TY - JOUR A1 - Olbrich, Adelina-Elisa A1 - An Stepec, Biwen Annie A1 - Wurzler, Nina A1 - Terol, E. C. A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Beyond corrosion: Development of a single cell-ICP-ToF-MS method to uncover the process of microbiologically influenced corrosion N2 - The development of the microbiologically influenced corrosion ( MIC ) -specific inductively coupled plasma-time of flight-mass spectrometry ( ICP-ToF-MS ) analytical method presented here, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis. For this, a MIC-specific staining procedure was developed, which ensures the analysis of intact cells. It allows the analysis of archaea at a single cell level, which is extremely scarce compared to other well-characterized organisms. The detection method revealed elemental selectivity for the corrosive methanogenic strain Methanobacterium -affiliated IM1. Hence, the possible uptake of individual elements from different steel samples was investigated and results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to uptake chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The methods developed and information obtained will be used in the future to elucidate underlying mechanisms, compliment well-developed methods, such as SEM-EDS, and develop novel material protection concepts. KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development KW - Ir DNA staining approach KW - Carbon steel corrosion PY - 2022 DO - https://doi.org/10.1093/mtomcs/mfac083 SN - 1756-591X VL - 14 IS - 11 SP - 1 EP - 15 PB - Oxford University Press CY - Oxford AN - OPUS4-56254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547397 DO - https://doi.org/10.1002/zaac.202200026 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Ines A1 - Al-Sabbagh, Dominik A1 - Bentrup, U. A1 - Marquardt, Julien A1 - Schmid, Thomas A1 - Scoppola, E. A1 - Kraus, Werner A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill A1 - Weidner, Steffen A1 - Emmerling, Franziska T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure. KW - Bismuth KW - In situ EXAFS KW - In situ SAXS/WAXS KW - Lacunary Keggin ion KW - Polyoxometalates KW - Self-assembly PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546823 DO - https://doi.org/10.1002/chem.202200079 SN - 0947-6539 VL - 28 IS - 27 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Feldmann, Ines A1 - Emmerling, Franziska T1 - Mix and wait – a relaxed way for synthesizing ZIF-8 N2 - Herein we report the synthesis of a zeolitic imidazolate framework (ZIF-8) by an easy “mix and wait” procedure. In a closed vial, without any interference, the mixture of 2-methylimidazole and basic zinc carbonate assembles into the crystalline product with approx. 90% conversion after 70 h. The reaction exhibits sigmoidal kinetics due to the self-generated water which accelerates the reaction. KW - In-situ analysis KW - Mechanochemistry KW - MOF KW - Synthesis KW - ZIF-8 PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546841 DO - https://doi.org/10.1039/D2RA00740A VL - 12 SP - 8940 EP - 8944 PB - Royal Society of Chemistry AN - OPUS4-54684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Generalized Analysis Approach of the Profile Roughness by Electron Microscopy with the Example of Hierarchically Grown Polystyrene–Iron Oxide–Silica Core–Shell–Shell Particles N2 - The roughness as a property of core–shell (CS) microparticles plays a key role in their functionality. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task with approaches using electron microscopy images being scarce and showing pronounced differences in terms of methodology and results. This work presents a generalized method for the reliable roughness determination of nonplanar specimens such as CS particles from electron microscopic images, the method being robust and reproducible with a high accuracy. It involves a self-written software package (Python) that analyzes the recorded images, extracts corresponding data, and calculates the roughness based on the deviation of the identified contour. Images of single particles are taken by a dual mode scanning electron microscopy (SEM) setup which permits imaging of the same field-of-view of the sample with high resolution and surface sensitive in SE InLens mode as well as in transmission mode (TSEM). Herein, a new type of polystyrene core–iron oxide shell–silica shell particles is developed to serve as a set of lower micrometer-sized study objects with different surface roughness; the analysis of their images by the semiautomatic workflow is demonstrating that the particles’ profile roughness can be quantitatively obtained. KW - Core–shell particles KW - Image analysis KW - Nanoparticles KW - Roughness KW - SEM KW - transmission mode PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542576 DO - https://doi.org/10.1002/adem.202101344 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Analysis of the profile roughness of core-shell microparticles by electron microscopy N2 - A particle roughness analysis tool, based on electron microscopy images (SEM and TEM). The influence of various parameters on the calculated roughness was also investigated: the setting of the proper threshold, accelerating voltage, etc. The samples were gradually tilted to extend imaging information of more than only one projection. Furthermore, the measurement uncertainty of the profile roughness of particles associated to various orientations was estimated. KW - Core-shell particles KW - Electron microscopy KW - Image processing KW - MamaLoCa KW - Particle Characterization KW - Roughness PY - 2021 DO - https://doi.org/10.1017/S1431927621007285 VL - 27 IS - Suppl. 1 SP - 2002 EP - 2004 PB - Cambridge University Press AN - OPUS4-53123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Krumrey, Julian Frederic A1 - Hodoroaba, Vasile-Dan T1 - Workflow towards automated segmentation of agglomerated, non‑spherical particles from electron microscopy images using artificial neural networks N2 - We present a workflow for obtaining fully trained artificial neural networks that can perform automatic particle segmentations of agglomerated, non-spherical nanoparticles from scanning electron microscopy images “from scratch”, without the need for large training data sets of manually annotated images. The whole process only requires about 15 minutes of hands-on time by a user and can typically be finished within less than 12 hours when training on a single graphics card (GPU). After training, SEM image analysis can be carried out by the artificial neural network within seconds. This is achieved by using unsupervised learning for most of the training dataset generation, making heavy use of generative adversarial networks and especially unpaired image-to-image translation via cycle-consistent adversarial networks. We compare the segmentation masks obtained with our suggested workflow qualitatively and quantitatively to state-of-the-art methods using various metrics. Finally, we used the segmentation masks for automatically extracting particle size distributions from the SEM images of TiO2 particles, which were in excellent agreement with particle size distributions obtained manually but could be obtained in a fraction of the time. KW - Electron microscopy KW - Neural networks KW - Artificial intelligence KW - Image segmentation KW - Automated image analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522454 DO - https://doi.org/10.1038/s41598-021-84287-6 VL - 11 IS - 1 SP - 4942 PB - Springer Nature AN - OPUS4-52245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Zimathies, Annett A1 - Prinz, Carsten T1 - A fast procedure for the estimation of the hydrogen storage capacity by cryoadsorption of metalorganic framework materials from their available porous properties N2 - In order to identify the best porous materials for the cryogenic physisorption of hydrogen, high-throughput calculations are performed starting, i.e., from the collected information in crystallographic databases. However, these calculations, like molecular simulations, require specific training and significant computational cost. Herein, a relatively simple procedure is proposed to estimate and compare hydrogen uptakes at 77 K and pressure values from 40 bar starting from the porous properties of MOF materials, without involving simulation tools. This procedure uses definitions for adsorption and considers the adsorbed phase as an incompressible fluid whose pressure-density change is that for the liquid phase at 19 K. For the 7000 structures from the CoRE MOF database, the average error of the predictions is only of 1% from reference values at 100 bar, with an SD of ±8%. This accuracy is lower than that from simulation tools, but involving lower computational cost and training. KW - Metal-organic frameworks KW - MOF databases KW - Hydrogen cryostorage KW - Supercritical adsorption KW - Absolute adsorption KW - Uptake estimation PY - 2021 DO - https://doi.org/10.1016/j.ijhydene.2020.10.265 SN - 0360-3199 VL - 46 SP - 29323 EP - 29331 PB - Elsevier CY - Oxford AN - OPUS4-53133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gojani, Ardian A1 - Tobias, Charlie A1 - Hülagü, Deniz A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Toward determination of the surface roughness of particles from a SEM image N2 - In this communication, we address the issue of roughness measurement by investigating if the grayscale values from SEM images can be used for surface roughness determination of spherical particles. KW - MamaLoCA KW - Core-shell particles KW - Electron microscopy KW - Image processing KW - Particle characterisation KW - Roughness PY - 2021 DO - https://doi.org/10.1017/S1431927621011375 SN - 1431-9276 SN - 1435-8115 VL - 27 IS - Suplement S1 SP - 3302 EP - 3305 PB - Cambridge University Press CY - New York, NY AN - OPUS4-53283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian B. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - From 2D and Single Particle to 3D and Batch Analysis as a Routine Quality Check Procedure for the Morphological Characterization of Core-Shell Microparticles N2 - CS particles show unique properties by merging individual characteristics of the core and the shell materials. An alteration particularly in their surface roughness affects the final performance of the particles in the targeted application. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task employing microscopic techniques being scarce and showing large differences in terms of methodology and results. In our previous work, we have reported a systematic study with a reliable analysis tool, which evaluates profile roughness quantitatively, for individual core-shell microparticles using electron microscopy (EM) images of both types, Scanning Electron Microscopy (SEM) and transmission mode SEM (or TSEM). The SEM images contain two-dimensional (2D) information, therefore, provide profile roughness data only from the projection in the horizontal plane (in other words, from the “belly”) of a spherical particle. The present study offers a practical procedure to give access to more information by tilting the sample holder and hence allowing images of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, extended information on surface roughness of the particle can be extracted. Thus, instead of obtaining 2D information from a single SEM image, three-dimensional (3D) information is obtained from 2D projections recorded at different particle orientations. T2 - Microscopy and Microanalysis 2022 CY - Oregon, Portland, USA DA - 31.07.2022 KW - Core-shell particles KW - Image processing KW - Roughness KW - Scanning electron microscopy KW - Tilting PY - 2022 DO - https://doi.org/10.1017/S1431927622002094 SN - 1431-9276 VL - 28 IS - S1 SP - 332 EP - 334 PB - Cambridge University Press AN - OPUS4-55373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -