TY - CONF A1 - Stuff, Maria A1 - Rübner, Katrin A1 - Prinz, Carsten A1 - Rische, N. A1 - Chronz, M. A1 - Kühne, Hans-Carsten ED - Siegesmund, S. ED - Middendorf, B. T1 - Towards a better understanding of tuff stone deterioration N2 - Stone deterioration is the result of a complex interaction of external physical, chemical and biological forces with the mineralogical-petrophysical properties of the stone. With a better understanding of how these properties are linked to material behavior and durability, more effective measures for stone conservation can be developed. Studying these interactions in tuff is particularly complex due to the naturally high heterogeneity of tuff rocks. The first aim of a current research project is to combine the results of recent and older studies on tuff deterioration. Furthermore, the literature overview is complemented by our own investigation of Weibern and Ettringen tuff, with a focus on pore structure characteristics. T2 - STONE - 14th international congress on the deterioration and conservation of stone CY - Meeting was canceled DA - 07.09.2020 KW - Pore structure KW - Weathering KW - Weibern tuff KW - Ettringen tuff PY - 2020 SN - 978-3-96311-172-3 SP - 805 EP - 810 PB - Mitteldeutscher Verlag CY - Halle (Saale) AN - OPUS4-51549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Rowlandson, J. L. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Ting, V. P. A1 - Kulak, A. A1 - Schnepp, Z. T1 - The effect of precursor structure on porous carbons produced by iron-catalyzed graphitization of biomass N2 - This paper reports a systematic study into the effect of different biomass-derived precursors on the structure and porosity of carbons prepared via catalytic graphitization. Glucose, starch and cellulose are combined with iron nitrate and heated under a nitrogen atmosphere to produce Fe3C nanoparticles, which catalyze the conversion of amorphous carbon to graphitic nanostructures. The choice of organic precursor provides a means of controlling the catalyst particle size, which has a direct effect on the porosity of the material. Cellulose and glucose produce mesoporous carbons, while starch produces a mixture of micro- and mesopores under the same conditions and proceeds via a much slower graphitization step, generating a mixture of graphitic nanostructures and turbostratic carbon. Porous carbons are critical to energy applications such as batteries and electrocatalytic processes. For These applications, a simple and sustainable route to those carbons is essential. Therefore, the ability to control the precise structure of a biomass-derived carbon simply through the choice of precursor will enable the production of a new generation of energy materials. KW - SAXS KW - Porous carbons KW - Graphitization KW - Iron nanoparticles KW - Catalysis KW - Gas sorption PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515531 DO - https://doi.org/10.1039/d0ma00692k VL - Royal Society of Chemistry SP - 1 EP - 11 AN - OPUS4-51553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Keserović, Amela A1 - Beck, Joana A1 - Sarmiento Klapper, Helmut A1 - Boduch, A. A1 - Dimper, Matthias A1 - Stoljarova, A. A1 - Faes, W. A1 - Zimmer, S. T1 - Metallic Materials for Geothermal Applications N2 - The aim of the work presented was the evaluation of corrosion resistance of various materials in geothermal Waters as a base to create a catalogue of suitable materials for applications in (not only) German geothermal power plants. Users shall be enabled to have a basis for designing such facilities. High alloyed corrosion resistant alloys are suitable and do not cause copper or lead deposition. They shall be chosen for future design of the piping system, either in massive or in cladded form, if crevices formation with non-metallic materials can be prevented! T2 - IFPEN-Workshop: Corrosion in Low-Carbon Energies CY - Online meeting DA - 03.11.2020 KW - Geothermal KW - Corrosion KW - Saline brine PY - 2020 AN - OPUS4-51511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea A1 - Wander, Lukas A1 - Braun, Ulrike T1 - Multivariate approaches in the evaluation of (hyper)spectral data for microplastics analysis - options and limitations N2 - Die zunehmende Anreicherung von Gewässern und Böden mit Plastikmüll führt zur Anhäufung von mikroskopisch kleinen Plastikpartikeln, sogenannter Mikroplastik (MP). Es werden dringend analytische Methoden benötigt, die helfen MP zu identifizieren und zu quantifizieren. Gegenwärtig kommen dafür hauptsächlich thermoanalytische und mikro¬skopische Verfahren, wie Mikro-Infrarotspektroskopie oder Mikro-Raman zum Einsatz. Letztere sind in der Regel an zeitaufwendige Probenanreicherungen und -aufbereitungen gebunden, es können nur kleine Probenmengen (Mikrogramm) untersucht werden und die Auswertung der erzielten Spektren kann anspruchsvoll sein. Im Rahmen dieser Präsentation werden zwei Ansätze vorgestellt, die über die multi-variate Analyse spektroskopischer Daten i) einen neuen methodischen Ansatz zum Screening von MP in belasteten Böden sowie ii) eine alternative Auswertung großer (Mikro)-spektroskopischer Datensätze ermöglichen. Zunächst wird ein NIR-spektroskopisches Verfahrens vorgestellt, das es gestattet MP bestehend aus Polyethylen, Polyethylenterephthalat, Polypropylen und Polystyrol im Bereich bis zu 0,5 Massenprozent zu detektieren. Aufgrund kurzer Messzeiten und robuster Technik besitzt dieser Ansatz das Potenzial, im Gegensatz zu den thermoanalytischen und mikrospektroskopischen Methoden, größere Probenmengen mit minimaler Vor¬behandlung zu untersuchen. Der zweite Ansatz befasst sich mit der Auswertung großen Datensätze, wie sie typischerweise als Resultat der Mikro-FTIR unter Nutzung moderner FPA-Detektoren erhalten werden. Die Mikro-FTIR-Technik beruht auf der spektralen Aufnahme, Abbildung und an¬schließenden Identifizierung von Schwingungsbanden, die für synthetische Polymere typisch sind. Die Bilddatensätze sind groß und enthalten Spektren von unzähligen Partikeln natürlichen und synthetischen Ursprungs. Zur Ergänzung bestehender Ansätze, die z.B. auf Recherchen von Spektren¬bibliotheken basieren, wurde die explorative multivariate Datenanalyse getestet. Als Kernkonzept wurde hierbei die Dimensionalitäts¬reduktion verwendet. Die Ergebnisse stellen nicht nur eine orthogonale Methode zur Kontrolle der Ergebnisse dar, die auf Grundlage einer automatisierten Bibliothekssuche erzielt wurden, sondern ergaben darüber hinaus eine Gruppe von Spektren, die nicht in den vorhandenen Spektrenbibliotheken erfasst wurden. N2 - The increasing enrichment of water bodies and soils with plastic waste leads to the accumulation of microscopic plastic particles, so-called microplastics (MP). There is an urgent need for analytical methods that help to identify and quantify MP. At present, mainly thermo-analytical and microscopic methods such as micro-infrared spectroscopy or micro-Raman are used for this purpose. The latter are usually tied to time-consuming sample enrichment and preparation, only small sample quantities (micrograms) can be examined and the evaluation of the obtained spectra can be demanding. In the context of this presentation, two approaches are presented which, via the multi-variate analysis of spectroscopic data, allow i) a new methodological approach to screening MP in contaminated soils and ii) an alternative evaluation of large (micro)-spectroscopic data sets. First, a NIR spectroscopic method is presented which allows MP consisting of polyethylene, polyethylene terephthalate, polypropylene and polystyrene to be detected in the range of up to 0.5 mass percent. Due to short measurement times and robust technology, this approach has the potential, in contrast to thermo-analytical and micro-spectroscopic methods, to examine larger sample quantities with minimal pre-treatment. The second approach deals with the evaluation of large data sets, as typically obtained as a result of micro-FTIR using modern FPA detectors. The micro-FTIR technique is based on the spectral recording, imaging and subsequent identification of vibration bands typical of synthetic polymers. The image data sets are large and contain spectra of numerous particles of natural and synthetic origin. Exploratory multivariate data analysis has been tested to complement existing approaches based on e.g. spectrum library searches. The core concept used was dimensionality reduction. The results not only represent an orthogonal method for checking the results obtained by an automated library search, but also revealed a group of spectra that were not recorded in the existing spectrum libraries. T2 - analytica conference 2020 CY - Online meeting DA - 19.10.2020 KW - Microplastics KW - Multivariate Datenanalyse KW - NIR KW - Hyperspectral data PY - 2020 AN - OPUS4-51516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Krähnert, R. T1 - Towards hydrogen economy: multimethod analysis and operando investigation of mesoporous iridium oxides films for electrocatalysis, EMPIR/EURAMET Project HyMet 16ENG03 N2 - In the face of rising energy demand and the impending climate change the development of a sustainable, fossil-free fuel and chemical production is of global importance. One possible goal is the development of electrochemical conversion processes using catalysts. Porous materials play an important role in such energy applications. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physico-chemical properties. However, the complex morphology of such catalysts constitutes a challenge even for modern analytical techniques. Spectroscopic ellipsometry (SE) is a versatile method for studying material properties by using appropriate models (e.g. film thickness, optical and electronic properties). The fact that the material properties cannot be taken directly from the measured spectra, the developed models have to be validated. In a first step, the model for the ellipsometric fit studies of a calcination series of mesoporous iridium oxide films (300 – 600 °C) was investigated and validated with respect to their material properties. Moreover, the electronic structures of the catalysts reveal a direct correlation with electrochemical activities. The development of an environmental cell offers the possibility of investigations under real conditions. This will allow changes in the optical and electronic properties during the electrocatalytic oxygen evolution reaction. T2 - HyMet dissemination event CY - Online meeting DA - 17.11.2020 KW - Correlative ex-situ ellipsometric analysis KW - Ellipsometric operando investigation KW - Hydrogen economy KW - Mesoporous iridium oxides films KW - Oxygen evolution reaction PY - 2020 AN - OPUS4-51629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Resolving the mystery of the molecular dynamics of epoxy-based materials using broadband dielectric spectroscopy and hypheneated calorimetry N2 - A detailed calorimetric and dielectric study on two epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and methyl tetrahydrophtalic acid anhydride (MTHPA) aas the polymer matrix and taurine-modified MgAL layered double hydroxide (T-LDH) and boehmite as nanofiller. The molecular dynamics investigation revealed an intrinsic structural heterogeneity of the epoxy materials. Moreover the polymer/particle interphase was qualitatively and quantitavely investigated. T2 - Online International Dielectric Society 2020 Workshop CY - Online meeting DA - 28.09.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - BDS KW - TMDSC PY - 2020 AN - OPUS4-51492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - You Ask – ACEnano Replies N2 - The workshop starts with introductory information about the workshop and the H2020 project ACEnano, followed by two expert round tables, focussing on how the project could address regulator and industry needs, respectively. This is be followed by parallel sessions on tools (based on preferences expressed by those registered to attend, see “Questions”) and finally a question-and-answer session with the attendees. The experts invited in Round Table 1 have been prepared to answer to questions related to obstacles and advantages for stakeholders such as SMEs to use the ACEnano approaches/tools. Standardisation needs are discussed. T2 - nanoSafety Cluster Training (NSC) Day @ NanoSAFE 2020: ACEnano users’ workshop “You Ask – ACEnano Replies” CY - Online meeting DA - 23.11.2020 KW - ACEnano KW - Standardisation KW - Nanomaterials KW - Nano-characterisation PY - 2020 UR - https://www.nanosafetycluster.eu/ SP - 1 EP - 2 AN - OPUS4-51693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marcoulaki, E. A1 - M López de Ipiña, J. A1 - Vercauteren, S. A1 - Witters, H. A1 - Lynch, I. A1 - van Duuren-Stuurman, B. A1 - Shandilya, N. A1 - Kunz, Valentin A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Bard, D. A1 - Evans, G. A1 - Viitanen, A.-K. A1 - Pilou, M. A1 - Bochon, A. A1 - Duschl, A. A1 - Himly, M. A1 - Geppert, M. A1 - Persson, K. A1 - Cotgreave, I. A1 - Niga, P. A1 - Scalbi, S. A1 - Caillard, B. A1 - Arevalillo, A. A1 - Jensen, K. A. A1 - Frejafon, E. A1 - Bouillard, J. A1 - Aguerre-Chariol, O. A1 - Dulio, V. T1 - Blueprint for a sustainable new European Centre to support safe innovation for nanotechnology N2 - This paper presents the blueprint for the operation of a sustainable and permanent European Centre of collaborating reference laboratories and research centres, to establish a one-stop shop for a wide variety of nanosafety related services, and to provide a central contact point for questions about nanosafety in Europe. The Centre aims to harmonise service provision, and bring novel risk assessment and management approaches closer to practice. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - EC4SafeNano KW - European Centre KW - Nanomaterials KW - Nanosafety KW - Catalogue of Services (CoS) PY - 2020 UR - https://www.nanosafe.org/cea-tech/pns/nanosafe/en AN - OPUS4-51694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticles in suspension via Microprinting and SEM analysis N2 - A series of different nanoparticle suspensions (Gold, Latex, and SiO2 in varying concentrations) were microprinted onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 NP/mL and imaged with SEM and TSEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee ring effect. T2 - nanoSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - Nanoparticles KW - Microprinting KW - Image analysis PY - 2020 AN - OPUS4-51699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Kranjc, E. A1 - Bohmer, N. A1 - Drobne, D. A1 - Hodoroaba, Vasile-Dan T1 - Testing the quality of nanomaterial properties data for nano-risk assessment – towards guidance for all types of users N2 - Data quality is a vast term, which comprises the completeness, relevance (adequacy), and reliability of data. So far, many attempts to assure data quality have been pursued, and evaluation criteria for data quality have been established. One relatively novel but already well-known aspect of data quality refers to the concept of data FAIRness, which states that data should be: findable, accessible, interoperable and re-usable. In order to find, use, and access data, a user has to be guided properly. Such guidelines already exist for regulators and the scientific community. However, a ‘simple’ non-academic user from general society is very unlikely to be able to access or understand such data. Our objective in the H2020 project NANORIGO is to help and guide all types of users (i.e., scientists, regulators, industry workers, citizens, etc.) to access and make use of high-quality data and information from available and suitable data repositories in order to increase the transparency of and trust in nanotechnology. T2 - nanoSAFE 2020 CY - Online Meeting DA - 16.11.2020 KW - Nano-related data KW - Nanomaterial properties KW - Nano-risk assessment PY - 2020 AN - OPUS4-51701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Energy-dispersive X-ray spectroscopy (EDS) N2 - As one of the widely used analytical methods for the analysis of elemental composition of solid matter, energy dispersive X-ray spectroscopy (EDS) has recently gained significant importance regarding its application to the chemical analysis of nanoparticles, especially in conjunction with the use of a scanning electron microscope (SEM) and the use of the transmission operation mode of SEM (STEM-in-SEM). This development was mainly driven by the technological progress with highly sensitive EDS detectors, such that individual nanoparticles can be quickly inspected with EDS at a SEM. Qualitative information on elemental composition with about 10 nm spatial resolution can be achieved complementary to the high-resolution information of the sample surface morphology within the same scanned area as provided by the electron microscope. Representative examples with successful EDS analysis on nanoparticles are presented, but also limitations of the method are described. KW - EDS KW - EPMA KW - X-rays KW - SEM/EDS PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00021-3 SP - 397 EP - 417 PB - Elsevier CY - Amsterdam AN - OPUS4-49991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Das, S. A1 - Lal, G. A1 - Soni, S. R. A1 - Ghosh, A. A1 - Reddy, C. M. A1 - Ghosh, S. T1 - Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine N2 - Multidrug solids have a potential use to efficiently treat and control a superfluity of medical conditions. To address the current drawbacks of drug development in R&D, it was targeted to achieve new pharmaceutical solid forms of fenamic acids having improved solubility and thermal stability. Subsequently, five new multicomponent solids consisting of three salt hydrates of trimethoprim (TMP) with mefenamic acid (TMP-MFA-H2O), tolfenamic acid (TMP-TFA-H2O) and flufenamic acid (TMP-FFA-H2O), and two cocrystals of sulfamethazine (SFZ) with flufenamic acid (SFZ-FFA) and niflumic acid (SFZ-NFA) were prepared by liquid assisted grinding. Looking at the structures of active pharmaceutical ingredient (API) molecules, it was quite expected that a wide range of supramolecular synthons would lead to cocrystallization. New forms were characterized thoroughly by various solid-state techniques, including single crystal X-ray diffraction (SCXRD), which provided details of hydrogen bonding, molecular packing and interactions between drug and coformer. Kinetic solubility at pH 7.4 buffer study has been carried out and a comparison is made with respect to the parent drugs. A significant enhancement of NSAIDs solubility was observed in all salt hydrate systems of TMP. Thus with increasing physicochemical properties such as improved solubility further leads to the enhancement of bioavailability, which has implications to overcoming the formulation related problems of active pharmaceutical ingredients (APIs). KW - Cocrystals KW - Crystal engineering KW - Solubility PY - 2020 DO - https://doi.org/10.1016/j.molstruc.2019.127028 SN - 0022-2860 VL - 1199 SP - 127028 PB - Elsevier B.V. AN - OPUS4-49873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg A1 - Legall, Herbert A1 - Bonse, Jörn T1 - Gefährdung durch Röntgenstrahlung bei der UKP-Lasermaterialbearbeitung N2 - Der Vortrag beschreibt die Gefährdung durch die Erzeugung unerwünschter Röntgenstrahlung bei der Lasermaterialbearbeitung mit ultrakurzen Laserimpulsen. Die Einfluss der Laserparameter, der Prozessführung und die Materialabhängigkeit werden dargestellt. T2 - Bayerische Laserschutztage 2020 CY - Nuremberg, Germany DA - 21.01.2020 KW - Ultrakurze Laserimpulse KW - Materialbearbeitung KW - Röntgenstrahlung KW - Strahlenschutz PY - 2020 AN - OPUS4-50318 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Prinz, Carsten A1 - Stroh, Julia A1 - Feldmann, Ines A1 - Bruno, Giovanni T1 - The correlation between porosity characteristics and the crystallographic texture in extruded stabilized aluminium titanate for diesel particulate filter applications N2 - Porous ceramic diesel particulate filters (DPFs) are extruded products that possess macroscopic anisotropic mechanical and thermal properties. This anisotropy is caused by both morphological features (mostly the orientation of porosity) and crystallographic texture. We systematically studied those two aspects in two aluminum titanate ceramic materials of different porosity using mercury porosimetry, gas adsorption, electron microscopy, X-ray diffraction, and X-ray refraction radiography. We found that a lower porosity content implies a larger isotropy of both the crystal texture and the porosity orientation. We also found that, analogous to cordierite, crystallites do align with their axis of negative thermal expansion along the extrusion direction. However, unlike what found for cordierite, the aluminium titanate crystallite form is such that a more pronounced (0 0 2) texture along the extrusion direction implies porosity aligned perpendicular to it. KW - Preferred orientation KW - X-ray refraction KW - Pore orientation KW - Crystal structure KW - Extrusion KW - Microstructure-property relations PY - 2020 DO - https://doi.org/10.1016/j.jeurceramsoc.2019.11.076 SN - 0955-2219 VL - 40 IS - 4 SP - 1592 EP - 1601 PB - Elsevier Ltd. AN - OPUS4-50325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Aktuelle Ultrakurzpulslaser-Anwendungen an der BAM N2 - Der Vortrag fasst aktuelle Anwendungsgebiete ultrakurzer Laserimpulse in der Materialbearbeitung zusammen. Dabei wird auch die Gefährdung durch unerwünschte Emission von Röntgenstrahlung bei der Überschreitung bestimmter Laserparameter thematisiert. T2 - Anwendertreffen des Laserverbundes Berlin-Brandenburg e.V. CY - Brandenburg, Germany DA - 16.01.2020 KW - Ultrakurze Laserimpulse KW - Materialbearbeitung KW - Oberflächenstrukturierung PY - 2020 AN - OPUS4-50317 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Marcoulaki, E. A1 - van Duuren, B A1 - Kunz, Valentin A1 - Unger, Wolfgang A1 - Shandilya, N. T1 - Testing and benchmarking nanosafety services N2 - One of the objectives of the EU Project EC4SafeNano (European Centre for Risk Management and Safe Innovation in Nanomaterials & Nanotechnologies) was to test and benchmark the services in order to check their relevance to address identified stakeholder needs, but also to evaluate the governance of the structure delivering the proposed services. The aim is to demonstrate the technical relevance of the services and the overall open structure organisation, including governance rules and operating procedures, by answering relevant identified questions (case studies) selected by a panel of stakeholders. Therefore, a significant part of the project will be devoted to this demonstration of the operational and functional basis of the organized network. T2 - Review Meeting EC4SafeNano CY - Brussels, Belgium DA - 16.01.2020 KW - Nanosafety KW - EC4SafeNano KW - Nanosafety services KW - EU KW - Case studies PY - 2020 AN - OPUS4-50273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are often present when processing solid targets with linearly polarized ultrashort laser pulses. The different irradiation parameters to produce them on metals, semiconductors and dielectrics have been studied extensively, identifying suitable regimes to tailor its properties for applications in the fields of optics, medicine, fluidics and tribology, to name a few. One important parameter widely present when exposing the samples to the high intensities provided by these laser pulses in air environment, that generally is not considered, is the formation of a superficial laser-induced oxide layer. In this paper, we fabricate LIPSS on a layer of the oxidation prone hard-coating material chromium nitride in order to investigate the impact of the laser-induced oxide layer on its formation. A variety of complementary surface analytic techniques were employed, revealing morphological, chemical and structural characteristics of well-known high-spatial frequency LIPSS (HSFL) together with a new type of low-spatial frequency LIPSS (LSFL) with an anomalous orientation parallel to the laser polarization. Based on this input, we performed finite-difference time-domain calculations considering a layered system resembling the geometry of the HSFL along with the presence of a laser-induced oxide layer. The simulations support a scenario that the new type of LSFL is formed at the interface between the laser-induced oxide layer and the non-altered material underneath. These findings suggest that LSFL structures parallel to the polarization can be easily induced in materials that are prone to oxidation. KW - Laser-induced oxide layer KW - Laser-induced periodic surface structures (LIPSS) KW - Surface chemistry KW - Femtosecond laser processing KW - Nanostructuring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502530 DO - https://doi.org/10.3390/nano10010147 SN - 2079-4991 VL - 10(1) IS - Special issue "Laser-generated periodic nanostructures" SP - 147-1 EP - 147-18 PB - MDPI CY - Basel AN - OPUS4-50253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Effects of laser-induced periodic surface structures on the superconducting properties of Niobium N2 - It is well known that the use of ultrashort (fs) pulsed lasers can induce the generation of (quasi-) periodic nanostructures (LIPSS, ripples) on the surface of many materials. Such nanostructures have also been observed in sample’s surfaces irradiated with UV lasers with a pulse duration of 300 ps. In this work, we compare the characteristics of these nanostructures on 1-mm and on 25-μm thick niobium sheets induced by 30 fs n-IR and 300 ps UV pulsed lasers. In addition to conventional continuous or burst mode processing configurations, two-dimensional laser beam and line scanning modes have been investigated in this work. The latter allows the processing of large areas with a more uniform distribution of nanostructures at the surface. The influence of the generated nanostructures on the superconducting properties of niobium has also been explored. For this aim, magnetic hysteresis loops have been measured at different cryogenic temperatures to analyse how these laser treatments affect the flux pinning behaviour and, in consequence, the superconductor’s critical current values. It was observed that laser treatments are able to modify the superconducting properties of niobium samples. T2 - E-MRS Spring Meeting 2019 CY - Nice, France DA - 27.05.2019 KW - Superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Niobium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502541 DO - https://doi.org/10.1016/j.apsusc.2019.145140 SN - 0169-4332 SN - 1873-5584 VL - 508 IS - 1 SP - 145140-1 EP - 145140-7 PB - Elsevier CY - Amsterdam AN - OPUS4-50254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy and Corresponding Nanocomposites by Broadband Dielectric Spectroscopy and Hyphenated Calorimetry N2 - Polymer nanocomposites (PNCs) with inorganic nanofillers dispersed in a polymer matrix have been widely studied from the 1990s, since the pioneering work by Toyota Central Research. The possibility of producing advanced tailor-made, light weight and low-cost materials, inspired academic and commercial research towards numerous potential applications, facilitating PNCs to become a billion-dollar global industry. The introduction of nanoparticles (NPs) to a polymer matrix is expected to result in improved properties. The outstanding performance of PNCs is determined not only by the characteristics of the used components but also by their phase morphology, including the dispersion of NPs and interfacial properties. Understanding of structure-property relationships is particularly important for polymer nanocomposites with high industrial significance, such as epoxy-based materials reinforced with inorganic nanofillers. These PNCs have been successfully adopted by the marine, automotive and aerospace industries, although they are still rarely studied on a fundamental level. Therefore, this thesis aims for a detailed understanding of the structure, molecular mobility and vitrification kinetics first, of two epoxy-based materials with different network structures and second, of the corresponding nanocomposites with different alumina-based nanofillers. The first system considered (EP/T-LDH) was based on bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and taurine-modified layered double hydroxide (T-LDH) NPs. The taurine molecule bears additional functionalities that could enhance the interactions between the matrix and the nanofiller, improving the interphase formation. The seconds system (EP/BNP) was based on DGEBA and methyl tetrahydrophtalic acid anhydride (MTHPA) as a hardener, reinforced with boehmite nanoparticles (BNPs). The comparison of the two systems enables for a comparative study on the effect of different hardeners and the morphology and modification of the alumina-based nanofillers on the material behavior. The materials were investigated employing complementary techniques with different sensitivities and frequency windows. The following methodology was used: transmission electron microscopy (TEM), small – and wide – angle X-ray scattering (SAXS/WAXS), broadband dielectric spectroscopy (BDS), calorimetry in a form of conventional DSC and fast scanning calorimetry (FSC), as well as specific heat spectroscopy (SHS) in a form of temperature modulated DSC, temperature modulated FSC and static FSC by calculating the thermal relaxation rates from the cooperativity approach. The FSC method (based on adiabatic chip calorimetry to probe micrometer-sized samples) was successfully employed in this work, exploiting all its possibilities for the first time in literature for a PNC. Moreover, a systematic analysis technique was established to overcome the problem of vague glass transition regions observed for highly loaded PNCs in the heat flow and heat capacity curves. First, TEM, SAXS/WAXS and indirectly BDS and SHS were employed to obtain the information about the approximate morphology of the PNCs. It was found that epoxy-based materials exhibit a structural heterogeneity in a form of regions with different average crosslinking density. This was indicated by multiple-peak scattering pattern of the polymer matrix and two distinct α-processes (dynamic glass transition) related to the cooperative fluctuation of the epoxy network found by BDS and SHS. This was described for the first time for epoxy-based materials. The two α-relaxations were evidenced differently for the two systems, which is related to different network structures and dipole moments due to the employed hardeners. Nevertheless, structural heterogeneity is an intrinsic feature of these materials, independent of the type of hardener used for the network formation and nanofiller. In addition, matrix inhomogeneities were more pronounced with increasing nanoparticle content. Furthermore, a powerful new technique was applied for X-ray scattering data, using Monte Carlo fits, to describe the NPs dispersion throughout the whole sample volume (as opposed to the local investigations performed by most researches). Additional structural information of the two systems was extracted by BDS and SHS, such as qualitative and quantitative estimation of polymer segments physically adsorbed and/or chemically bonded onto the nanoparticles. Due to the immobilized character of this interphase with respect to the cooperative segmental motions, it is denoted as a rigid amorphous fraction (RAF). For instance, on the contrary to EP/BNP, for EP/T-LDH a dielectrically active process was found, related to the localized fluctuations within RAF. Moreover, the amount of RAF in EP/T-LDH was reaching up to 40 wt % of the system, whereas in EP/BNP it ranged between 1-7 wt %. In the latter case the presence of NPs was found to simultaneously increase and decrease the number of mobile segments, due to the interphase formation and changes in crosslinking density. The difference between the two systems was ascribed to the presence of additional amine functionalities in the T-LDH nanofiller. Second, employing BDS and SHS, a systematic study on the effect of NPs on the segmental dynamics was performed. For example, depending on the nanofiller, the α-processes related to regions with higher crosslinking density was found to shift to higher and lower temperatures with increasing T-LDH and BNPs concentration, respectively. The observed difference is due to the different synergism of the polymer matrix with the nanofiller. Third, a detailed investigation of the vitrification kinetics was performed with DSC and FSC. The concentration dependence of the glass transition temperature was found, similar to the behavior of the α-processes. It was shown that, in parallel to the detected main glass transition, epoxy-based materials can exhibit an additional low temperature vitrification mechanism. As expected from the two distinct α-processes, this behavior was however not discussed in prior studies for an unfilled network former. This finding was correlated to the structural heterogeneity evidenced by other techniques. This thesis, dealing with an in-depth research on the epoxy-based materials that are already successfully employed in numerous applications underlines the necessity of more fundamental research in this field. It shines light on the complexity of these systems and contributes to defining how the structure-property relationships can be determined by combining multiple experimental techniques and analytical methodology. T2 - PhD defense CY - Online meeting DA - 18.12.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - BDS PY - 2020 AN - OPUS4-52035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - High molecular weight poly(l-lactide) via ring-opening polymerization with bismuth subsalicylate-The role of cocatalysts N2 - The catalytic potential of bismuth subsalicylate (BiSub), a commercial drug, for ring-opening polymerization (ROP) of L-lactide was explored by variation of co-catalyst and polymerization time. Various monofunctional phenols or carboxylic acids, aromatic ortho-hydroxy acids and diphenols were examined as potential co-catalysts. 2,2´-Dihydroxybiphenyl proved to be the most successful co-catalyst yielding weight average molecular weights (uncorrected Mw values up to 185 000) after optimization of reaction time and temperature. Prolonged heating (>1-2h) depending on catalyst concentration) caused thermal degradation. In polymerization experiments with various commercial Bi(III) salts a better alternative to BiSub was not found. By means of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry a couple of unusual and unexpected transesterification reactions were discovered. Finally, the effectiveness of several antioxidants and potential catalyst poisons was explored, and triphenylphosphine was found to be an effective catalyst poison. KW - Polylactide KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Bismuth PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519513 DO - https://doi.org/10.1002/app.50394 SN - 0021-8995 VL - 138 IS - 19 SP - 50394 PB - Wiley AN - OPUS4-51951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - Wurzler, Nina A1 - von der Au, Marcus A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Examination of biological samples by means of single-cell ICP-ToF-MS N2 - Up to now, different analytical methods for single cell analysis exist focusing on key features such as size, shape, morphology and elemental composition. The combination of the latest ICP-MS techniques - ICP-ToF-MS - together with the latest developments in the field of sample delivery - micro droplet generator (MDG) – will allow a Deep insight into the composition and size of cells. Microbiologically influenced corrosion (MIC) is an oxidation of metals affected by the presence or activity (or both) of microorganisms e.g. Shewanella Putrefaciens in biofilms on the surface of the corroding material. As this can happen for example in the soil on iron pipes of water pipes, in oil tanks or on steel sheet piling, there is great interest in MIC research, not only from various industrial sectors, but also from the environmental aspect. T2 - SALSA - Make & Measure CY - Online Meeting DA - 15.10.2020 KW - SC-ICP-ToF-MS KW - Single cell analysis KW - MDG ICP-ToF-MS KW - Microdroplet generator PY - 2020 AN - OPUS4-52441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Xu, W. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Structure and properties of fluorinated and non-fluorinated Ba-coordination polymers - the position of fluorine makes the difference N2 - As the most electronegative element, fluorine has a strong influence on material properties such as absorption behaviour or chemical and thermal stability. Fluorine can be easily integrated into coordination polymers (CPs) via a fluorinated acetate, here trifluoroacetate in Ba(CF3COO)2, or directly via a metal fluorine bond (BaF(CH3COO)). In the present study both possibilities of fluorine integration were tested and their effect on structure and properties of barium coordination polymers was investigated in comparison with the non-fluorinated barium acetate (Ba(CH3COO)2). In addition to the study of their thermal behaviour and their decomposition temperature, the CPs structures were tested for their application as possible anode materials in lithium ion batteries and for their sorption of water and ammonia. The properties of the CPs can be traced back to the individual structural motifs and could thus trigger new design ideas for CPs in LIBs and/or catalysis. KW - Alkaline earth metal coordination polymers KW - Lithium-ion battery KW - Water stability KW - Fluorine coordination PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524041 DO - https://doi.org/10.1002/zaac.202000360 SN - 0044-2313 VL - 647 IS - 9 SP - 1014 EP - 1024 PB - Wiley-VCH GmbH AN - OPUS4-52404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdel-Wakil, W. A1 - Fahmy, Alaa A1 - Kamoun, E. A1 - Hassan, W. A1 - Abdelhai, Q. A1 - Salama, T. T1 - A New Route for Synthesis of Polyurethanevinyl Acetate Acrylate Emulsions as Binders for Pigment Printing of Cotton Fabrics N2 - Herein, two polyurethane oligomers were successfully synthesized using a prepolymer mixing process. The prepolymers were synthesized based on the step-growth addition polymerization of polypropylene glycol, Methylene diphenyl diisocyanate and 2-hydroxyethyl methacrylate or 2-hydroxyethyl acrylate. Isopropanol was functioned as the isocyanate blocking agent. Thereafter, different terpolymer emulsions were prepared by the emulsion graft copolymerization with the vinyl acetate monomer in presence of 2-ethylhexyl acrylate as a vinyl monomer. The chemical structures of the synthesized oligomeric monomers were probed by FTIR spectroscopy and found to vary with the content of acrylic monomer used in the oligomer synthesis phase (i.e.hydroxyethyl acrylate or hydroxyethyl methacrylate). The topography, thermal stability, and particle size of terpolymers were investigated by SEM, TGA, and zeta potential, respectively. The TGA results demonstrated marked enhancement in thermal stability of the synthesized terpolymers up to ca. 600°C, which was concurrent with enhanced surface homogeneity and film properties as evidenced by the SEM images. These terpolymers showed also property enhancement as binders for textile pigment printing in terms of rubbing resistance, color strength and fastness to washing when compared to the commercial binders. These judgments would provide a new competent synthesis route by introducing polyurethane acetate vinyl acrylate as the binder for use in pigment printing of cotton fabrics. KW - Vinyl monomer KW - Polyurethane acetate vinyl acrylate KW - Surface coating KW - Terpolymer KW - Textile binder PY - 2020 DO - https://doi.org/10.21608/ejchem.2020.21712.2292 VL - 63 IS - 3 SP - 1063 EP - 1073 AN - OPUS4-52300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zosef, M. A1 - Fahmy, Alaa A1 - El Hotaby, W. A1 - Hassan, A. A1 - Khalil, A. A1 - Anis, B. T1 - High performance graphene-based PVF foam for lead removal from water N2 - The synthesis and optimization of superior and eco-friendly sorbents for Pb(II) pose a great challenge in the field of water treatment. The sorbent was developed by introducing graphene oxide (GO) into the matrix of polyvinyl formaldehyde (PVF) foam. The immobilization of GO in PVF results in significant increase in the maximum adsorption capacity (Qt) of GO powder for Pb(II), from ≈800 to ≈1730 mg g−1 in the case of GO/PVF foam. As compared with GO powder in Pb(II) aqueous solutions, PVF matrix keeps GO sheets stable without any agglomeration. The large surface area of GO sheet allows the abundant oxygenated functional groups on its surface to participate effectively in the Pb(II) adsorption process, leading to the huge increase of the Qt. Adsorption isotherms and kinetic studies indicated that the sorption process of Pb(II) on GO/PVF was done on heterogenous surface by ion-exchange reaction. The GO/PVF foam showed an excellent reusability for more than 10 cycles with almost the same efficiency and without any significant change in its physical properties. KW - Water treatment KW - Graphene oxide KW - Lead ions KW - Polyvinyl formaldehyde foam KW - Superior sorbent PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523013 DO - https://doi.org/10.1016/j.jmrt.2020.08.011 VL - 9 IS - 5 SP - 11861 EP - 11875 PB - Elsevier B.V. AN - OPUS4-52301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - El Sabbagh, M. A1 - Bedair, M. A1 - Gangan, A. A1 - El-Sabbah, M. A1 - El-Bahy, S. A1 - Friedrich, J. T1 - One-step plasma deposited thin SiOxCy films for corrosion resistance of low carbon steel N2 - Tetraethyl orthosilicate (TEOS) was used as a chemical precursor to deposit ultra-thin SiO x C y plasma polymer films onto mild steel surfaces for preventing the corrosion process. The structure–property relationships of the coatings were evaluated by X-ray Photo Spectroscopy (XPS), X-Ray Diffraction (XRD), Fourier Transform InfraRed spectroscopy (ATR-FTIR) and Energy Dispersive X-ray spectroscopy (EDX) completed with Scanning Electron Microscopy (SEM). The SEM micrographs confirmed a pinhole-free surface morphology of the low-pressure deposited plasma polymer films. The TEOS molecules become fragmented in the plasma by numerous collisions with energy-rich electrons and heavier particles. Recombination of fragments and condensation onto the steel substrate is responsible for the formation of organic SiO containing plasma polymer layers. Such thin layers consist of predominantly SiO x structures. Their properties are determined largely by the gap distance between the two samples used as electrodes in the plasma. The efficiency of the corrosion-protecting coating was compared with uncoated samples. The corrosion protection was determined by exposure of samples to 3.5% NaCl aqueous solutions. For this purpose, polarization and Electrochemical Impedance Spectroscopy (EIS) were used to monitor the corrosion. The optimal gap distance between the electrodes was determined for corrosion protection. The best protective efficiency reached more than 97% of the total protection as measured at room temperature. KW - Thin films KW - Corrosion resistance KW - Mild steel KW - Plasma treatments KW - Tetraethyl orthosilicate PY - 2020 DO - https://doi.org/10.1080/01694243.2020.1856539 VL - 35 IS - 16 SP - 1734 EP - 1751 PB - Taylor & Francis AN - OPUS4-52303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kling, I. C. S. A1 - Pauw, Brian Richard A1 - Agudo Jácome, Leonardo A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Starch KW - Starch nanoparticle KW - Silver nanoparticle PY - 2020 AN - OPUS4-51828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Krause, B.-C. A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Laux, P. A1 - Braeuning, A. A1 - Fessard, V. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Cellular Effects of In Vitro-Digested Aluminum Nanomaterials on Human Intestinal Cells N2 - Aluminum (Al) can be taken up from food, packaging, or the environment and thus reaches the human gastrointestinal tract. Its toxic potential after oral uptake is still discussed. The fate of different solid and ionic Al species during the passage through the digestive tract is the focus of this research, as well as the cellular effects caused by these different Al species. The present study combines the physicochemical processing of three recently studied Al species (metallic Al0, mineral Al2O3, and soluble AlCl3) in artificial digestion fluids with in vitro cell systems for the human intestinal barrier. Inductively coupled plasma mass spectrometry (ICP-MS) and small-angle X-ray scattering (SAXS) methods were used to characterize the Al species in the artificial digestion fluids and in cell culture medium for proliferating and differentiated intestinal Caco-2 cells. Cytotoxicity testing and cellular impedance measurements were applied to address the effects of digested Al species on cell viability and cell proliferation. Microarray-based transcriptome analyses and quantitative real-time PCR were conducted to obtain a deeper insight into cellular mechanisms of action and generated indications for cellular oxidative stress and an influence on xenobiotic metabolism, connected with alterations in associated signaling pathways. These cellular responses, which were predominantly caused by formerly ionic Al species and only at very high concentrations, were not impacted by artificial digestion. A two-directional conversion of Al between ionic species and solid particles occurred throughout all segments of the gastrointestinal tract, as evidenced by the presence of nanoscaled particles. Nevertheless, this presence did not increase the toxicity of the respective Al species. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02354 VL - 3 IS - 3 SP - 2246 EP - 2256 PB - American Chemical Society AN - OPUS4-50632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Saloga, Patrick E. J. A1 - Stock, V. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - Environmental impact of ZnO nanoparticles evaluated by in vitro simulated digestion N2 - ZnO nanoparticles are found in different food and consumer products, and their toxicological effects are still under investigation. It is therefore important to understand their behavior in the gastrointestinal tract. Here, we used an in vitro model to assess the physicochemical fate of ZnO nanoparticles during the digestive process in artificial saliva, stomach juice, and intestinal juice. Atomic absorption spectrometry and small-angle X-ray scattering were employed to investigate two ZnO nanomaterials, one intensively characterized reference material and soluble ZnCl2 in a broad range of concentrations between 25 and 1000 μg/mL in the intestinal fluid. Because food components may influence the behavior of nanomaterials in the gastrointestinal tract, starch, milk powder, and olive oil were used to mimic carbohydrates, protein, and fat, respectively. Additionally, ion release of all Zn species was assessed in cell culture media and compared to artificial intestinal juice to investigate relevance of typical cell culture conditions in ZnO nanotoxicology. ZnCl2 as well as the ZnO species were present as particles in artificial saliva but were solubilized completely in the acidic stomach juice. Interestingly, in the intestinal fluid a concentration-independent de novo formation of particles in the nanoscale range was shown. This was the case for all particles as well as for ZnCl2, regardless of the concentration used. Neither of the food components affected the behavior of any Zn species. On the contrary, all Zn species showed a Zn-concentration-dependent ion release in common cell culture medium. This questions the suitability of cell culture studies to investigate the effect of ZnO nanoparticles on intestinal cells. Our results show that Zn-containing nanoparticles reach the intestine. This underlines the importance of determining the influence of the test environment on nanoparticle fate. KW - SAXS KW - Digestion KW - Zinc oxide KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02236 VL - 3 IS - 1 SP - 724 EP - 733 AN - OPUS4-50288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, V. A1 - Fahrenson, C. A1 - Thünemann, Andreas A1 - Donmez, M. H. A1 - Voss, L. A1 - Bohmert, L. A1 - Braeuning, A. A1 - Lampen, A. A1 - Sieg, H. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - Current analyses show a widespread occurrence of microplastic particles in food products and raise the question of potential risks to human health. Plastic particles are widely considered to be inert due to their low chemical reactivity and therefore supposed to pose, if at all only minor hazards. However, variable physicochemical conditions during the passage of the gastrointestinal tract gain strong importance, as they may affect particle characteristics. This study aims to analyze the impact of the gastrointestinal passage on the physicochemical particle characteristics of the five most produced and thus environmentally relevant plastic materials polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate and polystyrene. Scanning electron microscopy (SEM) and subsequent image analysis were employed to characterize microplastic particles. Our results demonstrate a high resistance of all plastic particles to the artificial digestive juices. The present results underline that the main stages of the human gastrointestinal tract do not decompose the particles. This allows a direct correlation between the physicochemical particle characteristics before and after digestion. Special attention must be paid to the adsorption of organic compounds like proteins, mucins and lipids on plastic particles since it could lead to misinterpretations of particle sizes and shapes. KW - Artificial digestion KW - Gastrointestinal barrier KW - Microplastic KW - Oral uptake KW - Particle size PY - 2020 DO - https://doi.org/10.1016/j.fct.2019.111010 VL - 135 SP - 111010 PB - Elsevier Ltd. AN - OPUS4-49999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thünemann, Andreas A1 - Gruber, Alexandra A1 - Klinger, Daniel T1 - Amphiphilic Nanogels: Fuzzy Spheres with a Pseudo-Periodic Internal Structure N2 - Amphiphilic polymer nanogels (NGs) are promising drug delivery vehicles that extend the application of conventional hydrophilic NGs to hydrophobic cargoes. By randomly introducing hydrophobic groups into a hydrophilic polymer network, loading and release profiles as well as surface characteristics of these colloids can be tuned. However, very little is known about the underlying internal structure of such complex colloidal architectures. Of special interest is the question how the amphiphilic network composition influences the internal morphology and the “fuzzy” surface structure. To shine light into the influence of varying network amphiphilicity on these structural features, we investigated a small library of water-swollen amphiphilic NGs using small-angle X-ray scattering (SAXS). It was found that overall hydrophilic NGs, consisting of pure poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA), display a disordered internal structure as indicated by the absence of a SAXS peak. In contrast, a SAXS peak is present for amphiphilic NGs with various amounts of incorporated hydrophobic groups such as cholesteryl (CHOLA) or dodecyl (DODA). The internal composition of the NGs is considered structurally homologous to microgels. Application of the Teubner–Strey model reveals that hydrophilic PHPMA NGs have a disordered internal structure (positive amphiphilicity factor) while CHOLA and DODA samples have an ordered internal structure (negative amphiphilicity factor). From the SAXS data it can be derived that the internal structure of the amphiphilic NGs consists of regularly alternating hydrophilic and hydrophobic domains with repeat distances of 3.45–5.83 nm. KW - Polymer KW - Nanoparticle KW - SAXS PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.0c01812 VL - 36 IS - 37 SP - 10979 EP - 10988 PB - American Chemical Society AN - OPUS4-51302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hsiao, I-L. A1 - Ebisch, Maximilian A1 - Vidmar, J. A1 - Dreiack, N. A1 - Böhmert, L. A1 - Stock, V. A1 - Braeuning, A. A1 - Loeschner, K. A1 - Laux, P. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - The presence of iron oxide nanoparticles in the food pigment E172 N2 - Iron oxides used as food colorants are listed in the European Union with the number E172. However, there are no specifications concerning the fraction of nanoparticles in these pigments. Here, seven E172 products were thoroughly characterized. Samples of all colors were analyzed with a Broad spectrum of methods to assess their physico-chemical properties. Small-Angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), zeta-potential, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), X-ray diffraction (XRD), Brunauer-Emmett-Teller analysis (BET), Asymmetric Flow Field-Flow Fractionation (AF4) and in vitro cell viability measurements were used. Nanoparticles were detected in all E172 samples by TEM or SAXS measurements. Quantitative results from both methods were comparable. Five pigments were evaluated by TEM, of which four had a size median below 100 nm, while SAXS showed a size median below 100 nm for six evaluated pigments. Therefore, consumers May be exposed to iron oxide nanoparticles through the consumption of food pigments. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1016/j.foodchem.2020.127000 VL - 327 SP - 127000 PB - Elsevier Ltd. AN - OPUS4-50810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chowdhary, S. A1 - Moschner, J. A1 - Mikolajczak, D. J. A1 - Becker, M. A1 - Thünemann, Andreas A1 - Kästner, Claudia A1 - Klemczak, D. A1 - Stegemann, A.-K. A1 - Böttcher, C. A1 - Metrangolo, P. A1 - Netz, R. R. A1 - Koksch, B. T1 - The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation N2 - The hexapeptide hIAPP22–27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild‐type hIAPP′s toxicity to β‐cell death. In amyloid research, the role of hydrophobic and aromatic‐aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic‐aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS) to study the impact of side‐chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self‐assembly process. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nanostructure KW - Peptide KW - Amyloid PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518632 DO - https://doi.org/10.1002/cbic.202000373 VL - 21 IS - 24 SP - 3544 EP - 3554 PB - Wiley CY - Weinheim AN - OPUS4-51863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebig, F. A1 - Sarhan, R. M. A1 - Schmitt, C. N. Z. A1 - Thünemann, Andreas A1 - Prietzel, C. A1 - Bargheer, M. A1 - Koetz, J. T1 - Gold Nanotriangles with Crumble Topping and their Influence on Catalysis and Surface‐Enhanced Raman Spectroscopy N2 - By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)‐stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5±1 nm and an edge length of about 175±17 nm, the AOT bilayer is replaced by a polymeric HA‐layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA‐shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon‐driven dimerization of 4‐nitrothiophenol (4‐NTP) to 4,4′‐dimercaptoazobenzene in a yield of up to 50 %. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle KW - Gold PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503977 DO - https://doi.org/10.1002/cplu.201900745 VL - 85 IS - 3 SP - 519 EP - 526 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-50397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Smales, Glen Jacob A1 - Clark, Adam H. A1 - Thünemann, Andreas T1 - Zinc Phosphate Nanoparticles Produced in Saliva N2 - This paper reports the formation of zinc phosphate nanoparticles from the artificial digestion of zinc chloride. Initially, the formation of amorphous primary particles with a mean radius of 1.1 nm is observed, alongside the formation of larger, protein stabilized aggregates. These aggregates, with a radius of gyration of 37 nm, are observed after 5 minutes of exposure to artificial saliva and are shown to be colloidally stable for a minimum time of two weeks. The initially formed primary particles are thought to consist of amorphous zinc phosphate, which is then transformed into crystalline Zn3(PO4)2·4H2O over the course of two weeks. Our results demonstrate that the interaction of inorganic salts with bodily fluids can induce the formation of de novo nanoparticles, which in turn, provides insights into how zinc‐enriched foods may also facilitate the formation of nanoparticles upon contact with saliva. As such, this may be considered as an undesirable (bio)mineralization. KW - SAXS KW - Digestion KW - Zinc phosphate PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514239 DO - https://doi.org/10.1002/ejic.202000521 IS - 38 SP - 3654 EP - 3661 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-51423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Famy, A. A1 - Agudo Jácome, Leonardo A1 - Schönhals, Andreas T1 - Effect of Silver Nanoparticles on the Dielectric Properties and the Homogeneity of Plasma Poly(acrylic acid) Thin Films N2 - For the first time, structure−electrochemical relationships of thin films of a plasma-polymerized acrylic acid/carbon dioxide AA/CO2 (75/25%) copolymer modified by implanted silver nanoparticles are discussed. The pulsed plasma polymerization of AA/CO2 was utilized and adjusted to obtain a maximal amount of COOH Groups forming an almost uncross-linked polymer structure. The prepared polymer layer is rinsed by a silver nitrate solution to impregnate Ag+ ions. This step is followed by its reduction of Ag+ with NaBH4 as a chemical route in comparison to the reduction by sunlight as an ecofriendly photoreduction method. The chemical composition and morphology of the topmost surface layer of the AA/CO2 polymer thin film were investigated by X-ray photoelectron spectroscopy and atomic force microscopy. Moreover, the molecular mobility, conductivity, and thermal stability of the polymer layer were analyzed using broadband dielectric spectroscopy. The dielectric properties of the AA/ CO2 polymer thin film were studied in the presence of Ag+ ions or Ag0. It was found that a cross-linked polymer layer with a smooth surface and high conductivity was obtained in the presence of Ag+/ Ag0. KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c06712 SN - 1932-7447 VL - 124 IS - 41 SP - 22817 EP - 22826 PB - ACS AN - OPUS4-51468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cornelsen Sampaio Kling, I. A1 - Pauw, Brian Richard A1 - Jacome, Leonardo A. A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Silver nanoparticle KW - Starch KW - Starch nanoparticle PY - 2020 SP - 1 EP - 2 AN - OPUS4-51940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Kropf, H. A1 - Duarte, J. A1 - Cakir, Cafer Tufan A1 - Dubois, F. A1 - Többens, D. A1 - Glatzel, U. T1 - Temperature evolution of lattice misfit in Hf and Mo variations of the Al 10 Co 25 Cr 8 Fe 15 Ni 36 Ti 6 compositionally complex alloy N2 - Misfits of γ- γ’ based Al10Co25Cr8Fe15Ni36Ti6 and its Mo- and Hf-variations are studied up to a temperature of 980 °C and compared with Ni- and Co-based superalloys. The trace elements decrease (Hf) or increase (Mo) the edge radii of the γ’ cuboids without changing their sizes. Atom probe measurements revealed that the Hf alloy prefers the γ’ phase while Mo prefers the γ matrix, leading to a lattice parameters enhancement of both phases, as could be revealed by synchrotron X-ray diffraction. The misfit is influenced in opposite ways: Hf increases the positive misfit, while Mo reduces it at all investigated temperatures. KW - Metal and alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Atom probe tomography KW - High entropy alloy PY - 2020 DO - https://doi.org/10.1016/j.scriptamat.2020.07.013 VL - 188 SP - 74 EP - 79 PB - Elsevier Ltd. AN - OPUS4-51025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Hänninen, H. A1 - Böllinghaus, Thomas T1 - In-situ ToF-SIMS analyses of deuterium re-distribution in austenitic steel AISI 304L under mechanical load N2 - Hydrocarbons fuel our economy. Furthermore, intermediate goods and consumer products are often hydrocarbon-based. Beside all the progress they made possible, hydrogen-containing substances can have severe detrimental effects on materials exposed to them. Hydrogen-assisted failure of iron alloys has been recognised more than a century ago. The present study aims to providing further insight into the degradation of the austenitic stainless steel AISI 304L (EN 1.4307) exposed to hydrogen. To this end, samples were electrochemically charged with the hydrogen isotope deuterium (2H, D) and analysed by scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that deuterium caused a phase transformation from the original γ austenite into ε- and α’-martensite. Despite their low solubility for hydrogen, viz. deuterium, the newly formed phases showed high deuterium concentration which was attributed to the increased density of traps. Information about the behaviour of deuterium in the material subjected to external mechanical load was gathered. A four-point-bending device was developed for this purpose. This allowed to analyse in-situ pre-charged samples in the ToF-SIMS during the application of external mechanical load. The results indicate a movement of deuterium towards the regions of highest stress. KW - ToF-SIMS KW - Hydrogen KW - Deuterium KW - AISI 304L KW - EBSD PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505142 DO - https://doi.org/10.1038/s41598-020-60370-2 VL - 10 IS - 1 SP - 3611 PB - Nature AN - OPUS4-50514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Braun, Ulrike A1 - Eisentraut, Paul A1 - Altmann, Korinna A1 - Kittner, Maria A1 - Dümichen, Erik A1 - Thaxton, K. A1 - Kleine-Benne, E. A1 - Anumol, T. T1 - Accelerated Determination of Microplastics in Environmental Samples Using Thermal Extraction Desorption-Gas Chromatography/Mass Spectrometry (TED-GC/MS) N2 - There is growing interest in quantifying microplastics in environmental samples. This application note presents a thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) method that is well suited to automation and increased sample throughput. The method is also able to detect all particle sizes in the sample as long as the limit of detection (LOD) is reached and allows analysis of larger samples of 15 to 25 mg or more. Samples were decomposed by thermogravimetric analysis (TGA), and the gaseous decomposition products were trapped on a solid-phase sorbent, followed by thermal desorption‑gas chromatography/mass spectrometry (TD-GC/MS) using an Agilent 5977B GC/MSD coupled to an Agilent 7890B GC. Target microplastic particle (MP) polymers were identified in environmental samples including surface water, finished compost, house dust, and drinking water. Quantification of MP polymers in environmental samples provided LODs of 0.06 to 2.2 μg, allowing the detection of MPs in trace amounts with sample weights of up to 1 g. Method repeatability was adequate for reliable quantification with RSDs of approximately 6 to 12%. KW - Environment KW - Microplastic particles KW - TED-GC/MS KW - Mass content KW - Thermoanalytical PY - 2020 VL - 2020 SP - 1 EP - 8 PB - Agilent Technologies Inc. CY - USA AN - OPUS4-51672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Braun, Ulrike A1 - Bannick, C.-G. A1 - Bednarz, M. A1 - Herper, D. A1 - Knefel, M. T1 - TED-GC/MS: Schnelle Bestimmung von Mikroplastik-Massegehalten in verschiedenen Proben N2 - Zur Ermittlung von Mikroplastik-Gehalten in verschiedenen Umweltmatrices ist ein schnelles Detektionsverfahren für die Routineanalytik notwendig. Ein solches Verfahren wird hier in Form der ThermoExtraktion/Desorption-GasChromatographie/ MassenSpektroskopie (TED-GC/MS) vorgestellt. Neben grundlegenden verfahrensspezifischen Erläuterungen zur Identifizierung und Quantifizierung von Mikroplastik werden auch exemplarische Beispiele aus unterschiedlichen Umweltkompartimenten und Produkten dargestellt. Neu vorgestellt wird ein neues Verfahren zur Analytik von Flaschenwasser. Dazu wurde ein Messfiltertiegel entwickelt, der besonders für Proben mit geringen Gehalten an abfiltrierbaren Stoffen geeignet ist KW - Mikroplasik KW - Mikroplastik-Analyse KW - TED-GC/MS KW - Thermoanalytische Verfahren KW - Mikroplastik-Massengehalte PY - 2020 VL - 2020 IS - 02 SP - 55 EP - 57 PB - Gesellschaft Deutscher Chemiker (GDCh) CY - Frankfurt am Main AN - OPUS4-50835 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Scheid, C. A1 - Steinmetz, H. A1 - Bannick, C.-G. A1 - Abusafia, A. A1 - Dittmer, U. A1 - Braun, Ulrike T1 - Microplastic occurrence in urban sewage systems: Identification of sources for pathways into the environment N2 - All over the world, microplastic (MP) particles (particle size: 1 - 1.000 µm) are found in water, soil, air, biota and even food products. But plenty of these discussed findings are based on a very low number of real datasets, which are extrapolated to general projections. Furthermore, most data are not comparable because the strategies for sampling, sample preparation and detection methods are not harmonised/ or standardised. This would require extensive proficiancy tests. Because of the ubiquity presence and the unclear risks, which might arise from those particles, various political and environmental organisations (i.e. OECD, UNEP, WHO) identify the reduction of plastic entry in the environment as a key challenge for now and the future. This challenge includes the identification of relevant entry pathways but also the demand of harmonised, meaningful and reliable analytical procedures. Regarding this task within the last few years, a fast practical solution for MP analysis has been developed, which includes the steps of representative sampling, adequate sample preparation and fast detection. Sampling is done by fractional filtration over sieves with mesh sizes of 500, 100, 50 and 5 µm [1]. The received samples are measured by ThermoExtraction/Desorption-Gas Chromatography-Mass Spectrometry (TED-GC-MS) [1,2]. for the most abundant polymers used in practice, which are polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), polyamide (PA) and acrylate as well as styrene-butadiene-rubber (SBR), a main component of tires. The present presentation will give first-time insight in a comprehensive dataset of microplastic analysis for an exemplary urban sewage system. MP mass contents of different waters at several days, such as greywater, stormwater retention tank, influent and effluent of a wastewater treatment plant (WWTP) within an urban sewage system in Germany are determined. Furthermore, the mass of the polymers found in dry weather and rain weather flow are compared. The use of these large datasets allows first expressive conclusions regarding the contribution of urban sewage system to the MP entry sources in the environments. We found PP and PS in all different waters. Furthermore, there is SBR in influent and also in effluent of the WWTP. Surprisingly, we could also detect hugh amounts of PE in the effluent of the WWTP. T2 - SETAC Europe 2020 CY - Online meeting DA - 03.05.2020 KW - Microplastic analysis KW - TED-GC/MS KW - Microplastic particles KW - Microplastic mass contents PY - 2020 AN - OPUS4-50795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Altmann, Korinna A1 - Herper, D. A1 - Knefel, M. A1 - Bednarz, M. A1 - Bannick, C. G. T1 - Detektion von Mikroplastik in Flaschenwasser mittels thermoanalytischer Verfahren N2 - Im Vortrag wird ein Messfiltertiegel als Zusatztool für die TED-GC/MS vorgestellt, welcher für die Probenaufbereitung von kleinen Partikelfrachten oder kleinen Partikelgrößen genutzt werden kann. Er ist Filtereinheit und Messtiegel in einem, wodurch Verluste bei der Überführung der Probe in das Messgefäß sowie Kontaminationen vermindert werden. Das beispiel ist hier die Filtration von Flaschenwasser mit anschließender Detektion mit der TED-GC/MS. T2 - BVL_Kick-off Meeting "Mikroplastik in Lebensmitteln" CY - Online meeting DA - 03.12.2020 KW - Mikroplastik KW - TED-GC/MS KW - Kleine Partikel KW - Geringe Partikelfrachten KW - Mikroplastik-Massengehalte PY - 2020 AN - OPUS4-51794 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Altmann, Korinna A1 - Sommerfeld, Thomas A1 - Braun, Ulrike T1 - Quantification of microplastics in a freshwater suspended organic matter using different thermoanalytical methods – outcome of an interlaboratory comparison N2 - A sedimented freshwater suspended organic matter fortified with particles of polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) was employed in an interlaboratory comparison of thermoanalytical methods for microplastics identification and quantification. Three laboratories performed pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), three others provided results using thermal extraction desorption followed by gas chromatography coupled to mass spectrometry (TED-GC-MS). One participant performed thermogravimetry-infrared spectroscopy (TGA-FTIR) and two participants used thermogravimetry coupled to mass spectrometry (TGA-MS). Further participants used differential scanning microscopy (DSC), a procedure based on micro combustion calorimetry (MCC) and a procedure based on elemental analysis. Each participant employed a different combination of sample treatment, calibration and instrumental Settings for polymer identification and quantification. Though there is obviously room for improvements regarding the between-laboratory reproducibility and the harmonization of procedures it was seen that the participants Performing Py-GC-MS, TED-GC-MS, and TGA-FTIR were able to correctly identify all polymers and to report reasonable quantification results in the investigated concentration range (PE: 20.0 μg/mg, PP: 5.70 μg/mg; PS: 2.20 μg/mg, PET: 18.0 μg/mg). Although for the other methods limitations exists regarding the detection of specific polymers, they showed potential as alternative approaches for polymer quantification in solid environmental matrices. KW - Interlaboratory comparison KW - Microplastics KW - Suspended organic matter KW - Pyrolysis PY - 2020 DO - https://doi.org/10.1016/j.jaap.2020.104829 VL - 148 SP - 1 EP - 6 PB - Elsevier B.V. AN - OPUS4-50977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, Caroline A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Wiesner, Yosri A1 - Schartel, Bernhard A1 - Klack, Patrick A1 - Braun, Ulrike T1 - Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples N2 - Microplastic particles are currently detected in almost all environmental compartments. The results of detection vary widely, as a multitude of very different methods are used with very different requirements for analytical validity. In this work four thermoanalytical methods are compared and their advantages and limitations are discussed. One of them is thermal extraction-desorption gas chromatography mass spectrometry (TED-GC/MS), an analysis method for microplastic detection that has become established in recent years. In addition, thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS) were applied, two methods that are less common in this field but are still used in other research areas. Finally, microscale combustion calorimeter (MCC) was applied, a method not yet used for microplastic detection. The presented results are taken from a recently published interlaboratory comparison test by Becker et al. (2020). Here a reference material consisting of suspended matter and specified added polymer masses was examined, and only the results of the recoveries were presented. In the present paper, however, the results for the individual polymers are discussed in detail and individual perspectives for all instruments are shown. It was found that TED-GC/MS is the most suitable method for samples with unknown matrix and unknown, variable kinds and contents of microplastic. TGA-FTIR is a robust method for samples with known matrix and with defined kinds of microplastic. TGA-MS may offer a solution for the detection of PVC particles in the future. MCC can be used as a very fast and simple screening method for the identification of a potential microplastic load of standard polymers in unknown samples. KW - Microplastic KW - TED-GC/MS KW - TGA-MS KW - TGA-FTIR KW - MCC KW - Thermal analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516687 DO - https://doi.org/10.1016/j.jaap.2020.104961 VL - 152 SP - 104961 PB - Elsevier B.V. AN - OPUS4-51668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B. P. A1 - Cant, D.J.H. A1 - Spencer, J. A1 - Carmona-Carmona, A. J. A1 - Bushell, A. A1 - Herrara-Gómez, A. A1 - Kurokawa, A. A1 - Thissen, A. A1 - Thomas, A.G. A1 - Britton, A.J. A1 - Bernasik, A. A1 - Fuchs, A. A1 - Baddorf, A. P. A1 - Bock, B. A1 - Thellacker, B. A1 - Cheng, B. A1 - Castner, D.G. A1 - Morgan, D.J. A1 - Valley, D. A1 - Willneff, E.A. A1 - Smith, E.F. A1 - Nolot, E. A1 - Xie, F. A1 - Zorn, G. A1 - Smith, G.C. A1 - Yasukufu, H. A1 - Fenton, J. L. A1 - Chen, J. A1 - Counsell, J..D.P. A1 - Radnik, Jörg A1 - Gaskell, K.J. A1 - Artyushkova, K. A1 - Yang, L. A1 - Zhang, L. A1 - Eguchi, M. A1 - Walker, M. A1 - Hajdyla, M. A1 - Marzec, M.M. A1 - Linford, M.R. A1 - Kubota, N. A1 - Cartazar-Martínez, O. A1 - Dietrich, P. A1 - Satoh, R. A1 - Schroeder, S.L.M. A1 - Avval, T.G. A1 - Nagatomi, T. A1 - Fernandez, V. A1 - Lake, W. A1 - Azuma, Y. A1 - Yoshikawa, Y. A1 - Shard, A.G. T1 - Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene N2 - We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration. KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Intensity scale calibration KW - Reference spectra KW - Low-density polyethylene (LDPE) PY - 2020 DO - https://doi.org/10.1116/6.0000577 VL - 38 IS - 6 SP - 063208 AN - OPUS4-51655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Campbell, C. G. A1 - Jordon Astorga, D. A1 - Dümichen, Erik A1 - Celina, M. T1 - Thermoset materials characterization by thermal desorption or pyrolysis based gas chromatography-mass spectrometry methods N2 - Thermoset materials characterization is often limited to solid state analytical techniques such as IR, NMR, DSC, TGA and mechanical testing. Alternatively, their off-gassing behavior can also be evaluated using GC based techniques such as TD-GC-MS, allowing this method to be applied to thermoset materials analyses such as identification, aging characterization, and formulation optimization. As an overview, common thermoset materials were evaluated by analyzing their gaseous degradation products via TGA-based pyrolysis and subsequent TD-GC-MS for the identification of representative volatile signatures. It is thereby possible to distinguish different classes of phenolic materials or cured epoxy resins, as well as their amine or anhydride curatives. Additionally, this method enabled quantification of a volatile fragment (bisphenol A, BPA) which is associated with oxidation of epoxy/amine thermoset materials. The amount of evolved BPA increased linearly with aging time and this trend exhibits linear Arrhenius behavior over the temperature range (80–125 °C) studied, in agreement with oxidation sensitivies based on oxygen consumption data. Further, TD-GC-MS was used to explore how off-gassing of residual anhydride curative from an epoxy/anhydride material depends on formulation stoichiometry. Even in formulations that theoretically contained enough epoxy to consume all anhydride (1:1 stoichiometry), an imperfect final cure state resulted in residual anhydride which could evolve from the material. For such materials, a slightly epoxy-rich formulation is required to ensure that the material contains no residual unreacted anhydride. Analysis of volatiles generated by thermal exposure is an attractive characterization approach enabling compositional analysis as well as complementary diagnostics for materials degradation. KW - Polymer analysis/characterization KW - Thermal desorption mass spectrometry KW - Thermoset composition KW - Volatiles from thermosets KW - Degradation signatures PY - 2020 DO - https://doi.org/10.1016/j.polymdegradstab.2019.109032 VL - 174 SP - 109032 PB - Elsevier Ltd. AN - OPUS4-50435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agostini, G. A1 - Radnik, Jörg T1 - Spectroscopy in Catalysis N2 - Knowledge-based catalyst development is always an interaction between preparation, analysis and catalytic testing. Only if these three factors fit together can success be expected. For the analytic side of this triangle, spectroscopic methods play a crucial role. Whereas with diffraction, scattering and microscopy, decisive insights into the structure and morphology of the catalysts can be obtained, spectroscopy produces new knowledge about the chemical nature of the catalyst, e.g., its bonding and valence states. KW - Spectroscopy KW - Catalysis KW - Operando KW - In situ PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506507 DO - https://doi.org/10.3390/catal10040408 VL - 10 IS - 4 SP - 408 PB - MDPI CY - Basel AN - OPUS4-50650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Pfüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Assessing optical and electrical properties of highly active IrOx catalysts for the electrochemical oxygen evolution reaction via spectroscopic ellipsometry N2 - Efficient water electrolysis requires highly active electrodes. The activity of corresponding catalytic coatings strongly depends on material properties such as film thickness, crystallinity, electrical conductivity, and chemical surface speciation. Measuring these properties with high accuracy in vacuum-free and nondestructive methods facilitates the elucidation of structure−activity relationships in realistic environments. Here, we report a novel approach to analyze the optical and electrical properties of highly active oxygen evolution reaction (OER) catalysts via spectroscopic ellipsometry (SE). Using a series of differently calcined, mesoporous, templated iridium oxide films as an example, we assess the film thickness, porosity, electrical resistivity, electron concentration, electron mobility, and interband and intraband transition energies by modeling of the optical spectra. Independently performed analyses using scanning electron microscopy, energy-dispersive X-ray spectroscopy, ellipsometric porosimetry, X-ray reflectometry, and absorption spectroscopy indicate a high accuracy of the deduced material properties. A comparison of the derived analytical data from SE, resonant photoemission spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy with activity measurements of the OER suggests that the intrinsic activity of iridium oxides scales with a shift of the Ir 5d t2g sub-level and an increase of p−d interband transition energies caused by a transition of μ1-OH to μ3-O species. KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive ambient analysis KW - Intrinsic OER activity KW - Complementary methodology and metrology PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516288 DO - https://doi.org/10.1021/acscatal.0c03800 SN - 2155-5435 VL - 10 IS - 23 SP - 14210 EP - 14223 PB - American Chemical Society AN - OPUS4-51628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Ectoine interaction with DNA: Influence on ultraviolet radiation damage N2 - Ectoine is a small zwitterionic osmolyte and compatible solute, which does not interfere with cell metabolism even at molar concentrations. Plasmid DNA (pUC19) was irradiated with ultraviolet radiation (UV-C at 266 nm) under quasi physiological conditions (PBS) and in pure water in the presence and absence of ectoine (THP(B)) and hydroxyectoine (THP(A)). Different types of UV induced DNA damage were analysed: DNA single-strand breaks (SSBs), abasic sites and cyclobutane pyrimidine dimers (CPDs). A complex interplay between these factors was observed with respect to the nature and occurrence of DNA damage with 266 nm photons. In PBS, the cosolutes showed efficient protection against base damage, whilst in pure water, a dramatic shift from SSB damage to base damage was observed when cosolutes were added. To test whether these effects are caused by ectoine binding to DNA, further experiments were conducted: small-angle X-ray scattering (SAXS), surface-plasmon resonance (SPR) measurements and Raman spectroscopy. The results show, for the first time, a close interaction between ectoine and DNA. This is in stark contrast to the assumption made by preferential exclusion models, which are often used to interpret the behaviour of compatible solutes within cells and with biomolecules. It is tentatively proposed that the alterations of UV damage to DNA are attributed to ectoine influence on nucleobases through the direct interaction between ectoine and DNA. KW - Ectoine KW - DNA KW - Radiation damage KW - Radiation protection KW - SSB KW - DNA damage KW - DNA protection KW - Compatible solute KW - Zwitterion KW - Hydroxyectoine KW - Salt KW - PBS KW - UV absorption KW - DNA strand-break KW - DNA base damage KW - Ectoine UV absorption KW - Ectoine DNA protection KW - Excited states KW - UV irradiation KW - UV-A KW - UV-B KW - UV-C KW - 266nm KW - UV photons KW - Ectoine-DNA binding KW - Raman spectroscopy KW - UV-Vis KW - Radical scavenger KW - OH scavenger KW - Hydroxyl radicals KW - CPD KW - Abasic site KW - Agarose gel electrophorese KW - SYBR gold KW - DNA melting temperature KW - Counterions KW - Preferential exclusion KW - Cancer KW - Therapy KW - UV protection KW - Sunscreen PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505772 DO - https://doi.org/10.1039/d0cp00092b SN - 1463-9076 SN - 1463-9084 VL - 22 IS - 13 SP - 6984 EP - 6992 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-50577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Separation of polystyrene nanoparticles bearing different carboxyl group densities and functional groups quantification with capillary electrophoresis and asymmetrical flow field flow fractionation N2 - Two sets of polystyrene nanoparticles (PSNPs) with comparable core sizes but different carboxyl group densities were made and separated using asymmetric flow field flow fractionation (AF4), capillary electrophoresis (CE), and the off-line hyphenation of both methods. Our results revealed the significant potential of two-dimensional off-line AF4-CE hyphenation to improve the separation and demonstrated for the first time, the applicability of CE to determine the functional group density of nanoparticles (NPs). Compared to the result acquired with conductometric titration, the result obtained with synthesized 100 nm sized PSNPs revealed only a slight deviation of 1.7%. Commercial 100 nm sized PSNPs yielded a deviation of 4.6 %. For 60 nm sized PSNPs, a larger deviation of 10.6 % between both methods was observed, which is attributed to the lower separation resolution. KW - Nanoparticle KW - A4F KW - Capillary electrophoresis KW - Carboxyl group PY - 2020 DO - https://doi.org/10.1016/j.chroma.2020.461392 VL - 1626 SP - 461392 PB - Elsevier B.V. AN - OPUS4-51080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -