TY - JOUR A1 - Yildirim, Arda A1 - Krause, Christina A1 - Zorn, R. A1 - Lohstroh, W. A1 - Schneider, G. J. A1 - Zamponi, M. A1 - Holerer, O. A1 - Frick, B. A1 - Schönhals, Andreas T1 - Complex molecular dynamics of a symmetric model discotic liquid crystal revealed by broadband dielectric, thermal and neutron spectroscopy N2 - The molecular dynamics of the triphenylene-based discotic liquid crystal HAT6 is investigated by broadband dielectric spectroscopy, advanced dynamical calorimetry and neutron scattering. Differential scanning calorimetry in combination with X-ray scattering reveals that HAT6 has a plastic crystalline phase at low temperatures, a hexagonally ordered liquid crystalline phase at higher temperatures and undergoes a clearing transition at even higher temperatures. The dielectric spectra show several relaxation processes: a localized gamma-relaxation a lower temperature and a so called alpha-2-relaxation at higher temperatures. The relaxation rates of the alpha-2-relaxation have a complex temperature dependence and bear similarities to a dynamic glass transition. The relaxation rates estimated by hyper DSC, Fast Scanning calorimetry and AC Chip calorimetry have a different temperature dependence than the dielectric alpha-2-relaxation and follows the VFT-behavior characteristic for glassy dynamics. Therefore, this process is called alpha-1-relaxation. Its relaxation rates show a similarity with that of polyethylene. For this reason, the alpha-1-relaxation is assigned to the dynamic glass transition of the alkyl chains in the intercolumnar space. Moreover, this process is not observed by dielectric spectroscopy which supports its assignment. The alpha-2-relaxation was assigned to small scale translatorial and/or small angle fluctuations of the cores. The neutron scattering data reveal two relaxation processes. The process observed at shorter relaxation times is assigned to the methyl group rotation. The second relaxation process at longer time scales agree in the temperature dependence of its relaxation rates with that of the dielectric gamma-relaxation. KW - Discotic Liquid Crystals PY - 2020 U6 - https://doi.org/10.1039/c9sm02487e VL - 16 IS - 8 SP - 2005 EP - 2016 PB - Royal Chemical Society AN - OPUS4-50466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Bühlmeyer, A. A1 - Hayash, S A1 - Haenle, J. C. A1 - Sentker, K. A1 - Krause, Christina A1 - Huber, Patrick A1 - Laschat, Sabine A1 - Schönhals, Andreas T1 - Multiple glassy dynamics in dipole functionalized triphenylene-based discotic liquid crystals revealed by broadband dielectric spectroscopy and advanced calorimetry – assessment of the molecular origin N2 - A selected series of dipole functionalized triphenylene-based discotic liquid crystals (DLCs) was synthesized and investigated in a systematic way to reveal the phase behavior and molecular dynamics. The later point is of particular importance to understand the charge transport in such systems which is the key property for their applications such as organic field-effect transistors, solar cells or as nanowires in molecular electronics, and also to tune the properties of DLCs. The mesomorphic properties were studied by polarizing optical microscopy, X-ray diffraction, and differential scanning calorimetry, which were compared to the corresponding unfunctionalized DLC. The molecular dynamics were investigated by a combination of state-of-the-art broadband dielectric spectroscopy (BDS) and advanced calorimetry such as fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). Besides localized fluctuations, surprisingly multiple glassy dynamics were detected for all materials for the first time. Glassy dynamics were proven for both processes unambiguously due to the extraordinary broad frequency range covered. The a1-process is attributed to fluctuations of the alky chains in the intercolumnar space because a polyethylene-like glassy dynamics is observed. This corresponds to a glass transition in a confined three-dimensional space. The a2-process found at temperatures lower than a1-process, is assigned to small scale rotational and/or translational in plane fluctuations of the triphenylene core inside distorted columns. This can be considered as a glass transition in a one-dimensional fluid. Therefore, obtained results are of general importance to understand the glass transition, which is an unsolved problem of condensed matter science. KW - Discotic Liquid Crystals KW - Broadband dielectric spectroscopy KW - Flash DSC KW - Specific heat spectroscopy PY - 2019 U6 - https://doi.org/10.1039/c9cp03499d SN - 1463-9076 VL - 21 IS - 33 SP - 18265 EP - 18277 PB - RSC AN - OPUS4-48739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sentker, K. A1 - Yildirim, Arda A1 - Lippmann, M. A1 - Zantop, A. W. A1 - Bertram, F. A1 - Hofmann, T. A1 - Seeck, O. H. A1 - Kityk, A. A1 - Mazza, M. G. A1 - Schönhals, Andreas A1 - Huber, P. T1 - Self-assembly of liquid crystals in nanoporous solids for adaptive photonic metamaterials N2 - Nanoporous media exhibit structures significantly smaller than the wavelengths of visible light and can thus act as photonic metamaterials. Their optical functionality is not determined by the properties of the base materials, but rather by tailored, multiscale structures, in terms of precise pore shape, geometry, and orientation. Embedding liquid crystals in pore space provides additional opportunities to control light–matter interactions at the single-pore, meta-atomic scale. Here, we present temperature-dependent 3D reciprocal space mapping using synchrotron-based X-ray diffraction in combination with high-Resolution birefringence experiments on disk-like mesogens (HAT6) imbibed in self-ordered arrays of parallel cylindrical pores 17 to 160 nm across in monolithic anodic aluminium oxide (AAO). In agreement with Monte Carlo computer simulations we observe a remarkably rich self-assembly behaviour, unknown from the bulk state. It encompasses transitions between the isotropic liquid state and discotic stacking in linear columns as well as circular concentric ring formation perpendicular and parallel to the pore axis. These textural transitions underpin an optical birefringence functionality, tuneable in magnitude and in sign from positive to negative via pore size, pore surface-grafting and temperature. Our study demonstrates that the advent of large-scale, self-organised nanoporosity in monolithic solids along with confinement-controllable phase behaviour of liquid-crystalline matter at the single-pore scale provides a reliable and accessible tool to design materials with adjustable optical anisotropy, and thus offers versatile pathways to finetune polarisation-dependent light propagation speeds in materials. Such a tailorability is at the core of the emerging field of transformative optics, allowing, e.g., adjustable light absorbers and extremely thin metalenses. KW - Discotic Liquid Crystals PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-499601 SP - 1 EP - 14 PB - RSC Royal Society of Chemistry AN - OPUS4-49960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Sentker, K. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Huber, P. A1 - Schönhals, Andreas T1 - Collective orientational order and phase behavior of a discotic liquid crystal under nanoscale confinement N2 - The phase behavior and molecular ordering of hexakishexyloxy triphenylene (HAT6) DLC under cylindrical nanoconfinement is studied utilizing differential scanning calorimetry (DSC) and dielectric spectroscopy (DS), where cylindrical nanoconfinement is established through embedding HAT6 into the nanopores of anodic aluminum oxide membranes (AAO), and a silica membrane with pore diameters ranging from 161 nm down to 12 nm. Both unmodified and modified pore walls were considered, and in the latter case the pore walls of AAO membranes were chemical treated with n octadecylphosphonic acid (ODPA) resulting in the formation of a 2.2 nm thick layer of grafted alkyl chains. Phase transition enthalpies decrease with decreasing pore size, indicating that a large proportion of the HAT6 molecules within the pores has a disordered structure, which increases with decreasing pore size for both pore walls. In the case of the ODPA modification the amount of ordered HAT6 is increased compared to the unmodified case. The pore size dependencies of the phase transition temperatures were approximated using the Gibbs Thomson equation, where the estimated surface tension is dependent on the molecular ordering of HAT6 molecules within the pores and upon their surface. DS was employed to investigate the molecular ordering of HAT6 within the nanopores. These investigations revealed that with a pore size of around 38 nm, for the samples with the unmodified pore walls, the molecular ordering changes from planar axial to homeotropic radial. However, the planar axial configuration, which is suitable for electronic applications, can be successfully preserved through ODPA modification for most of the pore sizes. KW - Discotic Liquid Crystals KW - Nanoconfinement PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-475222 SN - 2516-0230 VL - 1 IS - 3 SP - 1104 EP - 1116 PB - RSC AN - OPUS4-47522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -