TY - CONF A1 - Rhode, Michael A1 - Wetzel, Annica A1 - Oczan, Ozlem A1 - Nietzke, Jonathan A1 - Richter, Tim A1 - Schröpfer, Dirk T1 - Hydrogen diffusion and local Volta potential in high- and medium-entropy alloys N2 - High-entropy alloys (HEAs) are characterized by a solid solution of minimum five and medium-entropy alloys (MEAs) of minimum three principal alloying elements in equiatomic proportions. They show exceptional application properties, such as high-strength and ductility or corrosion resistance. Future HEA/MEA-components could be exposed to hydrogen containing environments like vessels for cryogenic or high-pressure storage where the hydrogen absorption and diffusion in these materials is of interest. In our study, we investigated the HEA Co20Cr20Fe20Mn20Ni20 and the MEA Co33.3Cr33.3Ni33.3. For hydrogen ingress, cathodic charging was applied and diffusion kinetic was measured by high-resolution thermal desorption spectros-copy using different heating rates up to 0.250 K/s. Peak deconvolution resulted in high-temperature desorption peaks and hydrogen trapping above 280 °C. A total hydrogen concentration > 40 ppm was identified for the MEA and > 100 ppm for HEA. This indicates two important effects: (1) delayed hydrogen diffusion and (2) considerable amount of trapped hydrogen that must be anticipated for hydrogen assisted cracking phenomenon. Local electrochemical Volta potential maps had been measured for the hydrogen free condition by means of high-resolution Scanning Kelvin Probe Force Microscopy (SKPFM). T2 - Symposium on Materials and Joining Technology CY - Online meeting DA - 07.09.2020 KW - Hydrogen KW - High-entropy alloy KW - Diffusion KW - Scanning kelvin probe force microscopy KW - Corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511684 DO - https://doi.org/10.1088/1757-899X/882/1/012015 VL - 882 SP - 1 EP - 15 PB - IOP Publishing CY - Bristol AN - OPUS4-51168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hielscher-Bofinger, Stefan A1 - Beck, Uwe A1 - Lerche, D. A1 - Rietz, U. T1 - Multiple-sample Testing: Adhesive Strength of Coatings and Bonding Strength of Adhesives evaluated by Centrifugal Adhesion Testing (CAT) N2 - The quantitative determination of adhesion and cohesion properties is a key requirement for adhesive-bonded joints and coated components in both R&D and Quality assurance. Because of the huge variety of layer/substrate Systems in terms of materials and large thickness range, adhesion tests display the same diversity as layer/substrate systems. There are only two tensile testing procedures available, that determine adhesive strength in terms of force per area (N/mm²), the single-sample pull-off test in a tensile testing machine and the multiple-sample-test using the Centrifugal Adhesion Testing (CAT) Technology. The CAT Technology is a testing method which uses centrifugal force as tensile testing force in a multiple-sample arrangement within a drum rotor of a Desktop centrifuge. Hence, the adhesive/bonding strength A/B can be determined on a statistical basis under identical testing conditions for up to eight samples. A variety of examples for bonding strength of adhesives, adhesive strength of coatings and compound strength of composite materials is discussed such as metalto-metal and glass-to-metal bonding, sputtered SiO2-layers on CR39 Polymer and carbon fiber reinforced polymer. T2 - Colloquium Department 6. CY - Berlin, BAM, Germany DA - 03.09.2020 KW - Centrifugal Adhesion Testing (CAT) KW - Adhesive strength KW - Bonding strength KW - Composite strength KW - Interlaboratory comparision PY - 2020 AN - OPUS4-51178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Differences in MALDI Ionization of neat linear and cyclic poly(L-lactide)s N2 - In addition to molar mass distribution (MMD) synthetic polymers often exhibit an additional chemical heterogeneity distribution, expressed by different end groups and other structural variations (e.g. tacticity, copolymer composition etc.). Ionization in MALDI MS is always strongly affected by such chemical properties. For example, the abundance of cyclics in MALDI TOF mass spectra is frequently reported to greatly exceed that of linears. Thus, the MALDI ionization behavior of various neat end-capped linear poly(L-lactide)s and one cyclic poly(L-lactide) was investigated and compared with that of blends of both structures. Moreover, the influence of the cationizing salt was investigated too. Neat compounds and various blends of cyclic and linear species were prepared and studied using two MALDI TOF mass spectrometers under identical conditions with regard to sample preparation and instrumental conditions, except for the laser power and the salt used for cationization. Polymer samples were additionally characterized by NMR and SEC. The steady increase of the laser intensity caused an exponential increase of the peak intensities of both linear and cyclic polylactides.The response of linear polylactides (in the investigated molecular mass range), whether as neat polymer or in blends with other linear polylactides was almost similar. This clearly supports our assumption that ionization in MALDI is probably unaffected by the end group structure.The variation of the laser power shows only little effect on the intensity ratio of linear-to linear and cyclic-to-linear polylactides in blends. Whereas neat linear polylactides at all laser intensities have a significantly higher abundance than neat cyclics, in mixtures of both an overestimation of cyclic species in MALDI TOF mass spectra of polylactides was found. However, this is far less distinct than frequently reported for other polymers.Concluding, peak suppression of linear polymers in mixtures of both architectures can be excluded, which also means, that polylactides showing only peaks of cyclic compounds in their MALDI - TOF mass spectra do not contain a significant fraction of linear analogues. Our study is the first systematic comparison of the MALDI ionization of neat and blended cyclic and linear polylactides. T2 - ASMS 2020 Reboot CY - Online meeting DA - 01.06.2020 KW - MALDI KW - Ionization KW - Linear KW - Cyclic KW - Polylactide PY - 2020 AN - OPUS4-50852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinellato, Fabio A1 - Wilbig, Janka A1 - Al-Sabbagh, Dominik A1 - Colombo, P. A1 - Günster, Jens T1 - Gas flow assisted powder deposition for enhanced flowability of fine powders: 3D printing of alpha-tricalcium phosphate N2 - The possibility of creating patient-specific individual implants makes Additive Manufacturing technologies of special interest for the medical sector. For substitution of bone defects, powder based Additive Manufacturing by Binder Jetting is a suitable method to produce complex scaffold-like structures made of bioceramics with easily adapted geometries and controlled porosity. The process inherent residual porosity in the printed part, even though desired as it supports bone ingrowth, also leads to limited mechanical strength. Currently, bioceramic scaffolds made by Binder Jetting feature suitable biocompatible and biodegradable properties, while a sufficient mechanical stability is rather challenging. The purpose of this work is to apply the gas flow assisted powder deposition introduced in 2014 by Zocca et al., to the powder bed during printing of bioceramic tablets and scaffolds using α-TCP powder as feedstock. This enables exploiting the advantages of an increased powder bed density, thereby improving the mechanical properties of the printed parts. KW - Additive Manufacturing KW - Binder Jetting KW - Gas flow assisted powder deposition KW - Alpha-tricalcium phosphate KW - Scaffold PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510138 DO - https://doi.org/10.1016/j.oceram.2020.100003 SN - 2666-5395 VL - 1 SP - 100003 PB - Elsevier Ltd. AN - OPUS4-51013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, Julien A1 - Frisch, M. A1 - Kiske, S. A1 - Bernicke, M. A1 - Raza, H. A1 - Pinna, N. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Investigating the morphology of nanostructured mixed metal oxides (Ir/TiOx) and its impact on the electrocatalytic OER-activity N2 - The electrocatalytic conversion of water into molecular hydrogen and oxygen under the utilization of excess renewable energies, such as wind power, photovoltaics and hydroelectric power is one possible pathway to establish a sustainable hydrogen economy. The obtained hydrogen is either stored and used in a fuel cell or consumed on-site in industrial applications. Water electrolysis systems (WES) are based on two half cell reactions, such as oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) which both proceed simultaneously. The OER suffers from slow reaction kinetics and thus limits the overall performance. The most promising compounds in acidic electrolysis are IrO2 and RuO2. Due to their rare abundance and extremely high price a wide use of acidic WES was prevented. Lowering the catalysts noble metal content by mixing iridium with titanium reduces the production costs. Thin films are produced by dip coating a solution of metal oxide precursors alongside with a polymer template dissolved in ethanol. The obtained samples are subsequently calcined to the remove the template and adjust crystallinity. Finally, an additional iridium deposition step was performed on the outer surface plane area. Understanding the influence of structural and morphological aspects on the OER-activity is beneficial to further optimize WES. The current presentation will thus give detailed insights to structural aspects obtained by Raman spectroscopy, small- and wide-angle X-ray scattering which are then combined with electrochemical parameters to deduce structure-activity relationships. T2 - Joint Polish-German Crystallographic Meeting 2020 CY - Wrocław, Poland DA - 24.02.2020 KW - nanostructured KW - electrocatalysis PY - 2020 AN - OPUS4-50664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - AI/ML starts with data, …a practical example N2 - A brief introduction to the efforts we have done in our lab towards AI/ML analysis of SAXS data. For this, we need to extend the data with an extensive, structured hierarchy of metadata and associated data. A practical look into the information stored in our files, and the organization of the files in a data catalog is presented. T2 - Benchmarking for AI for Science at the Exascale A2 Workshop for Materials Science CY - Online meeting DA - 23.11.2020 KW - Small angle scattering KW - Machine learning KW - Data organization KW - Data curation KW - Metadata structuring PY - 2020 AN - OPUS4-51660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Marquardt, Julien A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Synthesis of Bimetallic Nickel Nanoparticles as Catalysts for the Sabatier Reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhance surface-area-to-volume ratio of NPs is very high, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni nanoparticles were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the catalytically active sites are accessible. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Joint Polish-German Crystallographic Meeting CY - Wroclaw, Poland DA - 24.02.2020 KW - Nanoparticles KW - Synthesis KW - Catalysis PY - 2020 AN - OPUS4-51663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Taché, O. A1 - Bartczak, D. A1 - Cuello Nuñez, S. A1 - Abad Álvaro, I. A1 - Goenaga Infante, H. A1 - Hodoroaba, Vasile-Dan T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - In this work, we present various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Bimodal KW - SiO2 KW - Gold PY - 2020 AN - OPUS4-51714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - Various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM are presented. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - Particle size distribution KW - Sample peparation KW - Electron microscopy PY - 2020 AN - OPUS4-51716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Kuchenbecker, Petra A1 - Würth, Christian A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - Fine iron oxide nanoparticles as a candidate reference material for reliable measurement of particle size N2 - Background, Motivation and Objective Nanomaterials are at the core of some of the 21st century’s most promising technologies. In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important. Furthermore, the European Commission has taken measures via the REACH Regulations to control the classification of nanomaterials. REACH Annexes which entered into force in January 2020 require manufacturers to register nanomaterials that are traded in larger quantities (at least 1 ton). Every powder or dispersion where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as a nanomaterial. This creates a need for both industrial manufacturers and research and analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is working on developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution, but also targeting other key parameters such as shape, structure (including porosity) and functional properties. Thus, candidate materials are considered to complement the already available spherical and monodisperse silica, Au and polystyrene reference nanoparticles, e.g. iron oxide and titanium oxide, with an average atomic number between those of silica and gold. Particularly for the imaging by electron microscopies, new nanoparticles of well-defined size in the range of 10 nm are decisive for the accurate particle segmentation by setting precise thresholds. Statement of Contribution/Methods Synthesis: Highly monodisperse iron oxide nanoparticles can be synthesized in large quantities by thermal decomposition of iron oleate or iron acetylacetonate precursors in high boiling solvents such as octadecene or dioctyl ether in the presence of oleic acid and oleylamine as capping agents. Scanning Electron Microscope: An SEM of type Supra 40 from Zeiss has been used including the dedicated measurement mode transmission in SEM (STEM-in-SEM) with a superior material contrast for the nanoparticle analysis. The software package ImageJ has been used for the analysis of the STEM-in-SEM images and to determine the particle size distribution. Dynamic Light scattering (DLS): Particles in suspension were measured in comparison by means of Zetasizer Nano (Malvern Panalytical; cumulants analysis) and NanoFlex (Microtrac; frequency power spectrum). Results/Discussion In this study iron oxide nanoparticles synthesized at BAM and pre-characterized by DLS, SEM (including the transmission mode STEM-in-SEM) are presented. The particles are spherical and highly monodisperse with sizes slightly larger than 10 nm. T2 - Nanosafe 2020 CY - Online meeting DA - 16.11.2020 KW - Reference nanomaterials KW - Imaging techniques KW - Size and size distribution KW - Reliable characterization KW - Iron oxide nanoparticles PY - 2020 AN - OPUS4-51767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörenz, Christoph A1 - Tache, O. A1 - Bartczak, D. A1 - Nunez, S. A1 - Abad Alvaro, I. A1 - Goenaga-Infante, H. A1 - Hodoroaba, Vasile-Dan T1 - A Study on the Analysis of Particle Size Distribution for Bimodal Model Nanoparticles by Electron Microscopy N2 - The present study addresses the capability of measurement of relative particle number concentration by scanning electron microscopy for model bimodal silica and gold samples prepared in the frame of the European research project “nPSize - Improved traceability chain of nanoparticle size measurements” as candidate reference nanoparticles. KW - Nanoparticles KW - Particle size distribution KW - Bimodal size distribution KW - Traceability PY - 2020 DO - https://doi.org/10.1017/S1431927620021054 VL - 26 IS - S2 SP - 2282 EP - 2283 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D Understanding of Non-spherical Nanoparticles by Transmission Kikuchi Diffraction (TKD) for Improved Particle Size Distribution by Electron Microscopy N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Electron microscopy KW - TiO2 KW - 3D PY - 2020 DO - https://doi.org/10.1017/S1431927620013999 VL - 26 IS - S2 SP - 260 EP - 261 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Towards Automated Electron Microscopy Image Segmentation for Nanoparticles of Complex Shape by Convolutional Neural Networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. KW - Nanoparticles KW - Convolutional neural networks KW - Image segmentation KW - Electron microscopy KW - Automatisation PY - 2020 DO - https://doi.org/10.1017/S1431927620017262 VL - 26 IS - S2 SP - 1188 EP - 1189 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Minimum Requirements for Nanomaterial Data - Examples with Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy N2 - In dem Vortrag werden, anhand ausgewählten Beispielen aus der Elektronenmikroskopie und EDX-Elementanalyse, die minimalen Anforderungen an Referenzdaten für zuverlässige und reproduzierbare Ergebnisse (z.B. Partikelgrößenverteilung, Elementzusammensetzung) bei der Charakterisierung von Nanomaterialien vorgestellt und diskutiert. N2 - Based on practical examples of analysis with Electron Microscopy and Energy-Dispersive X-ray Spectroscopy, the minimum information requirements for reliable and reproducible nanomaterial characterization data such as particle size and shape distribution and elemental analysis are presented and discussed. T2 - nano@BAM-Workshop Digitalisierung in der Nanosicherheit CY - Online meeting DA - 04.12.2020 KW - Nanoparticles KW - Electron microscopy KW - EDX KW - Reference data KW - Reproducibility KW - Standardisation PY - 2020 AN - OPUS4-51775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - You Ask – ACEnano Replies N2 - The workshop starts with introductory information about the workshop and the H2020 project ACEnano, followed by two expert round tables, focussing on how the project could address regulator and industry needs, respectively. This is be followed by parallel sessions on tools (based on preferences expressed by those registered to attend, see “Questions”) and finally a question-and-answer session with the attendees. The experts invited in Round Table 1 have been prepared to answer to questions related to obstacles and advantages for stakeholders such as SMEs to use the ACEnano approaches/tools. Standardisation needs are discussed. T2 - nanoSafety Cluster Training (NSC) Day @ NanoSAFE 2020: ACEnano users’ workshop “You Ask – ACEnano Replies” CY - Online meeting DA - 23.11.2020 KW - ACEnano KW - Standardisation KW - Nanomaterials KW - Nano-characterisation PY - 2020 UR - https://www.nanosafetycluster.eu/ SP - 1 EP - 2 AN - OPUS4-51693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marcoulaki, E. A1 - M López de Ipiña, J. A1 - Vercauteren, S. A1 - Witters, H. A1 - Lynch, I. A1 - van Duuren-Stuurman, B. A1 - Shandilya, N. A1 - Kunz, Valentin A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Bard, D. A1 - Evans, G. A1 - Viitanen, A.-K. A1 - Pilou, M. A1 - Bochon, A. A1 - Duschl, A. A1 - Himly, M. A1 - Geppert, M. A1 - Persson, K. A1 - Cotgreave, I. A1 - Niga, P. A1 - Scalbi, S. A1 - Caillard, B. A1 - Arevalillo, A. A1 - Jensen, K. A. A1 - Frejafon, E. A1 - Bouillard, J. A1 - Aguerre-Chariol, O. A1 - Dulio, V. T1 - Blueprint for a sustainable new European Centre to support safe innovation for nanotechnology N2 - This paper presents the blueprint for the operation of a sustainable and permanent European Centre of collaborating reference laboratories and research centres, to establish a one-stop shop for a wide variety of nanosafety related services, and to provide a central contact point for questions about nanosafety in Europe. The Centre aims to harmonise service provision, and bring novel risk assessment and management approaches closer to practice. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - EC4SafeNano KW - European Centre KW - Nanomaterials KW - Nanosafety KW - Catalogue of Services (CoS) PY - 2020 UR - https://www.nanosafe.org/cea-tech/pns/nanosafe/en AN - OPUS4-51694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticles in suspension via Microprinting and SEM analysis N2 - A series of different nanoparticle suspensions (Gold, Latex, and SiO2 in varying concentrations) were microprinted onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 NP/mL and imaged with SEM and TSEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee ring effect. T2 - nanoSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - Nanoparticles KW - Microprinting KW - Image analysis PY - 2020 AN - OPUS4-51699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Kranjc, E. A1 - Bohmer, N. A1 - Drobne, D. A1 - Hodoroaba, Vasile-Dan T1 - Testing the quality of nanomaterial properties data for nano-risk assessment – towards guidance for all types of users N2 - Data quality is a vast term, which comprises the completeness, relevance (adequacy), and reliability of data. So far, many attempts to assure data quality have been pursued, and evaluation criteria for data quality have been established. One relatively novel but already well-known aspect of data quality refers to the concept of data FAIRness, which states that data should be: findable, accessible, interoperable and re-usable. In order to find, use, and access data, a user has to be guided properly. Such guidelines already exist for regulators and the scientific community. However, a ‘simple’ non-academic user from general society is very unlikely to be able to access or understand such data. Our objective in the H2020 project NANORIGO is to help and guide all types of users (i.e., scientists, regulators, industry workers, citizens, etc.) to access and make use of high-quality data and information from available and suitable data repositories in order to increase the transparency of and trust in nanotechnology. T2 - nanoSAFE 2020 CY - Online Meeting DA - 16.11.2020 KW - Nano-related data KW - Nanomaterial properties KW - Nano-risk assessment PY - 2020 AN - OPUS4-51701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Maack, Stefan A1 - Bertovic, Marija A1 - Radtke, Martin A1 - et al., ED - Wahlster, W. ED - Winterhalter, C. T1 - Deutsche Normungsroadmap künstliche Intelligenz N2 - Rund ein Jahr haben DIN und DKE in einem gemeinsamen Projekt mit dem Bundesministerium für Wirtschaft und Energie und zusammen mit ca. 300 Fachleuten aus Wirtschaft, Wissenschaft, öffentlicher Hand und Zivilgesellschaft an der Normungsroadmap Künstliche Intelligenz gearbeitet. Eine hochrangige Steuerungsgruppe unter dem Vorsitz von Prof. Wolfgang Wahlster hat die Erarbeitung koordiniert und begleitet. Ziel der Roadmap ist die frühzeitige Entwicklung eines Handlungsrahmens für die Normung und Standardisierung, der die internationale Wettbewerbsfähigkeit der deutschen Wirtschaft unterstützt und europäische Wertmaßstäbe auf die internationale Ebene hebt. KW - Künstliche Intelligenz KW - Normung KW - Roadmap PY - 2020 UR - https://www.din.de/resource/blob/772438/ecb20518d982843c3f8b0cd106f13881/normungsroadmap-ki-data.pdf VL - 2020 SP - 1 EP - 232 PB - Deutsches Institut für Normung (DIN) CY - Berlin ET - 1. AN - OPUS4-51733 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fosodeder, P. A1 - Baumgartner, W. A1 - Steinwender, C. A1 - Hassel, A. W. A1 - Florian, Camilo A1 - Bonse, Jörn A1 - Heitz, J. T1 - Repellent rings at titanium cylinders against overgrowth by fibroblasts N2 - The invention of new miniaturized and smart medical implants continues in all medical fields, including miniaturized heart pacemakers. These implants often come with a titanium (Ti) casing, which may have to be removed after several months or years and shall therefore not be completely overgrown by cells or scar tissue after implantation. Scar tissue is mainly formed by fibroblast cells and extracellular matrix proteins like collagen produced by them. Suppression of fibroblast growth at Ti surfaces could be achieved by 800 nm femtosecond laser-ablation creating self-organized sharp spikes with dimensions in the 10 μm-range which are superposed by fine sub-μm parallel ripples. On flat Ti control samples, the best results regarding suppression of cell growth were obtained on spike-structures which were additionally electrochemically anodized under acidic conditions. When Ti cylinders with a diameter of 8 mm (similar as the pacemakers) were placed upright in a culture of murine fibroblasts, a multi-layer cell growth up to a height of at least 1.5 mm occurred within 19–22 days. We have demonstrated that a laser-structured and anodized ring around the Ti cylinder surface is an effective way to create a barrier that murine fibroblasts were not able to overgrow within this time. KW - Cell-repellent surfaces KW - Femtosecond laser-processing KW - Electrochemical treatment KW - Laser-induced micro- and nanostructures KW - Medical implants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509966 DO - https://doi.org/10.1515/aot-2019-0070 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 3 (Topical issue: Laser micro- and nano-material processing - Part 2) SP - 113 EP - 120 PB - De Gruyter CY - Berlin AN - OPUS4-50996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Bonse, Jörn ED - Spaltmann, Dirk T1 - Laser-induced periodic surface nano- and microstructures for tribological applications N2 - This book is a reprint collection of articles from the Special Issue published online in the open access journal Lubricants. KW - Laser-induced periodic surface structures (LIPSS) KW - Friction KW - Wear KW - Applications PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516611 UR - https://www.mdpi.com/books/pdfview/book/3130 SN - 978-3-03943-523-4 SN - 978-3-03943-524-1 SP - 1 EP - 180 PB - MDPI CY - Basel AN - OPUS4-51661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz A1 - Günster, Jens T1 - First time additively manufactured advanced ceramics by using two-photon polymerization for powder processing N2 - Methods and materials are presented here, which enable the manufacturing of fine structures using a 3D-printing method known as two-photon polymerization (2PP). As traditional photolithography methods for structuring ceramic slurries do not function with 2PP, due to light scattering on ceramic particles, a novel water-based photoresist with high ceramic loading of extremely well dispersed ceramic nano particles was developed. This photoresist is basically a ceramic slurry containing a photocurable agent and a photoinitiator to be crosslinkable with the 780 nm wavelength femtosecond laser light source of the 2PP machine. It is demonstrated that it is possible to gain a highly transparent and low viscous slurry suitable for 2PP processing. This work shows the development of the slurry, first printing results and the post-printing processes required to form three dimensional ceramic microstructures consisting of alumina toughened zirconia (ATZ). KW - 3D-printing KW - Two-photon polymerization KW - 2PP KW - Ceramic nano particles KW - Slurry KW - Alumina toughened zirconia KW - ATZ KW - Additive manufacturing KW - SchwarzP cells KW - Nano-ceramic-additive-manufacturing photoresin KW - NanoCAM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517441 DO - https://doi.org/10.1016/j.oceram.2020.100040 VL - 4 SP - 100040 PB - Elsevier Ltd. AN - OPUS4-51744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Szymoniak, Paulina T1 - Dataset and Jupyter worksheet interpreting the (results from) small- and wide-angle scattering data from a series of boehmite/epoxy nanocomposites. Accompanies the publication "Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite" N2 - Dataset and Jupyter worksheet interpreting the (results from) small- and wide-angle scattering data from a series of boehmite/epoxy nanocomposites. Accompanies the publication "Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite", by Paulina Szymoniak, Brian R. Pauw, Xintong Qu, and Andreas Schönhals. Datasets are in three-column ascii (processed and azimuthally averaged data) from a Xenocs NanoInXider SW instrument. Monte-Carlo analyses were performed using McSAS 1.3.1, other analyses are in the Python 3.7 worksheet. Graphics and result tables are output by the worksheet. KW - Small angle scattering KW - X-ray scattering KW - Nanocomposite KW - Polymer nanocomposite KW - Boehmite KW - Analysis KW - SAXS/WAXS PY - 2020 DO - https://doi.org/10.5281/zenodo.4321087 PB - Zenodo CY - Geneva AN - OPUS4-51829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kling, I. C. S. A1 - Pauw, Brian Richard A1 - Agudo Jácome, Leonardo A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Starch KW - Starch nanoparticle KW - Silver nanoparticle PY - 2020 AN - OPUS4-51828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Pfeffer, M. ED - Bonse, Jörn ED - Lasagni, A. F. T1 - Topical issue: Laser micro- and nano-material processing - Part 2 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Applications KW - Laser processing KW - Microstructures KW - Nanostructures PY - 2020 UR - https://www.degruyter.com/view/journals/aot/9/3/aot.9.issue-3.xml SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 3 SP - 111 EP - 153 PB - De Gruyter CY - Berlin AN - OPUS4-50997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Hahn, Marc Benjamin A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Cover image for the article "Nanomechanical study of polycarbonate/boehmite nanoparticles/epoxy ternary composite and their interphases" N2 - The image designed by Natalia Cano Murillo and colleagues shows the cross section of a ternary composite (boehmite/polycarbonate/epoxy, 80μm x 80μm). The surface was measured by AFM kelvin probe microscopy, yielding the surface potential which is shown as 3D‐surface and contour lines. The sample was further subjected to AFM force spectroscopy with a lateral resolution of 1μm², yielding the local Young's modulus, projected in false colors on the 3D surface. The ternary system, containing boehmite nanoparticles, shows a broad distribution of modulus, desirable for optimized macroscopic mechanical properties, such as high stiffness as well as toughness. KW - Boehmite KW - Epoxy KW - Polycarbonate KW - AFM KW - BNP PY - 2020 DO - https://doi.org/10.1002/app.50400 SN - 0021-8995 SN - 1097-4628 VL - 138 IS - 12 SP - 1 PB - Wiley CY - New York, NY AN - OPUS4-51831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Pfeffer, M. ED - Bonse, Jörn ED - Lasagni, A. F. T1 - Topical issue: Laser micro- and nano-material processing - Part 1 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Laser processing KW - Microstructures KW - Nanostructures KW - Applications PY - 2020 UR - https://www.degruyter.com/view/journals/aot/9/1-2/aot.9.issue-1-2.xml SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 1-2 SP - 7 EP - 110 PB - De Gruyter CY - Berlin AN - OPUS4-50798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lasagni, A. F. A1 - Bonse, Jörn T1 - Editorial: Laser micro- and nano-material processing – Part 2 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Applications KW - Laser processing KW - Microstructures KW - Nanostructures PY - 2020 DO - https://doi.org/10.1515/aot-2020-0025 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 3 SP - 111 EP - 112 PB - De Gruyter CY - Berlin AN - OPUS4-50995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Falkenhagen, Jana A1 - Panne, Ulrich A1 - Hiller, W. A1 - Gruendling, T. A1 - Staal, B. A1 - Lang, C. A1 - Lamprou, A. T1 - Simultaneous characterization of poly(acrylic acid) andpolysaccharide polymers and copolymers N2 - Copolymer products that result from grafting acrylic acid and other hydrophilicmonomers onto polysaccharides have recently gained significant interest in researchand industry. Originating from renewable sources, these biodegradable, low toxicity,and polar copolymer products exhibit potential to replace polymers from fossil sourcesin several applications and industries. The methods usually employed to character-ize these copolymers are, however, quite limited, especially for the measurement ofbulk properties. With more sophisticated applications, for example, in pharmaceu-tics requiring a more detailed analysis of the chemical structure, we describe a newapproach for this kind of complex polymers. Our approach utilizes chromatographyin combination with several detection methods to separate and characterize reactionproducts of the copolymerization of acrylic acid and chemically hydrolyzed starch.These samples consisted of a mixture of homopolymer poly (acrylic acid), homopoly-mer hydrolyzed starch, and – in a lower amount – the formed copolymers. Several chro-matographic methods exist that are capable of characterizing either poly (acrylic acid)or hydrolyzed starch. In contrast, our approach offers simultaneous characterization ofboth polymers. The combination of LC and UV/RI offered insight into the compositionand copolymer content of the samples. Size exclusion chromatography experimentsrevealed the molar mass distribution of homopolymers and copolymers. FTIR inves-tigations confirmed the formation of copolymers while ESI-MS gave more details onthe end groups of hydrolyzed starches and poly (acrylic acids). Evidence of copolymerstructures was obtained through NMR measurements. Finally, two-dimensional chro-matography led to the separation of the copolymers from both homopolymers as wellas the additional separation of sodium clusters. The methods described in this work area powerful toolset to characterize copolymerization products of hydrolyzed starch andpoly(acrylic acid). Together, our approach successfully correlates the physicochemicalproperties of such complex mixtures with their actual composition. KW - 2D chromatography KW - LC-MS KW - SEC KW - Renewable copolymers KW - Grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508873 DO - https://doi.org/10.1002/ansa.202000044 SP - 1 EP - 12 PB - Wiley-VCH Verlag-GmbH&Co. KGaA CY - Weinheim AN - OPUS4-50887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Snow, T. T1 - Everything and the kitchen sink: correcting X-ray data for everything N2 - Recorded at the Better with Scattering workshop 2020, this talk highlights the complete set of data correction steps that we do for the MAUS, and how they can be used elsewhere too. This links well with the talk in this series by Dr. Tim Snow, and also highlights the details of the background subtraction that needs to be done. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Data corrections PY - 2020 UR - https://www.youtube.com/watch?v=Hp4qziOxZFk AN - OPUS4-51018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Basics and applications of good SAXS: Quantifying the fine structure of lots of materials N2 - In contrast to the crisp, clear images you can get from electron microscopy, small-angle X-ray scattering (SAXS) patterns are rather featureless. These patterns, however, contain averaged structural information of all of the finest material structures that were illuminated by the X-ray beam. With careful and precise investigation, and supplementary information from complementary techniques, this bulk material structure can be quantified to reveal structural information spanning four or even five decades in size. Additionally, while the data correction and analysis is complex, sample preparation is very straightforward, also allowing for in-situ and operando measurements to be performed without breaking a sweat. In the right hands, then, this technique can be the most powerful tool in your analytical arsenal. T2 - OpTecBB webinar within the scope of the focus area Optical Analytics CY - Online meeting DA - 27.05.2020 KW - Small-angle scattering KW - Introduction KW - Application KW - Saxs KW - Nanomaterials KW - Nanostructure PY - 2020 UR - https://www.youtube.com/watch?v=mXkYL3dSsTY UR - https://optecbb.de/veranstaltungen/veranstaltung/webinar-basics-and-applications-of-good-saxs-1238/ AN - OPUS4-50879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The dark side of science N2 - This talk explores the various ways in which bad science can proliferate in the current academic environment, and what can be done to recognize and (maybe) correct it. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Scientific rigor KW - Academic fraud KW - Academic metrics PY - 2020 AN - OPUS4-51017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - A brief history of scattering N2 - Recorded on the first day of the Better with Scattering workshop. In this video, I explore some of the highlights of the development of small-angle X-ray scattering over its long history. I discuss developments on the technical side, analytical methods, detectors, data quality and data management. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - History PY - 2020 UR - https://www.youtube.com/watch?v=mFH6P4tZbyM AN - OPUS4-51015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - More of the same, please! Standardizing a perfectionist X-ray Scattering methodology for labs and synchrotrons N2 - After a colleague sent me a more useful measurement from a laboratory instrument than what I could get from the beamline, I knew it was time to reassess my life's choices. Over the course of several subsequent post-doc and permanent positions around lab instruments, I managed to refine a flexible, comprehensive methodology for data collection, correction and analysis which can be applied to many X-ray scattering investigations at the lab and at the synchrotron. With the help of friends at round places, this methodology was implemented and put into production, and has been delivering high-quality data since then. Now, we have almost all possible data corrections (for X-ray scattering) implemented, and are improving the hardware to deliver higher-quality metadata to enable the corrections to be performed to a higher accuracy. Simultaneously, we have set up a mini-large facility at BAM with the MAUS, the Multi-scale Analyzer for Ultrafine Structures. The MAUS combines the freedom of a laboratory instrument, with the spectrum of users of a beamline: besides measuring our own samples, and performing our own machine and methodology developments, we have opened this instrument for collaboration with fellow scientists from within BAM and from external institutes and universities. Here, we provide a comprehensive support for these collaborations, guiding the user from concept to sample selection, to interpretation and analysis. In 2019, we have supported over 30 different projects this way, leading to seven co-authored publications involving the MAUS in that year alone. As the MAUS uses the latest iteration of our comprehensive measurement methodology, the data quality is unmatched by any other lab instrument, and fully traceable to boot. The freedom of the laboratory allows for more proof-of-principle experimentation than what is possible at the synchrotron. Therefore, the MAUS provides a good first (and sometimes final) step towards many experimental materials science investigations, nicely complementing the capabilities of the synchrotron. If and when more flux is needed, the step to the synchrotron is now smaller than ever, in particular with the same method T2 - Symposium on large scale facilities CY - BAM, Berlin, Germany DA - 09.03.2020 KW - Small angle scattering KW - Methodology KW - X-ray scattering PY - 2020 AN - OPUS4-51014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Breßler, Ingo T1 - McSAS for SAS analysis: Usage, Benefits and Potential Pitfalls N2 - This talk introduces McSAS, code for analysis of scattering patterns to extract particle size distributions. It highlights how it works, how it should be used, and when it may (not) be applied T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Software KW - Analysis PY - 2020 AN - OPUS4-51019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - X-ray generation N2 - This talk was recorded during the 2020 Better with Scattering workshop held at BAM in Berlin. This educational talk explains the various ways in which X-rays can be generated in the lab as well as at the synchrotron, with benefits and drawbacks for all. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - X-ray instrumentation KW - X-ray generation PY - 2020 UR - https://www.youtube.com/watch?v=Hze3PvcK7es AN - OPUS4-51016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Breßler, Ingo T1 - The SPONGE N2 - This software tool is intended to calculate X-ray scattering patterns from 3D objects described by an STL file. The fundamentals and use example(s) are shown. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Software KW - Simulation PY - 2020 AN - OPUS4-51020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science N2 - An overview of the dark side of science: what it is, how it occurs, and what you can do to understand it and fight for the light side. T2 - First training event of the ITN-Project GW4SHM CY - Online meeting DA - 23.11.2020 KW - Scientific rigor KW - Scientific misconduct KW - Data manipulation KW - Image manipulation PY - 2020 AN - OPUS4-51830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - Introduction to SAXS N2 - A simplified introductions to small-angle scattering (SAXS), to put across the main concepts and not get bogged down in equations. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - SAXS KW - WAXS KW - MOFs KW - Data analysis KW - Nano PY - 2020 UR - https://www.youtube.com/watch?v=_YY9XtQfANk AN - OPUS4-51021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Complete set of raw and processed datasets, as well as associated Jupyter notebooks for analysis, associated with manuscript entitled: "The MOUSE project: a practical approach for obtaining traceable, wide-range X-ray scattering information" N2 - This dataset is a complete set of raw, processed and analyzed data, complete with Jupiter notebooks, associated with the manuscript mentioned in the title. In the manuscript, we provide a "systems architecture"-like overview and detailed discussions of the methodological and instrumental components that, together, comprise the "MOUSE" project (Methodology Optimization for Ultrafine Structure Exploration). Through this project, we aim to provide a comprehensive methodology for obtaining the highest quality X-ray scattering information (at small and wide angles) from measurements on materials science samples. KW - X-ray scattering KW - Measurement methodology KW - Traceability derivation KW - Multi-scale measurements KW - Systems architecture KW - Nanomaterials PY - 2020 DO - https://doi.org/10.5281/zenodo.4312953 PB - Zenodo CY - Geneva AN - OPUS4-51825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - Temperature effects in the Object Oriented Micromagnetic Framework (OOMMF) - OOMMF input parameter files for Tc determination N2 - To simulate the movement of the macroscopic magnetic moment in ferromagnetic systems under the influence of elevated temperatures, the stochastic version of the Landau-Lifshitz (LL) or the Landau-Lifshitz-Gilbert equation with a spin density of one per unit cell has to be used. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion has to be performed. OOMMF sample files MIF) are provided which can be used to determine the Curie temperature for the classical bulk magnets, iron, nickel and cobalt. KW - OOMMF KW - Temperature KW - Micromagnetism KW - Thetaevolve KW - Ferromagnetism KW - Exchange interaction KW - LLG KW - Landau Lifshitz equation KW - Magnetic moment KW - Magnetic nanoparticles KW - Object oriented micromagnetic framework KW - Stochastic Landau Lifshitz Gilbert equation KW - Temperature scaling PY - 2020 DO - https://doi.org/10.26272/opus4-51169 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - DNA basierte Dosimetrie N2 - We propose the development of a standardized DNA based dosimeter. This dosimeter will improve the comparability between the results of different laboratories in radiation research. Compared to conventional methods in dosimetry, this Approach provides direct access to the relation between radiation interaction and biological damage. Moreover, it enables the systematic investigation of the relation between the microscopic characteristics of radiation and DNA damage over a wide dose range. T2 - Zertkom CY - Online meeting DA - 13.05.2020 KW - DNA KW - Dosimetrie KW - Dosimetry KW - Effective dose KW - Energy dose KW - Energiedosis KW - Equivalent dose KW - Absorbed dose PY - 2020 AN - OPUS4-50779 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - TOPAS cell model with nanoparticles N2 - These files contain cell models for TOPAS/Geant4 and the inclusion of nano particles in particle scattering simulations. A simple spherical cell with nanoparticles can be generated in a fast manner. The user has the option to include the following organelles: nucleus, mitochondria, cell membrane. Additionally nanoparticles can be included in the cytosol and at the surface of the nucleus and/or the mitochondria. The C++ classes in this repository extend the functionality of the TOPAS (http://www.topasmc.org/) Monte-Carlo program, which is itself a wrapper of the Geant4 MCS Toolkit (http://geant4.org). The sourcecode together with examples and scorers are provided. "If you use this extension please cite the following literature: Hahn, M.B., Zutta Villate, J.M. "Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles." Sci Rep 11, 6721 (2021). https://doi.org/10.1038/s41598-021-85964-2 " KW - Monte-Carlo simulation KW - MCS KW - Geant4 KW - TOPAS KW - TOPAS-nBio KW - Dosimetry KW - Nanoparticles KW - Nanoparticle KW - AuNP KW - Gold KW - Microdosimetry KW - Targeted nanoparticle KW - Simulation KW - Particle scattering KW - Cell KW - Nucleus KW - Mitochondria KW - Cancer therapy KW - Radiation therapy PY - 2020 UR - https://github.com/BAMresearch/TOPAS-CellModels UR - https://github.com/MarcBHahn/TOPAS-CellModels DO - https://doi.org/10.26272/opus4-51150 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Lasagni, A. F. T1 - Editorial: Laser micro- and nano-material processing – Part 1 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Laser processing KW - Microstructures KW - Nanostructures KW - Applications PY - 2020 DO - https://doi.org/10.1515/aot-2020-0009 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 1-2 SP - 7 EP - 9 PB - De Gruyter CY - Berlin AN - OPUS4-50797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Realitätsnahe Referenzmaterialien für die Mikroplastik-Analytik und Vergleichsuntersuchungen N2 - Zur Validierung und Harmonisierung von verschiedenen Methoden in der Mikroplastik-Analytik werden polymere Referenzmaterialien benötigt. In diesem Vortrag wird dargestellt, was bisher an der BAM zu Referenzmaterialien für die Mikroplastik-Analytik entwickelt wurde, wo es hingehen soll und ein Überblick über bisher gelaufene Vergleichsuntersuchungen gebracht. T2 - Kick-off Meeting "Mikroplastik in Lebensmitteln" CY - Online meeting DA - 03.12.2020 KW - Mikroplastik KW - Referenzmaterial KW - Vergleichsuntersuchungen KW - Ringversuche PY - 2020 AN - OPUS4-51743 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement; What nPSize can offer after 2Ys? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, inter-laboratory comparisons) as pertinent contributions to normative projects within CEN/TC 352 Nanotechnologies are discussed. T2 - 28th Meeting of CEN/TC 352 Nanotechnologies CY - Online meeting DA - 16.10.2020 KW - Nanoparticles KW - CEN/TC 352 Nanotechnologies KW - Particle size distribution KW - Traceability PY - 2020 AN - OPUS4-51437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Beck, Uwe A1 - Fischer, Daniel T1 - MISTRAL-Müller-Matrix-basierte Identifizierung von Inhomogenitäten und strukturellen Anomalien N2 - Mit abbildender Ellipsometrie (imaging ellipsometry: IE) können Nanometer-Beschichtungen/ Degradationen visualisiert und bezüglich Brechungsindex n, Extinktionskoeffizient k und Schichtdicke d charakterisiert werden. Materialseitig werden lokal Homogenität und Isotropie innerhalb eines/mehrerer Bildpunkte (field of analysis: FOA) und messtechnisch global die Ebenheit der Proben bezüglich aller Bildpunkte des Messfeldes vorausgesetzt. Für die Müller-Matrix-basierte abbildende Ellipsometrie (MM-IE), die den optischen Response anisotroper Materialien in jedem Bildpunkt über die bis zu 16 Müller-Matrix-Elemente erfasst, ist dies von besonderer Relevanz. Reale Substrate sind aber oft nicht eben, können lokal Noppen/Mulden (im FOA) aufweisen oder sind global konvex/ konkav im möglichen Messfeld (field of view: FOV) gekrümmt. Diese lokalen/globalen strukturellen Anomalien des Substrats werden schon für die IE messtechnisch/modellseitig oft nicht beherrscht und sind für die MM-IE in der Wirkung auf die MM-Elemente unbekannt. Diese Defizite sollen messtechnisch bzw. modellmäßig behoben und somit die Messung lokal/global gekrümmter Oberflächen ermöglicht werden (MM-CSIE, CS curved surface). KW - Abbildende Ellipsometrie (IE) KW - Müller-Matrix Ellipsometrie (MM-IE) KW - Gekrümmte Oberflächen KW - Schichtdicke KW - Optische Konstanten PY - 2020 SP - 1 EP - 7 AN - OPUS4-51574 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Resolving the mystery of the molecular dynamics of epoxy-based materials using broadband dielectric spectroscopy and hypheneated calorimetry N2 - A detailed calorimetric and dielectric study on two epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and methyl tetrahydrophtalic acid anhydride (MTHPA) aas the polymer matrix and taurine-modified MgAL layered double hydroxide (T-LDH) and boehmite as nanofiller. The molecular dynamics investigation revealed an intrinsic structural heterogeneity of the epoxy materials. Moreover the polymer/particle interphase was qualitatively and quantitavely investigated. T2 - Online International Dielectric Society 2020 Workshop CY - Online meeting DA - 28.09.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - BDS KW - TMDSC PY - 2020 AN - OPUS4-51492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Feltin, N. T1 - Hybrid metrology for microscopy of nanoparticles N2 - This presentation is structured in two parts: i) Hybrid metrology by combining SEM with AFM (N. Feltin) and ii) hybridization and corelative microscopy by SEM, STEM-in-SEM, TEM, EDS, Auger Electron Microscopy, TKD and more (D. Hodoroaba). The first part is focused on the metrological part of the hybrid measurement SEM-AFM, the second part offers some further possibilities of correlative microscopy of nanoparticles based on practical examples. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - SEM KW - AFM KW - Metrology KW - Particle size distribution KW - Correlative imaging KW - STEM-in-SEM (TSEM) PY - 2020 AN - OPUS4-51476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement; nPSize offer after 2 Ys N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, VAMAS inter-laboratory comparisons) to be standardized and implemented in accredited analytical laboratories is discussed. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - Size KW - Shape KW - Traceability KW - EMPIR KW - Reference materials KW - VAMAS PY - 2020 AN - OPUS4-51477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -