 1 IS - 4 SP - 844 EP - 855 PB - ACS CY - Washington DC AN - OPUS4-47838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - B, Yang A1 - Chua, Y. Z. A1 - Szymoniak, Paulina A1 - Carta, M A1 - Malpass-Evans, R A1 - McKeown, N A1 - Harrison, W A1 - Budd, P A1 - Schick, C A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Effect of backbone rigidity on the glass transition of polymers of in-trinsic microporosity probed by fast scanning calorimetry N2 - Polymers of Intrinsic Microporosity (PIMs) of high performance have developed as materials with a wide application range in gas separation and other energy-related fields. Further optimization and long-term behavior of devices with PIMs require an understanding of the structure-property relationships including physical aging. In this context the glass transi-tion plays a central role, but with conventional thermal analysis a glass transition is usually not detectable for PIMs be-fore their thermal decomposition. Fast scanning calorimetry provides evidence of the glass transition for a series of PIMs, as the time scales responsible for thermal degradation and for the glass transition are decoupled by employing ultrafast heating rates of tens of thousands K s-1. The investigated PIMs were chosen considering the chain rigidity. The estimated glass transition temperatures follow the order of the rigidity of the backbone of the PIMs. KW - Polymers of intrinsic microporosity KW - Fast scanning calormetry PY - 2019 U6 - https://doi.org/10.1021/acsmacrolett.9b00482 SN - 2161-1653 VL - 8 IS - 8 SP - 1022 EP - 1028 PB - ACS Publications AN - OPUS4-48617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Sentker, K. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Huber, P. A1 - Schönhals, Andreas T1 - Collective orientational order and phase behavior of a discotic liquid crystal under nanoscale confinement N2 - The phase behavior and molecular ordering of hexakishexyloxy triphenylene (HAT6) DLC under cylindrical nanoconfinement is studied utilizing differential scanning calorimetry (DSC) and dielectric spectroscopy (DS), where cylindrical nanoconfinement is established through embedding HAT6 into the nanopores of anodic aluminum oxide membranes (AAO), and a silica membrane with pore diameters ranging from 161 nm down to 12 nm. Both unmodified and modified pore walls were considered, and in the latter case the pore walls of AAO membranes were chemical treated with n octadecylphosphonic acid (ODPA) resulting in the formation of a 2.2 nm thick layer of grafted alkyl chains. Phase transition enthalpies decrease with decreasing pore size, indicating that a large proportion of the HAT6 molecules within the pores has a disordered structure, which increases with decreasing pore size for both pore walls. In the case of the ODPA modification the amount of ordered HAT6 is increased compared to the unmodified case. The pore size dependencies of the phase transition temperatures were approximated using the Gibbs Thomson equation, where the estimated surface tension is dependent on the molecular ordering of HAT6 molecules within the pores and upon their surface. DS was employed to investigate the molecular ordering of HAT6 within the nanopores. These investigations revealed that with a pore size of around 38 nm, for the samples with the unmodified pore walls, the molecular ordering changes from planar axial to homeotropic radial. However, the planar axial configuration, which is suitable for electronic applications, can be successfully preserved through ODPA modification for most of the pore sizes. KW - Discotic Liquid Crystals KW - Nanoconfinement PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-475222 SN - 2516-0230 VL - 1 IS - 3 SP - 1104 EP - 1116 PB - RSC AN - OPUS4-47522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Bühlmeyer, A. A1 - Hayash, S A1 - Haenle, J. C. A1 - Sentker, K. A1 - Krause, Christina A1 - Huber, Patrick A1 - Laschat, Sabine A1 - Schönhals, Andreas T1 - Multiple glassy dynamics in dipole functionalized triphenylene-based discotic liquid crystals revealed by broadband dielectric spectroscopy and advanced calorimetry – assessment of the molecular origin N2 - A selected series of dipole functionalized triphenylene-based discotic liquid crystals (DLCs) was synthesized and investigated in a systematic way to reveal the phase behavior and molecular dynamics. The later point is of particular importance to understand the charge transport in such systems which is the key property for their applications such as organic field-effect transistors, solar cells or as nanowires in molecular electronics, and also to tune the properties of DLCs. The mesomorphic properties were studied by polarizing optical microscopy, X-ray diffraction, and differential scanning calorimetry, which were compared to the corresponding unfunctionalized DLC. The molecular dynamics were investigated by a combination of state-of-the-art broadband dielectric spectroscopy (BDS) and advanced calorimetry such as fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). Besides localized fluctuations, surprisingly multiple glassy dynamics were detected for all materials for the first time. Glassy dynamics were proven for both processes unambiguously due to the extraordinary broad frequency range covered. The a1-process is attributed to fluctuations of the alky chains in the intercolumnar space because a polyethylene-like glassy dynamics is observed. This corresponds to a glass transition in a confined three-dimensional space. The a2-process found at temperatures lower than a1-process, is assigned to small scale rotational and/or translational in plane fluctuations of the triphenylene core inside distorted columns. This can be considered as a glass transition in a one-dimensional fluid. Therefore, obtained results are of general importance to understand the glass transition, which is an unsolved problem of condensed matter science. KW - Discotic Liquid Crystals KW - Broadband dielectric spectroscopy KW - Flash DSC KW - Specific heat spectroscopy PY - 2019 U6 - https://doi.org/10.1039/c9cp03499d SN - 1463-9076 VL - 21 IS - 33 SP - 18265 EP - 18277 PB - RSC AN - OPUS4-48739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane T1 - A µ‐XANES study of the combined oxidation/sulfidation of Fe–Cr model alloys N2 - The precise analysis of cation diffusion profiles through corrosion scales is an important aspect to evaluate corrosion phenomena under multicomponent chemical load, as during high‐temperature corrosion under deposits and salts. The present study shows a comprehensive analysis of cation diffusion profiles by electron microprobe analysis and microbeam X‐ray absorption near edge structure (µ‐XANES) spectroscopy in mixed oxide/sulfide scales grown on Fe–Cr model alloys after exposing them to 0.5% SO2. The results presented here correspond to depth‐dependent phase identification of oxides and sulfides in the corrosion scales by µ‐XANES and the description of oxidation‐state‐dependent diffusion profiles. Scales grown on low‐ and high‐alloyed materials show both a well‐pronounced diffusion profile with a high concentration of Fe3+ at the gas and a high concentration of Fe2+ at the alloy interface. The distribution of the cations within a close‐packed oxide lattice is strongly influencing the lattice diffusion phenomena due to their different oxidation states and therefore different crystal‐field preference energies. This issue is discussed based on the results obtained by µ‐XANES analysis. KW - X-ray absorption spectroscopy KW - Oxidation KW - Sulfidation PY - 2019 U6 - https://doi.org/10.1002/maco.201810644 VL - 70 IS - 8 SP - 1360 EP - 1370 PB - Wiley VCH-Verlag AN - OPUS4-47934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wahl, S. A1 - El-Refaei, S. M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Amsalem, P. A1 - Lee, K.-S. A1 - Koch, N. A1 - Doublet, M.-L. A1 - Pinna, N. T1 - Zn0.35Co0.65O – A Stable and highly active oxygen evolution catalyst formed by zinc leaching and tetrahedral coordinated cobalt in wurtzite structure N2 - To arrive to sustainable hydrogen-based energy solutions, the understanding of water-splitting catalysts plays the most crucial role. Herein, state-of-the-art hypotheses are combined on electrocatalytic active metal sites toward the oxygen evolution reaction (OER) to develop a highly efficient catalyst based on Earth-abundant cobalt and zinc oxides. The precursor catalyst Zn0.35Co0.65O is synthesized via a fast microwaveassisted approach at low temperatures. Subsequently, it transforms in situ from the wurtzite structure to the layered γ-Co(O)OH, while most of its zinc leaches out. This material shows outstanding catalytic Performance and stability toward the OER in 1 m KOH (overpotential at 10 mA cm−2 ηinitial = 306 mV, η98 h = 318 mV). By comparing the electrochemical results and ex situ analyses to today’s literature, clear structureactivity correlations are able to be identified. The findings suggest that coordinately unsaturated cobalt octahedra on the surface are indeed the active centers for the OER. KW - Oxygen Evolution Catalyst KW - XAFS KW - Oxygen evolution reaction (OER) KW - Cobalt and zinc oxides PY - 2019 U6 - https://doi.org/10.1002/aenm.201900328 SN - 1614-6832 SN - 1614-6840 VL - 9 IS - 20 SP - 1900328,1 EP - 10 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -