TY - JOUR A1 - Acosta-Zepeda, C. A1 - Saavedra, P. A1 - Bonse, Jörn A1 - Haro-Poniatowski, E. T1 - Modeling of silicon surface topographies induced by single nanosecond laser pulse induced melt-flows N2 - Irradiation with a single nanosecond laser pulse in the melting regime can result in a characteristic change in the surface morphology of crystalline silicon. This has been verified experimentally in a variety of situations, where dimple-shaped surface topographies are produced. In this work, the dimple height, depth, and width are modeled following and extending in a more rigorous manner the approach of Wood and Giles [Phys. Rev. B 23, 2923–2942 (1981)] and that of Schwarz-Selinger and coworkers [Phys. Rev. B 64, 155323 (2001)], upon varying the laser irradiation parameters such as peak energy density, pulse duration, and wavelength. This is achieved with numerical simulations of one-dimensional heat flow as input to the analytical fluid-flow equations. KW - Nanosecond laser KW - Melting KW - Silicon KW - Fluid-flow PY - 2019 U6 - https://doi.org/10.1063/1.5053918 SN - 0021-8979 SN - 1089-7550 VL - 125 IS - 17 SP - 175101-1 EP - 175101-9 PB - AIP Publishing CY - Melville, USA AN - OPUS4-47927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akbar, S. A1 - Hasanain, S.K. A1 - Ivashenko, O. A1 - Dutka, M.V. A1 - Akhtar, N. A1 - De Hosson, J.Th.M. A1 - Ali, Naveed A1 - Rudolf, P. T1 - Defect ferromagnetism in SnO2:Zn2+ hierarchical nanostructures: correlation between structural, electronic and magnetic properties N2 - We report on the ferromagnetism of Sn1-xZnxO2 (x < 0.1) hierarchical nanostructures with various morphologies synthesized by a solvothermal route. A room temperature ferromagnetic and paramagnetic response was observed for all compositions, with a maximum in ferromagnetism for x = 0.04. The ferromagnetic behaviour was found to correlate with the presence of zinc on substitutional Sn sites and with a low oxygen vacancy concentration in the samples. The morphology of the nanostructures varied with zinc concentration. The strongest ferromagnetic response was observed in nanostructures with well-formed shapes, having nanoneedles on their surfaces. These nanoneedles consist of (110) and (101) planes, which are understood to be important in stabilizing the ferromagnetic defects. At higher zinc concentration the nanostructures become eroded and agglomerated, a phenomenon accompanied with a strong decrease in their ferromagnetic response. The observed trends are explained in the light of recent computational studies that discuss the relative stability of ferromagnetic defects on various surfaces and the role of oxygen vacancies in degrading ferromagnetism via an increase in free electron concentration. KW - Ferromagnetism KW - Nanostructures KW - Magnetic properties PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-473014 SN - 2046-2069 VL - 9 IS - 7 SP - 4082 EP - 4091 PB - Royal Society of Chemistry AN - OPUS4-47301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akhmetova, Irina A1 - Beyer, Sebastian A1 - Schutjajew, K. A1 - Tichter, T. A1 - Wilke, Manuel A1 - Prinz, Carsten A1 - B. Martins, Inês C. A1 - Al-Sabbagh, Dominik A1 - Roth, C. A1 - Emmerling, Franziska T1 - Cadmium benzylphosphonates - the close relationship between structure and properties N2 - Cadmium benzylphosphonate Cd(O3PBn)·H2O and its fluorinated derivates Cd(O3PBn-3F)·H2O, Cd(O3PBn-4F)·H2O, and Cd(O3PBn-F5)·H2O were synthesized mechanochemically. The Crystal structures of the compounds were determined based on powder X-ray diffraction (PXRD) data. The influence of the ligand substitution on the crystal structure of the metal phosphonate was determined. The hydrophobicity as a function of degree of fluorination was investigated using dynamic vapor sorption. KW - Mechanochemistry KW - Metal phosphonates KW - PXRD KW - DVS PY - 2019 U6 - https://doi.org/10.1039/c9ce00776h VL - 21 SP - 5958 EP - 5964 PB - RSC Royal Society of Chemistry AN - OPUS4-49930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Prinz, Carsten A1 - Scholz, Gudrun A1 - Kemnitz, Erhard A1 - Emmerling, Franziska T1 - Ca-, Sr-, and Ba-Coordination polymers based on anthranilic acid via mechanochemistry N2 - Ca-, Sr-, and Ba-Based coordination polymers (CPs) were prepared mechanochemically by milling metal-hydroxide samples with anthranilic acid (oABAH). {[Ca(oABA)2(H2O)3]}n consists of one-dimensional polymeric chains that are further connected by a hydrogen-bonding network. {[Sr(oABA)2(H2O)2]·H2O}n is a one-dimensional CP in which water molecules bridge Sr2+ ions and increase the dimensionality by building an extended network. {[Ba(oABA)2(H2O)]}n crystallizes as a two-dimensional CP comprising one bridging water molecule. The cation radii influence the inorganic connectivity and dimensionality of the resulting crystal structures. The crystal structures were refined from powder X-ray diffraction data using the Rietveld method. The local coordination environments were studied via extended X-ray absorption fine structure (EXAFS) measurements. The compounds were further characterized using comprehensive analytical methods such as elemental analysis, thermal analysis, MAS NMR, imaging, and dynamic vapor sorption (DVS) measurements. Compounds 1, 2, and 3 exhibit small surface areas which decrease further after thermal annealing experiments. All compounds exhibit a phase transformation upon heating, which is only reversible in 3. KW - Mechanochemistry KW - XRD PY - 2019 U6 - https://doi.org/10.1039/c9dt00991d SN - 1477-9226 SN - 1477-9234 VL - 48 IS - 19 SP - 6513 EP - 6521 PB - Royal Society of Chemistry AN - OPUS4-48014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ali, Naveed A1 - Komal, N. A1 - Malik, Z. A1 - Chaudhary, A.J. T1 - Synthesis, characterization and properties of hierarchically assembled antimony oxyhalides nanonetworks N2 - The novel synthesis route has been developed for hierarchically structured; nanorods and nanosheets of Sb4O5Cl2 from a single precursor, with dimension range between 57–90 nm. X-ray powder diffraction analysis confirmed the monoclinic crystal symmetry in P21/c(14)with structure type Sb4O5Cl2 for both forms; the nanorods and nanosheets. Rietveld refinements and crystallite size investigations of the powder patterns revealed significant enhancement in intensity with subtle variation in the lattice parameters and crystallite size decrease in case of nanosheets in comparison to the nanorods assembly. Through scanning electron microscopy, a composition commensurate to Sb4O5Cl2 at% with averaged dimensions; dia.∼90 nm, l ∼ 2 μm for nanorods and dia.∼50–150 nm for nanosheets got corroborated. Owing to the quantum confinement a band gap widening was observed while moving from bulk to nano regime, i.e. 3.25, 3.31 and 3.34 eV, for bulk, nanosheets, and nanorods, respectively. In the case of nanosheets, the highest value of dielectric constant was observed, i.e. 87, as compared to nanorods and the bulk, i.e. 40 and 35.5, respectively. The nanosheets also showed the highest value of dielectric and tangent loss with an increase in frequency due to the least crystallite size of these nanonetworks. Nanosheets depicted the higher AC conductivity at low frequency due to the alignment of the charges but its value decreases at the higher frequency due to lack of time for charge reorientation. The hopping phenomenon was observed in all three cases with the most prominent one in bulk case at higher frequencies. KW - Nanorods KW - Nanosheets KW - Antimony oxychloride ( Sb4O5Cl2) KW - Optical properties KW - Dielectric properties PY - 2019 U6 - https://doi.org/10.1088/2053-1591/ab0da9 SN - 2053-1591 VL - 6 IS - 6 SP - 065035 PB - IOP AN - OPUS4-47734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ali, Naveed Zafar A1 - Campbell, B. J. A1 - Jansen, M. T1 - Topotactic, pressure-driven, diffusion-less phasetransition of layered CsCoO2to a stuffedcristobalite-type configuration N2 - CsCoO2, featuring a two-dimensional layered architecture of edge- and vertex-linked CoO4tetrahedra, is subjected to a temperature-driven reversible second-order phase transformation at 100 K, which corresponds to a structuralrelaxation with concurrent tilting and breathing modes of edge-sharing CoO4tetrahedra. In the present investigation, it was found that pressure induces a phase transition, which encompasses a dramatic change in the connectivity ofthe tetrahedra. At 923 K and 2 GPa, beta-CsCoO2 undergoes a first-order phasetransition to a new quenchable high-pressure polymorph,alpha-CsCoO2. It is built up of a three-dimensional cristobalite-type network of vertex-sharing CoO4 tetrahedra. According to a Rietveld refinement of high-resolution powderdiffraction data, the new high-pressure polymorph gamma-CsCoO2 crystallizes in the tetragonal space groupI41/amd:2 (Z= 4) with the lattice constants a= 5.8711 (1) and c= 8.3214 (2) A, corresponding to a shrinkage in volume by 5.7% compared with the ambient-temperature and atmospheric pressure-CsCoO2polymorph.The pressure-induced transition (beta>gamma) is reversible;-CsCoO2 stays metastable under ambient conditions, but transforms back to the-CsCoO2structure upon heating to 573 K. The transformation pathway revealed isremarkable in that it is topotactic, as is demonstrated through a clean displacive transformation track between the two phases that employs the symmetry oftheir common subgroupPb21a(alternative setting of space group No. 29 that matches the conventional-phase cell). KW - Structures under extreme conditions KW - Topotactic phase transitions KW - Transformation pathways KW - Oxocobaltates KW - Cristobalite frameworks PY - 2019 U6 - https://doi.org/10.1107/S2052520619008436 SN - 2052-5206 VL - 75 IS - 4 SP - 704 EP - 710 PB - International Union of Crystallography AN - OPUS4-48782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid A1 - Franc, Antoine Michel Claude A1 - Bertin, Annabelle T1 - 2,6-Diaminopyridine and Acrylamide-Based Copolymers with Upper Critical Solution Temperature-type Behavior in Aqueous Solution N2 - A novel cop olyme r based on supramolecular motif2,6-diaminopyridin e and water-soluble acrylamide, poly[N-(6-ace tamidopyridin-2-yl) acrylamide-co-acrylamide], was synthe-size d via rev ersible addi tion–fragmentation chain transfer (RAFT)polymerization with various monomer compositions. The thermo-respon sive behavior of the copolymers was studied by turbidime-try and dynamic light scattering (DLS). The obtained copolymersshowed an upper critical solution temperature (UCST)-typ e phasetransition behavior in water and electrolyte solution. The phasetransition temperature was found to increase with decreasingam ount of acrylamide in the copolymer and increasing concentra-tion of the solution. Furth ermore, the phase transition temperatureva ried in aqueous solutions of electrolytes according to the naturean d concentration of the electrolyte in accordance with theHoffmeister series. A dramatic solvent isotope effect on thetransition temperature was o bserved in this study, as the transitiontemperature was almost 10–12C higher in D2OthaninH2Oatthesame concentration and acrylamide co mposition. The size of theaggregates below the transition temperature was larger in D2Ocompared to that in H2O that can be explained by deuterium iso-tope effect. The thermoresponsive behavior of the copolymers wasalso investigated in different cell medium and found to be exhibitedUCST-type phase transition behavior in different cell medium.Such behavior of the copo lyme rs can be useful in many a pplica-tions including biomedical, microfluidics, optical materials, and indrug delivery. KW - 2,6-diaminopyridine KW - Acrylamide KW - Stimuli-responsive polymers KW - Thermo-responsive polymers KW - UCST polymers PY - 2019 U6 - https://doi.org/10.1002/pola.29474 SN - 0887-624X VL - 57 IS - 19 SP - 2064 EP - 2073 PB - Wiley AN - OPUS4-49297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baek, W. A1 - Gromilov, S. A1 - Kuklin, A. A1 - Kovaleva, E. A1 - Fedorov, A. A1 - Sukhikh, Alex A1 - Hanfland, M. A1 - Pomogaev, V. A1 - Melchakova, Y. A1 - Avramov, P. A1 - Yusenko, Kirill T1 - Unique Nanomechanical Properties of Diamond-Lonsdaleite Biphases: Combined Exp and Theor consideration of popigai impact diamonds N2 - For the first time, lonsdaleite-rich impact diamonds from one of the largest Popigai impact crater (Northern Siberia) with a high concentration of structural defects are investigated under hydrostatic compression up to 25 GPa. It is found that, depending on the nature of a sample, the bulk modulus for lonsdaleite experimentally obtained by X-ray diffraction in diamond-anvil cells is systematically lower and equal to 93.3−100.5% of the average values of the bulk moduli of a diamond matrix. Density functional theory calculations reveal possible coexistence of a number of diamond/lonsdaleite and twin diamond biphases. Among the different mutual configurations, separate inclusions of one lonsdaleite (001) plane per four diamond (111) demonstrate the lowest energy per carbon atom, suggesting a favorable formation of single-layer lonsdaleite (001) fragments inserted in the diamond matrix. Calculated formation energies and experimental diamond (311) and lonsdaleite (331) powder X-ray diffraction patterns indicate that all biphases could be formed under high-temperature, high-pressure conditions. Following the equation of states, the bulk modulus of the diamond (111)/lonsdaleite (001) biphase is the largest one among all bulk moduli, including pristine diamond and lonsdaleite. KW - Compressibility KW - Lonsdaleite KW - Impact diamonds PY - 2019 U6 - https://doi.org/10.1021/acs.nanolett.8b04421 VL - 19 IS - 9 SP - 1570 EP - 1576 PB - ACS AN - OPUS4-47403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Michalchuk, Adam A1 - Lampronti, G A1 - Sanders, J T1 - Understanding the unexpected effect of frequency on the kinetics of a covalent reaction under ball-milling conditions N2 - We here explore how ball-mill-grinding frequency affects the kinetics of a disulfide exchange reaction. Our kinetic data show that the reaction progress is similar at all the frequencies studied (15–30 Hz), including a significant induction time before the nucleation and growth process starts. This indicates that to start the reaction an initial energy accumulation is necessary. Other than mixing, the energy supplied by the mechanical treatment has two effects: (i) reducing the crystal size and (ii) creating defects in the structure. The crystal-breaking process is likely to be dominant at first becoming less important later in the process when the energy supplied is stored at the molecular level as local crystal defects. This accumulation is taken here to be the rate-determining step. We suggest that the local defects accumulate preferentially at or near the crystal surface. Since the total area increases exponentially when the crystal size is reduced by the crystal-breaking process, this can further explain the exponential dependence of the onset time on the milling frequency. KW - Mechanochemistry KW - Kinetics KW - Diffraction PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-483361 SN - 2195-951X VL - 15 SP - 1226 EP - 1235 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-48336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - You, Yi A1 - van Wasen, Sebastian A1 - Bosc-Bierne, Gaby A1 - Weller, Michael G. A1 - Riedel, Jens T1 - Laser-Induced Microplasma as an Ambient Ionization Approach for the Mass-Spectrometric Analysis of Liquid Samples N2 - An airborne high repetition rate laser-induced plasma was applied as a versatile ambient ionization source for mass-spectrometric determinations of polar and nonpolar analytes in solution. The laser plasma was sustained between a home-built pneumatic nebulizer and the inlet capillary of an Orbitrap mass spectrometer. To maintain stable conditions in the droplet-rich spray environment, the plasma was directly fed by the fundamental output (λ = 1064 nm) of a current state-of-the-art diode-pumped solid-state laser. Ionization by the laser-driven plasma resulted in signals of intact analyte ions of several chemical categories. The analyte ions were found to be fully desolvated since no further increase in ion signal was observed upon heating of the inlet capillary. Due to the electroneutrality of the plasma, both positive and negative analyte ions could be formed simultaneously without altering the operational parameters of the ion source. While, typically, polar analytes with pronounced gas phase basicities worked best, nonpolar and amphoteric compounds were also detected. The latter were detected with lower ion signals and were prone to a certain degree of fragmentation induced during the ionization process. All the described attests the laser-induced microplasma by a good performance in terms of stability, robustness, sensitivity, and general applicability as a self-contained ion source for the liquid sample introduction. KW - Laser KW - Laser-induced plasma KW - Ambient ionization KW - Mass Spectrometry PY - 2019 U6 - https://doi.org/10.1021/acs.analchem.9b00329 SN - 0003-2700 VL - 91 IS - 9 SP - 5922 EP - 5928 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-47939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -