TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Boehm, S. A1 - Kim, K. J. T1 - Analysis of elemental composition of Fe1-xNix and Si1-xGex alloy thin films by electron probe microanalysis and micro-focus X-ray fluorescence JF - Surface and Interface Analysis N2 - The present study reports on results of analysis of the elemental composition of thin films by electron probe microanalysis with energy dispersive (ED-EPMA) X-ray spectrometry in conjunction with the dedicated thin-film analysis software package Stratagem and by X-ray fluorescence in its version with a micro-focus X-ray fluorescence (μ-XRF) source attached to a scanning electron microscope (SEM). Two thin-film systems have been analyzed: Fe1-xNix on silicon wafer and Si1-xGex on Al2O3 substrate, in both cases the layers being grown to a thickness of about 200 nm by ion beam sputter deposition. Samples of five different atomic fractions have been produced and analyzed for each thin-film system. Moreover, reference samples with certified elemental composition and thickness have been also available. This study is part of an interlaboratory comparison organized in the frame of standardization technical committee ISO/TC 201 “Surface chemical analysis.” Two laboratories have been analyzed by ED-EPMA (one laboratory standardless and one laboratory using both standardless and with standards variants) and one laboratory by μ-XRF (standardless and with standards). All the elemental compositions obtained with different methods are in very good agreement for the complete two sets of five samples each. KW - Thin films KW - Elemental composition KW - FeNi KW - SiGe KW - Electron probe microanalysis KW - X-ray Fluorescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509262 DO - https://doi.org/10.1002/sia.6834 SN - 0142-2421 VL - 52 IS - 12 SP - 929 EP - 932 PB - John Wiley & Sons Ltd AN - OPUS4-50926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Kim, K. J. A1 - Hodoroaba, Vasile-Dan T1 - Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA JF - Microscopy and Microanalysis N2 - The thickness of thin films can be measured by various methods, e.g., profilometry, ellipsometry, atomic force microscopy (AFM), or X-ray reflectometry. For the additional determination of thin film composition, techniques like X-ray photoelectron spectroscopy (XPS) or mass spectrometry-based techniques can be used. An alternative non-destructive technique is electron probe microanalysis (EPMA). This method assumes a sample of homogenous (bulk) chemical composition, so that it cannot be usually applied to thin film samples. However, in combination with the thin film software StrataGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). These samples were used for an international round robin test. In 2021, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BadgerFilm software package and compared the resulting composition and thickness with the results of the established StrataGEM software and other reference methods. With the current evaluation, the BadgerFilm software shows good agreement with the composition and thickness calculated by StrataGEM and as the reference values provided by the KRISS. KW - Thin films KW - Elemental composition KW - Film thickness KW - EPMA (Electron Probe Microanalysis) PY - 2022 DO - https://doi.org/10.1017/S143192762200318X VL - 28 IS - Suppl. 1 SP - 672 EP - 673 PB - Cambridge University Press AN - OPUS4-55437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Kim, K. J. A1 - Hodoroaba, Vasile-Dan T1 - Elemental composition and thickness determination of thin films by electron probe microanalysis JF - Surface and Interface Analysis N2 - Electron probe microanalysis (EPMA) applies to solid samples of homogenous (bulk) chemical composition and can usually not be applied to structures which are inhomogeneous in the micrometer range such as thin film systems down to a few nm. However, in combination with the established thin film software Stratagem, the thickness as well as the elemental composition of thin films on a substrate can be determined. This has been recently successfully demonstrated for Fe-Ni on Si and Si-Ge on Al2O3 thin film systems. For both systems five samples of different elemental composition and a reference were produced and characterised by inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM) as reference values. Last year, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we reevaluated the data acquired for the Fe-Ni and Si-Ge systems using the BadgerFilm software package and compared the obtained elemental compositions and thickness values with the results of the Stratagem software and the reference methods. The conclusion is that the BadgerFilm software shows good agreement with the elemental composition and thickness calculated by Stratagem (mostly <2% for both composition and thickness) and with the reference values for two representative thin film systems (<1%–2% for composition and <10%–20% for thickness). KW - Elemental composition KW - EPMA KW - Film thickness KW - Thin films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576368 DO - https://doi.org/10.1002/sia.7183 SN - 0142-2421 VL - 55 SP - 496 EP - 500 PB - Wiley AN - OPUS4-57636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -