TY - JOUR A1 - Heidmann, B. A1 - Andree, Stefan A1 - Levcenko, S. A1 - Unold, T. A1 - Abou-Ras, D. A1 - Schäfer, N. A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Schmid, M. T1 - Fabrication of regularly arranged chalcopyrite micro solar cells via femtosecond laser-induced forward transfer for concentrator application N2 - A laser-based bottom-up technique for the fabrication of Cu(In,Ga)Se2 (CIGSe) micro solar cells is presented. We use femtosecond laser-induced forward transfer (LIFT) to transport a metallic precursor composed of copper, indium, and gallium onto a molybdenum back contact layer on a glass substrate. A CIGSe absorber forms by subsequent selenization. An array of micro absorbers with defined spacing is fabricated to solar cells and characterized under concentrated light illumination. The solar cell array exhibited a conversion efficiency of 1.4‰ at 1 sun as well as a significant efficiency enhancement of 68% rel. under 20-fold concentration. This work demonstrates the possibility of directly grown micrometer-sized solar cells based on chalcogenide absorber layers, enabling effective material usage. KW - Micro solar cells KW - Light concentration KW - LIFT KW - Chalcopyrite KW - Femtosecond laser PY - 2018 U6 - https://doi.org/10.1021/acsaem.7b00028 SN - 2574-0962 VL - 1 IS - 1 SP - 27 EP - 31 PB - ACS CY - Washington, DC AN - OPUS4-43999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Griepentrog, Michael A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser texturing of surfaces for tribological applications N2 - Laser texturing is an emerging technology for generating surface functionalities on basis of optical, mechanical, or chemical properties. Taking benefit of laser sources with ultrashort (fs) pulse durations features outstanding precision of machining and negligible rims or burrs surrounding the laser-irradiation zone. Consequently, additional mechanical or chemical post-processing steps are usually not required for fs-laser surface texturing (fs-LST). This work aimed to provide a bridge between research in the field of tribology and laser materials processing. The paper reviews the current state-of-the-art in fs-LST, with a focus on the tribological performance (friction and wear) of specific self-organized surface structures (so-called ripples, grooves, and spikes) on steel and titanium alloys. On the titanium alloy, specific sickle-shaped hybrid micro-nanostructures were also observed and tribologically tested. Care is taken to identify accompanying effects affecting the materials hardness, superficial oxidation, nano- and microscale topographies, and the role of additives contained in lubricants, such as commercial engine oil. KW - Femtosecond laser processing KW - Surface texture KW - Laser-induced periodic surface structures (LIPSS) KW - Friction KW - Wear PY - 2018 UR - http://www.mdpi.com/1996-1944/11/5/801 U6 - https://doi.org/10.3390/ma11050801 SN - 1996-1944 VL - 11 IS - 5 SP - 801, 1 EP - 19 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-44905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Pentzien, Simone A1 - Dittmar, G. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray emission as a potential hazard during ultrashort pulse laser material processing N2 - In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 10^14 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-448431 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 6 SP - Article 407, 1 EP - 8 PB - Springer AN - OPUS4-44843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tsibidis, G. D. A1 - Mimidis, A. A1 - Skoulas, E. A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Stratakis, E. T1 - Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams N2 - We investigate the periodic structure formation upon intense femtosecond pulsed irradiation of chrome steel (100Cr6) for linearly polarised laser beams. The underlying physical mechanism of the laser-induced periodic structures is explored, their spatial frequency is calculated and theoretical results are compared with experimental observations. The proposed theoretical model comprises estimations of electron excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. Simulations describe the sequential formation of sub-wavelength ripples and supra-wavelength grooves. In addition, the influence of the laser wavelength on the periodicity of the structures is discussed. The proposed theoretical investigation offers a systematic methodology towards laser processing of steel surfaces with important applications. KW - Laser-induced periodic surface structures KW - Femtosecond laser ablation KW - Steel PY - 2018 UR - https://link.springer.com/article/10.1007/s00339-017-1443-y U6 - https://doi.org/10.1007/s00339-017-1443-y SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 1 SP - 27, 1 EP - 13 PB - Springer-Verlag AN - OPUS4-43626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ringleb, F. A1 - Andree, Stefan A1 - Heidmann, B. A1 - Bonse, Jörn A1 - Eylers, K. A1 - Ernst, O. A1 - Boeck, T. A1 - Schmid, M. A1 - Krüger, Jörg T1 - Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics N2 - Micro-concentrator solar cells offer an attractive way to further enhance the efficiency of planar-cell technologies while saving absorber material. Here, two laser-based bottom-up processes for the fabrication of regular arrays of CuInSe2 and Cu(In,Ga)Se2 microabsorber islands are presented, namely one approach based on nucleation and one based on laser-induced forward transfer. Additionally, a procedure for processing these microabsorbers to functioning micro solar cells connected in parallel is demonstrated. The resulting cells show up to 2.9% efficiency and a significant efficiency enhancement under concentrated Illumination. KW - Chalcopyrite KW - Femtosecond laser patterning KW - Laser-induced forward transfer KW - Micro-concentrator solar cell KW - Photovoltaics PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-470026 SN - 2190-4286 VL - 9 SP - 3025 EP - 3038 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-47002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Slachciak, Nadine A1 - Elert, Anna Maria A1 - Griepentrog, Michael A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Dörfel, Ilona A1 - Sturm, Heinz A1 - Pentzien, Simone A1 - Koter, Robert A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization N2 - Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms. KW - Femtosecond laser KW - Titanium KW - Oxidation KW - Friction PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-445609 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 4 SP - 326, 1 EP - 10 PB - Springer-Verlag AN - OPUS4-44560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Menzel, F. A1 - Epperlein, N. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Bacterial adhesion on femtosecond laser-modified polyethylene N2 - In this study, femtosecond laser-induced sub-micrometer structures are generated to modify polyethylene (PE) surface topographies. These surfaces were subjected to bacterial colonization studies with Escherichia coli and Staphylococcus aureus as test strains. The results reveal that the nanostructures do not influence S. aureus coverage, while the adhesion of E. coli is reduced. KW - Bacterial adhesion KW - Laser-modified surface KW - Polyethylene KW - Laser-induced nanostructures KW - Biofilm PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-492280 VL - 12 IS - 19 SP - 3107 PB - MDPI CY - Basel, Schweiz AN - OPUS4-49228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - The influence of processing parameters on X‑ray emission during ultra‑short pulse laser machining N2 - During ultra-short laser material processing at high laser pulse repetition rates unwanted X-ray radiation can be generated in a quantity that may constitute a potential risk for health. An adequate X-ray radiation protection requires a thoroughly understanding of the influence of the laser processing parameters on the generation of X-ray radiation. In the present work, the generated X-ray dose during laser machining was investigated in air for varying beam scanning conditions at a pulse duration of 925 fs, a center wavelength of 1030 nm and a laser peak intensity of 2.6 × 10^14 W/cm^2. The X-ray radiation dose and the corresponding spectral X-ray emission were investigated in dependence on the laser’s pulse repetition rate and on the beam scanning speed. The results show a strong dependence of the X-ray emission on these laser processing parameters. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-486441 SN - 0947-8396 SN - 1432-0630 VL - 125 IS - 8 SP - 570, 1 EP - 8 PB - Springer AN - OPUS4-48644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stratakis, E. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Siegel, J. A1 - Tsibidis, G.D. A1 - Skoulas, E. A1 - Papadopoulos, A. A1 - Mimidis, A. A1 - Joel, A.-C. A1 - Comanns, P. A1 - Krüger, Jörg A1 - Florian, C. A1 - Fuentes-Edfuf, Y. A1 - Solis, J. A1 - Baumgartner, W. T1 - Laser engineering of biomimetic surfaces N2 - The exciting properties of micro- and nano-patterned surfaces found in natural species hide a virtually endless potential of technological ideas, opening new opportunities for innovation and exploitation in materials science and engineering. Due to the diversity of biomimetic surface functionalities, inspirations from natural surfaces are interesting for a broad range of applications in engineering, including phenomena of adhesion, friction, wear, lubrication, wetting phenomena, self-cleaning, antifouling, antibacterial phenomena, thermoregulation and optics. Lasers are increasingly proving to be promising tools for the precise and controlled structuring of materials at micro- and nano-scales. When ultrashort-pulsed lasers are used, the optimal interplay between laser and material parameters enables structuring down to the nanometer scale. Besides this, a unique aspect of laser processing technology is the possibility for material modifications at multiple (hierarchical) length scales, leading to the complex biomimetic micro- and nano-scale patterns, while adding a new dimension to structure optimization. This article reviews the current state of the art of laser processing methodologies, which are being used for the fabrication of bioinspired artificial surfaces to realize extraordinary wetting, optical, mechanical, and biological-active properties for numerous applications. The innovative aspect of laser functionalized biomimetic surfaces for a wide variety of current and future applications is particularly demonstrated and discussed. The article concludes with illustrating the wealth of arising possibilities and the number of new laser micro/nano fabrication approaches for obtaining complex high-resolution features, which prescribe a future where control of structures and subsequent functionalities are beyond our current imagination. KW - Biomimetic surfaces KW - Laser processing KW - Surface functionalization KW - Bioinspiration KW - Bionic materials PY - 2020 U6 - https://doi.org/10.1016/j.mser.2020.100562 SN - 0927-796X VL - 141 SP - 100562-1 EP - 100562-47 PB - Elsevier B.V. AN - OPUS4-50927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lone, S. A. A1 - Muck, M. A1 - Fosodeder, P. A1 - Mardare, C.C. A1 - Florian, Camilo A1 - Weth, A. A1 - Krüger, Jörg A1 - Steinwender, C. A1 - Baumgartner, W. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Hassel, A.W. T1 - Impact of Femtosecond Laser Treatment Accompanied with Anodization of Titanium Alloy on Fibroblast Cell Growth N2 - Herein, Ti6Al4V alloy is surface modified by femtosecond laser ablation. The microstructure image obtained by secondary electron microscopy reveals a combination of micrometer spikes or cones superimposed by nanoripples (laser‐induced periodic surface structures). To make the surface hydrophilic, anodization is performed resulting in further smoothness of microstructure and a final thickness of 35 ± 4 nm is estimated for oxide produced after anodization at 10 V (scan rate = 0.1 V s−1) versus standard hydrogen electrode. The obtained electrochemically active surface area (ECSA) is approximately 8 times larger compared with flat mirror polished Ti6Al4V surface. Combined chemical analysis by Pourbaix diagram and X‐ray photoelectron spectroscopy (XPS) analyses reveal that titanium and aluminum are passivating into TiO2 and Al2O3, but the dissolution of aluminum in the form of solvated ion is inevitable. Finally, cell seeding experiments on anodized and laser‐treated titanium alloy samples show that the growth of murine fibroblast cells is significantly suppressed due to unique surface texture of the laser‐treated and anodized titanium alloy sample. KW - Anodization KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Ti6Al4V alloys KW - X-ray photoelectron spectroscopy PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510263 SN - 1862-6300 SN - 1862-6319 VL - 217 IS - 13 SP - 1900838-1 EP - 1900838-9 PB - WILEY-VCH Verlag CY - Weinheim, Germany AN - OPUS4-51026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -